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Abstract—Multi-antenna techniques enable Direction of Ar-
rival (DoA) estimation and lead to highly accurate results. In
DoA-based positioning, the angles values must be predefined in
an interval of 2π-length, and the prior knowledge of x-direction
is required. However, this prerequisite is impractical for a self-
positioning task at a mobile device because its orientation is
unknown. In this paper, we propose an algorithm using the
differences among the DoAs to overcome such a difficulty. The
algorithm relies on the estimation of the Direction Difference of
Arrival (DDoA), which is linked to the DoAs. In our procedure,
the definition of DoA utilizes the atan2 function, which has
the 2π-long codomain to map the DoA. An iterative Maximum
Likelihood (ML) estimator for position estimation is presented.
Noisy measurements with values near the edges of this codomain
can lead to drastic position estimation errors, making the
convergence of iterative procedures more challenging. Therefore,
a phase correction scheme is proposed to robustify the estimation
considerably. Simulation results show substantial improvement in
performances compared to the methods without correction.

Index Terms - DDoA, Direction Difference of Arrival, 2D
localization, Maximum Likelihood.

I. INTRODUCTION

Positioning methods can be divided into 2 main types, based
on where the mobile position estimate is computed [1].
• Network-based: The network of base stations (BSs)

computes the coordinates of the mobile device from the
signal(s) sent by the mobile device.

• Mobile-based: The mobile device itself computes its
coordinates by using signals from the network of BSs.

Mobile-based self-positioning, where the mobile device is able
to determine its position by itself, is a vital problem in wireless
communications. There are various positioning techniques:
Time of Arrival (ToA), Time Difference of Arrival (TDoA),
Received Signal Strength (RSS), and Direction of Arrival
(DoA) (in some documents, it is also called Angle of Arrival -
AOA) [1]. ToA-based [3-5] and TDoA-based [6-7] positioning
require highly accurate clock synchronization among all BSs
and mobile device. DoA-based systems do not require such
synchronization. Instead, the resolution of DoA measurements
is limited by the SNR, the number of sensors in the array, and
the separation between these sensors. DoA estimation schemes
are usually thought of as computationally expensive. However,
recent developments propose computationally simple DoA
estimation schemes that allow small antenna arrays with a
reduced number of elements [2].

DoA-based localization computes the coordinates of the
mobile device based on the direction of incident waves to

base stations. The numerical expression of this direction is
the trigonometric angle between the x-direction and the signal
wave (Fig. 1a). To avoid confusion in measuring angles, all the
angles’ values must be defined in an interval whose length is
2π. Furthermore, at the boundaries of the interval, the DoA is
very sensitive to noise. For instance, on the condition that an
angle’s set of definition is [0; 2π), when the true value of the
angle is ε1, a small noise can make the angle’s value −ε2 (ε1
and ε2 are very small positive value). However, as the set of
definition is [0; 2π), the estimated value of this angle becomes
2π − ε2, which is very different from the true value.

DoA-based positioning is only feasible for Network-based
localization because the orientation of each base station
is fixed and known. However, as for Mobile-based Self-
positioning, since the orientation of a mobile device is un-
known, it cannot refer to the x-direction to calculate the
angle of arrival. Consequently, Direction Difference of Arrival
(DDoA) is proposed. In this technique, only the difference
in directions of arrival of incident waves from a pair of
base stations is required (Fig. 1b). Mathematically, a DDoA
is calculated by subtracting the 2 DoAs concerned. Recent
achievements in DoA estimations at mobile devices [8-11]
make DDoA-based positioning algorithms promising.

In [12], the very first ideas about DDoA are introduced. A
DoA-based positioning method for mobile devices, in which
the prior knowledge of the x-direction is not required, is
also presented in [13]. Nevertheless, the authors use arctan
function in the definition of DoA, which cannot cover all
the possible values of an angle. In [14] and [15] the authors
also demonstrate DDoA in different ways of explication. In
general, they do not consider the sensitivity to noise of an
angle’s measured value.

This paper gives a clear analysis of localization based on
the DDoAs of the incident wave from the mobile device to the
network of base stations. In the definition of DoA, the atan2
function is utilized instead of arctan function. Subtraction
of two DoAs returns a value in the range of (−2π; 2π),
so a modulo operation with a divisor of 2π is applied. For
this reason, the codomain of DDoA computations is [0; 2π).
This interval is also the set of definition of DDoA measured
values. Furthermore, an additional correction is added to the
subtraction of two DoAs to avoid possible huge computing
errors caused by small mistakes in practical measurements.
Compared to [12], we formulate a Maximum Likelihood



(a) DoA approach for network-based localization.

(b) DDoA approach for mobile-based localization

Fig. 1: DoA vs DDoA approaches for positioning, in noiseless
scenario.

estimator with the fitting criterion at the level of DDoAs
instead of their tangents, allowing the original introduction
of phase corrections (to offset the modulo operations).

Notation: mod(x, a) denotes x modulo a; diag(a1, a2, . . . ,
an) is the diagonal matrix whose diagonal elements are a1,
a2, . . . , an resp.; [a;b) denotes an interval from a to b which
includes a but excludes b, [A]i,j is the element at i-th row
and j-column of matrix A. atan2 means 2-argument which
is defined as: ϕ = atan2(y, x) ⇐⇒ x + jy = rejϕ with r
=
√

x2 + y2, ϕ ∈ (−π;π] and j is the imaginary unit. The
standard arctangent function arctan has values in [−π2 ,

π
2 ].

Let
sign(x) =

{
1 , x ≥ 0
−1 , x < 0 .

(1)

Then for (x, y) 6= (0, 0), we have

atan2(x, y) = arctan
(y
x

)
− (sign(x)− 1) sign(y)

π

2
. (2)

II. DDOA-BASED POSITIONING ALGORITHM

A. Direction of Arrival

We define ϕi to be the trigonometric angle between the
x axis and the signal ray received at the mobile station. Let
(x, y) be the coordinates of the mobile station and (xi, yi) be
the coordinates of the i-th base station. We then have the real
DoA of the signal from the i-th base station:

ϕi = atan2(yi − y, xi − x) . (3)
In the presence of estimation errors, the measured value of
i-th DoA shall be:

ϕ̂i = ϕi + nDoA,i = atan2(yi − y, xi − x) + nDoA,i (4)

Fig. 2: Sensitivity to DDoA estimation error induced modulo
switches.

where nDoA,i is the error in DoA estimation. The authors of
[16] illustrates that when there is Gaussian noise in received
signal, the error in estimation is asymptotically Gaussian
distributed with zero-mean. As a result, we can assume that
nDoA,i is Gaussian distributed with zero-mean and variance of
σ2
i .

B. Direction Difference of Arrival
As ϕi ∈ (−π;π], we have the difference dϕi,j = ϕi−ϕj ∈

(−2π; 2π). However, the value of an angle must be predefined
in a 2π-long range. Therefore, we state the Direction Differ-
ence of Arrival (DDoA) between signal ray from i-th base
station and signal ray from j-th base station (where i from 1
to N , j from 1 to N , i 6= j, N is the number of base stations)
as follows:

φi,j = mod (ϕi − ϕj , 2π) = mod(dϕi,j , 2π)
= mod (atan2(yi−y, xi−x)−atan2(yj−y, xj−x), 2π)

(5)
where for the last equality and below we assume the absence
of errors. In terms of the arctan function, we get with (2)

φi,j = arctan
yi − y
xi − x − arctan

yj − y
xj − x +m1π

= arctan
(yi−y)(xj−x)−(xj−x)(yj−y)
(yi−y)(yj−y)+(xi−x)(xj−x)

+m2π
(6)

where m1 and m2 are integers. Hence we get

tanφi,j =
(yi − y)(xj − x)− (xi − x)(yj − y)

(yi − y)(yj − y) + (xi − x)(xj − x)
. (7)

x[−yi + yj + (xi + xj) tan(φi,j)]
+y[xi − xj + (yi + yj) tan(φi,j)]
−(x2 + y2) tan(φi,j)
= −xjyi + xiyj + (xixj + yiyj) tan(φi,j) .

(8)

In the presence of errors, the DDoA measurements, which
are the practical estimated values of the DDoAs, also in range
of [0; 2π) and denoted by {φ̂i,j}, are modeled as

φ̂i,j = mod (ϕ̂i − ϕ̂j , 2π) = φi,j + ki,j2π + nDDoA,i,j (9)

where nDDoA,i,j = nDoA,i − nDoA,j ∼ N (0, σ2
i + σ2

j ) and the
modulo induced noise term ki is defined as:



ki,j =



1 ,

{
dϕi,j ≥ 0 and dϕi,j + nDDoA,i,j < 0

or dϕi,j + nDDoA,i,j < −2π

−1 ,

{
dϕi,j < 0 and dϕi,j + nDDoA,i,j ≥ 0

or dϕi,j + nDDoA,i,j ≥ 2π

0 otherwise.

(10)

C. Position estimation by the Least-Squares (LS) method

Regardless of ki,j , for small enough n,i,j we get
tan φ̂i,j = tan(φi,j + ki,j2π + n,i,j) ≈ tanφi,j + n,i,j .

(11)
(8) is a 2-variable quadratic equation, which is satisfied by
(xi, yi), (xj , yj) and (x, y). In other words, (8) is the equation
of a circle passing through the positions of i-th BS, j-th BS
and the mobile. With 2 base station positions and a DDoA,
the locus of all the possible positions of the mobile device is
a circle to which the DDoA is an inscribed angle. When φi,j
is close to 0, the error term nDDoA,i,j can lead to a circle flip
as illustrated in Fig. 2. With two base stations BS1 and BS2,
the solid blue circle is the locus of UE positions with correct
DDoA φ2,1. The UE position is at the intersection with another
DDoA circle, the red one. Now, with a small error on φ2,1,
which changes it from a small positive to a small negative
value, the modulo operation kicks in, changing φ̂2,1 to a value
near 2π. As a result, given the positions of BS1 and BS2,
the circle corresponding to the DDoA φ̂2,1 now becomes the
dashed blue circle and the estimated UE position jumps to its
intersection with the red circle, which is very far from its true
position (UE).

Now, with N BSs, we get N(N − 1)/2 circles. In matrix
notation, we define ω = [x y x2+y2]T . In addition, Â and b̂
are defined by (12) and (13) respectively, which are illustrated
in the beginning of the following page.

We have
min
ω
‖Âω − b̂‖2 (14)

leading to the estimate of ω being calculated by
ω̂ = Â†b̂ (15)

where A† = (ATA)−1AT is the Moore-Penrose pseudo
inverse of matrix A. The estimated coordinates of the mobile
device are the two first element of ω̂:

x̂ =
[
[ω̂]1 [ω̂]2

]T
(16)

To further optimize the estimation of the mobile’s position,
this can be taken as initialization of an iterative procedure
discussed next.

D. Iterative Maximum Likelihood (ML) Procedure

To optimize x̂ obtained in (16), an iterative Maximum
Likelihood estimator is applied. In vector form, we denote

φ̂ =
[
φ̂2,1 φ̂3,1 . . . φ̂N,1

]T
(17)

f(x,k) =


φ2,1(x) + k2,12π
φ3,1(x) + k3,12π

. . .
φN,1(x) + kN,12π

 (18)

where k = [k2,1 k3,1 · · · kN,1]T , x = [x y]T and φi,1(x)
is the estimated DDoA between the 1st and the i-th incident
waves (i ≥ 2) and computed by
φi,j(x) = mod (atan2(yi−y, xi−x)−atan2(y1−y, x1−x), 2π)

(19)
Let the noise vector n

n =
[
nDDoA,2,1 nDDoA,3,1 . . . nDDoA,N,1

]
(20)

The covariance matrix of all the additive errors is

C = E(nnT ) = σ2
1 1 1T + diag(σ2

2 , σ
2
3 , . . . , σ

2
N ) (21)

where 1 =
[
1 1 . . . 1

]T
is the all-ones vector. Note that

whereas for the LS method, exploiting all N(N−1)/2 circles
is useful, for the ML method there are only N − 1 linearly
independent DDoAs among the N(N − 1)/2 possible ones.

Treating the phase shift vector k as unknown parameters
and ignoring their dependence on the noise, the measurement
vector φ̂ is Gaussian with mean vector of f and covariance
matrix C, we have the probability density function (pdf) [17]:

p(φ̂|x,k) = (2π)−
N
2

|C|
1
2

exp
[
−1
2 (φ̂−f)TC−1(φ̂−f)

]
(22)

Maximizing the pdf in (22) is equivalent to finding
x̂, k̂ = argmin

x,k
(φ̂− f(x,k))TC−1(φ̂− f(x,k)) (23)

which we shall perform alternatingly. We consider Gauss
Newton [18] for x. At iteration (u+1)
x̂(u+1)= x̂(u)+(GTC−1G)−1GTC−1(φ̂−f(x̂(u),k(u+1)))

(24)
where G is the Jacobian matrix of f(x)

G = G(x̂(u),k(u+1)) , G(x,k) =
∂f(x,k)

∂xT
. (25)

At this point, it is important to determine the value of k. As
we do not know the additive noise in each DoA measurement,
ki,1 cannot be determined by equation (10). From (9), we have

|nDDoA,i,1| = |φ̂i,1 − φi,1 − ki,12π| (26)

We assume that nDDoA,i,1 is small enough, so |nDDoA,i,1| < π
with the probability almost 1. Thus k̂i,1 can be estimated by

k̂
(u+1)
i,1 = arg min

ki,1∈{0;±1}
|φ̂i,1 − φi,1(x̂(u))− ki,12π| (27)

where φ̂i,1(x̂(u)) is the estimated value of φi,1 at the u-th
iteration. A procedure is expected to terminate when ‖x̂(u) −
x̂(u−1)‖2 < ε, for the stopping value ε sufficiently small.
Then, the final position of the procedure is considered to be
the coordinates of the mobile device in the xy plane.

However, iterative procedures do not always converge.
There are three possible outcomes for an iterative procedure:
• Convergence: The procedure quickly meets the stopping

criterion and reaches the finite values.
• Divergence: The procedure reaches infinite values, and

then it is forced to stop.
• Oscillation: The procedure oscillates between 2 or more

repeated finite values. It does not diverge, but it is not
able to converge. Experiments show that convergence or



Â =


−y2 + y1 + (x2 + x1) x2 − x1 − (y2 + y1) − tan(φ̂2,1)

−y3 + y1 + (x3 + x1) x3 − x1 − (y3 + y1) − tan(φ̂3,1)
. . .

−yN + yN−1 + (xN + xN−1) xN − xN−1 − (yN + yN−1) − tan(φ̂N,N−1)

 (12)

b̂ =


−x1y2 + x2y1 + (x2x1 + y2y1) tan(φ̂2,1)

−x1y3 + x3y1 + (x3x1 + y3y1) tan(φ̂3,1)
. . .

−xN−1yN + xNyN−1 + (xNxN−1 + yNyN−1) tan(φ̂N,N−1)

 (13)

divergence appears in tens of iterations. Therefore, we set
up the maximum number of iterations for each procedure
is 1000. If at 1001st value, the stopping criterion is not
met, the iterative procedure will be considered as an
oscillating procedure and then forced to stop.

We take the final position of a converging procedure as the
estimated position for the mobile device. As for a diverging
procedure or an oscillating procedure, the initialization is
selected as estimate.

In a nutshell, we propose the Algorithm 1, a Gauss-Newton
iterative solution for the Maximum Likelihood estimator.

Algorithm 1: Proposed Maximum Likelihood estimator
with phase correction k̂

1 Take the measured DDoA φ̂i,j as the trigonometric angle
of the incident wave from i-th base station and the
incident wave from j-th base station.

2 Assign u = 1 and ε sufficiently small.
3 Compute the estimation ω̂ by (15), then assign
x̂(1) =

[
[ω̂]1 [ω̂]2

]T
as the first estimated coordinates

of the mobile device.
4 repeat
5 Compute the estimated Direction Difference of

Arrival φ̂i,1 by (19).
6 if |φ̂i,1(x̂(u))− φ̂i,1 ≥ π then
7 k̂i,1 = sign(φ̂i,1(x̂(u))− φ̂i,1)
8 else
9 k̂i,1 = 0 ;

10 Compute x̂(u+1) by (24). u = u+ 1;
11 until ‖x̂(u) − x̂(u−1)‖2 < ε or u > 1000 or
‖x̂(u)‖2 = ±∞;

12 if u > 1000 or ‖x̂(u)‖2 = ±∞ then
13 x̂(1) is the estimated position of the mobile device;
14 else
15 x̂(u) is the estimated position of the mobile device;

E. Cramer-Rao Bound (CRB)
To evaluate the quality of the algorithm based on DDoA,

we compare to the Cramer-Rao Bound (CRB), via the Fisher
Information Matrix (FIM):

I(x) = GT (x)C−1G(x) . (28)

The CRB is the sum of all the diagonal elements of the inverse
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Fig. 3: Map of base stations and random mobile device
positions.

of FIM:
CRB = [I−1]1,1 + [I−1]2,2 (29)

III. SIMULATION RESULTS
To compare the quality among of algorithms and CRB,

we use Root Mean Square Position Error (RMSE) which is
defined by

RMSE =
√

E{‖x̂− x̄‖2} (30)

where x̄ is the true position of the mobile device and X̂ is
its estimate. In the xy plane, RMSE averaging is over 1000
mobile positions picked randomly in a square of 1000m x
1000m centered in the circle of BSs. The network of 8 Base
stations (numbered from 1 to 8) forms the circumscribed circle
of this square (Fig. 3). The value for ε in the stopping criterion
of the ML estimator is 0.01.
A. Results

In the figures, initial point” refers to the position found by
the Least-Squares method in section II-C, whereas iterative
procedure” refers to the Maximum Likelihood algorithm.

Instead of comparing the MSEs to the CRB, we compare
their square roots: The Root Mean Square Error (RMSE) =√

MSE and square root of CRB (
√

CRB). In the simulations,
all the DoA estimations are assumed to have the same standard
deviation: σ1 = σ2 = · · · = σN = σ.

Fig. 4 illustrates the results when the common standard
deviation of DoA estimations (σ) varies from 0.5◦ to 4◦.
More comprehensively, Fig. 4a compares the RMSEs of the 4
algorithms:
(a) The initial point obtained by Least Squares method shown

in section II-C.
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Fig. 4: Algorithm comparison for N = 8 BSs, standard
deviation of DOA measurements varies from 0.5o to 4o.

(b) Gauss-Newton iterative procedures using arctan function
[12], by replacing atan2 by arctan in (19) (this corre-
sponds to (4.7), (4.12) and (4.20) in [12]).

(c) Gauss-Newton iterative procedures using atan2 function
without k-correction.

(d) Gauss-Newton iterative procedures using atan2 function
with k-correction.

The
√

CRB is also added to validate their performances.
Fig. 4b compares the average number of iterations of the three
algorithms (b), (c) and (d).

In Fig. 4a, there is no difference among the RMSEs of (a),
(b) and (c). Undoubtedly, all the iterative procedures with
algorithm (b) and (c) diverge or oscillate so that the ML
estimator has no effect. On the otherhand, the RMSE of (d)
is much smaller than the common RMSE of (a), (b) and (c),
which means ML estimator plays an important role in position
optimization. The RMSE of (d) is still higher than the

√
CRB,

which demonstrates that this estimator is unbiased.
In Fig. 4b, the average number of iterations of (b) is about

900, which means that 90% of the procedures oscillate and
only 10% of them diverge. As for (c), this average number
is smaller than 10, because most of the procedures diverge.

Our proposed algorithm (d) has the smallest average number
of iterations, so it cam give a remarkable reduction of the time
delay for localization processes.

IV. CONCLUSIONS
This paper analyzes DDoA-based positioning algorithms

using the atan2 function with a phase correction to overcome
possible phase jumps caused by errors in angle measurements.
The simulations demonstrate the superior performance of
the proposed algorithm: more accurate results and the lower
computation time compared to some existing approaches.
However, the problems in multipath environments are not
taken into account. In addition, an extension to 3D localization
should be implemented to make the proposed positioning
algorithm more realistic.
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