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Abstract
Whether it be for results summarization, or the analysis of
classifier fusion, some means to compare different classifiers
can often provide illuminating insight into their behaviour,
(dis)similarity or complementarity. We propose a simple
method to derive 2D representation from detection scores pro-
duced by an arbitrary set of binary classifiers in response to a
common dataset. Based upon rank correlations, our method fa-
cilitates a visual comparison of classifiers with arbitrary scores
and with close relation to receiver operating characteristic
(ROC) and detection error trade-off (DET) analyses. While
the approach is fully versatile and can be applied to any de-
tection task, we demonstrate the method using scores produced
by automatic speaker verification and voice anti-spoofing sys-
tems. The former are produced by a Gaussian mixture model
system trained with VoxCeleb data whereas the latter stem from
submissions to the ASVspoof 2019 challenge.
Index Terms: classifier, multi-dimensional scaling

1. Introduction
Whether it be for challenge results summarization [1, 2, 3, 4] or
the analysis of classifier fusion, some means to compare alter-
native classifiers can often provide illuminating insight into ro-
bustness, coherence, and generalisation [5]; (dis)similarity, and
complementarity. Depending on prior knowledge (and data)
available, one could compare

• the underlying working principles, features, architec-
tures, training data properties — classifier metadata,

• empirical performance (e.g. accuracy) on a common
set of evaluation data,

to name two possibilities. Often we want to understand how
the two are related — what is the impact of specific model-
ing choices upon performance. A common approach is to fix
some parameters while varying others to find out their impact
on performance. Whenever one implements the classifier and
has full control over the experiment, this white-box approach is
relatively straightforward. There are, however, situations where
one may not have access to exhaustive classifier details and
configuration settings but would still like to learn about simi-
larities between alternative solutions. One such black-box sce-
nario are public machine learning challenges and technology

benchmarks. Whether it be NIST speaker recognition evalua-
tions [2, 3], VoxCeleb [4], ASVspoof [1], or indeed any other
competitive campaigns, participants typically run their in-house
systems on a common evaluation set and submit predictions
(e.g. scores) for unlabeled data along with a system descrip-
tion. Since source codes or models are often not required, there
can be uncertainty as to why specific challenge entries outper-
form others. The authors’ personal motivation for the presented
work stems partially from difficulties encountered in our efforts
to link classifier properties to their performance in a recent chal-
lenge [1]. We wanted to find out what can be learnt about clas-
sifier differences based on detection scores.

To this end, we propose a method for computing the dis-
tance between binary classifiers based on the scores produced
for common evaluation data (Fig. 1). We impose a stronger
notion of classifier (dis)similarity than the established methods
of detection error trade-off (DET) [6] and receiver operating
characteristics (ROC) analyses: to be considered identical, a
pair of classifiers must agree not only in their DET profiles but
relative ordering of individual trials. Similar principles are the
basis for a number of statistical significance tests but our per-
spective is in visualizing classifiers beyond DET/ROC plots.

As Fig. 1 suggests, we conjecture that distances derived
from scores may provide information on (possibly unknown)
classifier metadata differences. After describing the background
and methodology, we report an example application of our
methodology to automatic speaker verification (ASV) and voice
anti-spoofing. The former includes classifiers constructed by
the authors (known classifier metadata) while the latter repre-
sents the less controlled case of submissions to the ASVspoof
2019 challenge. Note, however, that the proposed methods are
not in any way specific or limited to the speech domain. To this
end, we provide an open-source reference implementation1.

2. Trade-offs in Characterizing Classifiers
There are various ways to describe a classifier. The coarsest de-
scription might include the general model class — such as ‘a
linear classifier’ or ‘a deep neural network.’ A more refined de-
scription might detail the features and their dimensionality, the
type and number of layers, the software toolkit, loss function,

1https://github.com/asvspoof-challenge/
classifier-adjacency (referenced June 10, 2021).

https://github.com/asvspoof-challenge/classifier-adjacency
https://github.com/asvspoof-challenge/classifier-adjacency
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Figure 1: The behavior of classifiers can be controlled using a limited number of parameters meaningful to the experimenter. Not all the
details, however, may be available to an evaluator. We propose to visualize classifier adjacencies based on their scores to complement
other traditional analyses. The adjacencies can be informative of the adjacency of the underlying control parameters.

or training corpus to name a few possibilities.
Depending on the target group (e.g. general public, sci-

entists, students, software engineers) one may prefer differ-
ent levels of detail. What is in common is that the descrip-
tions are designed for communicating key principles rather
than enabling perfect reproducibility. The description is a
human-readable tuple, h. For instance, our automatic speaker
verification (ASV) systems described below are character-
ized by triplets h = (TrData, F,G) where TrData ∈

{VoxCeleb,LibriSpeech} indicates the training corpus
while F and G are integers that indicate the number of mel
filters and Gaussians, respectively. Each choice (attribute value
in h) impacts results but there is no expectation for such triplets
to be a complete description; it is a description intended for a
particular audience (here, Interspeech attendee).

At the other extreme, the most precise description is a pack-
aged/trained model — a list of all parameters, θ ∈ RD . For
instance, θ could represent all the weights of a deep neural
network (DNN), D being potentially in the order of millions.
If scoring is deterministic (as is usually the case), θ and the
functional form g(X;θ) completely specify how an arbitrary
input X maps to an output (predicted class label or score),
X ↦ Ŷ = g(X;θ). This leads to perfect reproducibility —
one obtains the same scores, and hence also results, every time.
Unlike h, however, θ is not intended to be comprehensible to
the human: eyeballing the numerical values of DNN weights
(an exercise which could take a while) is not particularly helpful
in understanding how the system works or why it may work/fail
in specific cases. Another problem is incomparability of the pa-
rameter vectors of different models. They could have different
dimensionalities and there may be no meaningful correspon-
dence between dimensions.

One more level of description are the scores that can be
used to derive detection error trade-off (DET) profiles [6] and
metrics such as the equal error rate (EER). Unfortunately, being
based on score distributions, DETs or EERs are not informative
of classifier responses to individual trials. A common compro-
mise is to define a limited number of evaluation conditions —
subsets of trials with characteristics useful for diagnostics (e.g.
‘telephony’, ‘short-duration’, ‘attack S10’, ‘females’). Perfor-
mance breakdown by condition is useful in analysing trends.

In summary, there are different abstraction levels to charac-
terize classifiers. We aim at learning about their differences in
terms of human-targeted descriptions without the precise knowl-
edge of the attribute values themselves. We conjecture that clas-
sifiers that are similar in their h descriptions may produce sim-
ilar outputs when executed on common data. In this case, one
can learn about classifier design differences from their scores.
To this end, we propose a method to compute pairwise classifier

distances for common evaluation data. The distances can then
be used for different purposes, such as agglomerative clustering
or visualisation, to help in demonstrating trends or diagnosing
classifier complementarities.

3. Proposed Classifier Adjacency Visualizer
3.1. Assumed input data

Let X and Y denote some input space and (binary) labels, re-
spectively. We use D = {(Xi, Yi)}Ni=1 ∼i.i.d. p(X,Y ) to de-
note a labeled (supervised) evaluation set of N trials. In an
ASV set-up, each Xi corresponds to an enrollment-test pair
and Yi ∈ {0, 1} indicates whether the speaker identities in the
two utterances are the same (target trial) or different (nontarget
trial). In voice anti-spoofing, in turn, each Xi corresponds to a
test file and Yi indicates whether Xi represents bonafide audio
or a spoofing attack (such as computer-generated speech).

We assume a set G = {g1, . . . , gM} of M binary classi-
fiers (detectors), gj ∶ X → R, each of which assigns a numeric
membership value (detection score) to each trial, with the con-
vention that high scores indicate support towards the positive
class (e.g. target speaker). Unless we construct the classifiers
ourselves, we do not have access to the scoring functions {gj}
but only to their outputs for the shared evaluation data D (in
turn, in a challenge setting, only the organizer knows the ground
truth values {Yi} while the participants produce predictions on
the test trials {Xi} blindly). We use si,j = gj(Xi) to denote
the response of the jth classifier to the ith trial. The data used
for our modeling consists of the responses of all classifiers to
all the test trials — an N ×M matrix S = [s1, . . . , sM ] where
sj = [s1,j , . . . , sN,j]T is a column vector of size N × 1.

Optionally, one may have additional trial metadata. In this
case, we assume that each trial can be uniquely assigned to
one member of a mutually exclusive set of groups (conditions),
c ∈ {1, 2, . . . , C}. In our experiments, for instance, groups in
the ASV application correspond to the specific pair of speaker
identities in the trial. We denote the number of trials in group
c by Nc. As the groups are mutually exclusive, N = ∑C

c=1Nc.
We use either the original N ×M score matrix or the smaller
C ×M matrix S

′
= [µ1, . . . ,µM ] where each group is repre-

sented using its average score. Here, µj = [µ1,j , . . . , µC,j]T is
a column vector of size C × 1 for the jth classifier.

3.2. Classifier Adjacency

To identify similar (and dissimilar) systems, we define a dis-
tance function between classifiers, indicated by D(i, j), where
i, j ∈ {1, . . . ,M}. It is computed either from S or S

′. We



first note that, since the numerical range of detection scores can
be arbitrary, a direct comparison of scores (e.g. using Euclidean
distance) is usually not meaningful. In the ASV field, ‘correc-
tion’ for the range of scores is typically addressed through cal-
ibration (e.g. [7]) that converts arbitrary scores into calibrated
log-likelihood ratios (LLRs). Here, however, since score cal-
ibration is not our main concern, we opt for more straightfor-
ward scale- and translation-invariant distance computation. To
this end, we define classifier distance through order statistics
as opposed to raw scores. This choice stems from the knowl-
edge that any two classifiers which yield the same order of
trial scores on common data will share the same detection er-
ror trade-off (DET) curve and equal error rate (EER) [8, p.81]2.

We use Kendall’s τ [9, 10, 11] as the rank correlation mea-
sure between classifiers i and j:

τ(i, j) = Ncon −Ndis√
(Ncon +Ndis + Ti) × (Ncon +Ndis + Tj)

, (2)

where Ncon and Ndis are, respectively, the number of concor-
dant and discordant pairs between i and j. Further, Ti is the
number of ties only in i, and Tj is the number of ties only in j.
Concordance of a pair of trials means that the sort order agrees
across the classifiers. For instance, if the ath and bth trial scores
are ordered sa,i < sb,i in classifier i, the trial pair (a, b) is cor-
dordant with classifier j, if similarly sa,j < sb,j . Likewise, if
(sa,i > sb,i) AND (sa,j > sb,j), pair (a, b) is again corcondant.
If concordance is not satisfied, the pair (a, b) is discordant. A
tie within either classifier means that there identical scores pro-
duced for different trials. With real-valued scores stored in float
or double precision this is generally a rare case.

An intuitive feeling of (2) can be developed by first assum-
ing there are no ties (Ti = Tj = 0). Now, if the two classifiers
place all trials into the same sort order, Ndis = 0 and τ(i, j)
reaches the maximum value of 1. The other extreme is obtained
when the sort order of trials of one classifier is the reverse of
the other. This corresponds to Ncon = 0 and yields the mini-
mum value of −1. Finally, τ = 0 indicates lack of statistical
association between the two. To sum up, τ(i, j) takes values in
[−1, 1] (similar to Pearson correlation) and can be considered
as a degree of agreement in the sort order of trials. Whenever
τ(i, j) = 1, the classifiers have identical DET or ROC profiles.

For the purposes of visualization, we map τ into distances
as D(i, j) = 1

2
(1 − τ(i, j)). Hence, identical systems (in the

sense of their Kendall τ ) map to a distance of 0 while reverse
ordering yields a maximum distance of 1. Finally, visualiza-
tions of classifier adjacency relations are obtained using clas-
sical (non-metric) multidimensional scaling (MDS). Each clas-
sifier is represented by a point in 2D space so that between-
classifier distances approximate those in the given distance ma-
trix (here, theM ×M matrix containing all pairwise distances).

4. Experimental set-up
We demonstrate the proposed methods with two different tasks:
automatic speaker verification (ASV) and voice anti-spoofing.
The former consists of classifiers constructed by the authors
with controlled parameters. The latter consists of countermea-
sures submitted to the ASVspoof 2019 challenge. Even if the
system descriptions are known, we cannot interact with these
systems nor do we know all their implementation nuances.

2The converse does not necessarily hold: having the same DET
curve or EER does not imply that the trial rankings must be the same.
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Figure 2: Visualisation of ASV similarity on VoxCeleb1 test
set. The ASV systems are toy classifiers to show case how the
proposed visualisation method behaves in a controlled setting.
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llr values serve nominal orientation.

4.1. Automatic speaker verification

The analysis of ASV methods uses the publicly available Vox-
Celeb dataset. We use the standard trial list of 40 test speakers
in VoxCeleb1 [12]. It consists of 18860 target trials and the
same number of nontarget trials. We form the groups (see Sec-
tion 3) from the cross-product of speaker identities in the trials.
With 40 speakers, this yields (40 ⋅ 41)/2 = 820 groups.

We use Gaussian mixture model-universal background
model (GMM-UBM) based ASV system with an MFCCs front-
end. While there are better ASV methods, we opt for the com-
putationally light GMM-UBM as we want to generate a large
number of classifiers. The focus of this study is in classifier
adjacency rather than performance.

Following standard practice, extracted MFCCs are aug-
mented with delta features and processed with RASTA and
utterance-level cepstral mean and variance normalization
(CMVN). For MFCCs, we include filterbanks comprising 12,
16, 20 and 24 filters. For UBMs, we vary the number of com-
ponents in the powers of 2 between 2 and 1024. For UBM
training, we select two different datasets: VoxCeleb2 [4] and
LibriSpeech [13]. In total, we have 80 ASV systems.

4.2. Anti-spoofing

The analysis of voice anti-spoofing methods, or spoofing coun-
termeasures (CMs), uses ASVspoof 2019 challenge submission
entries. Details of the dataset [14] and challenge results [1] are
provided elsewhere. Here we focus on aspects relevant for the
novel classifier adjacency analysis.

The challenge data consists of two different scenarios. The
evaluation set of the logical attack (LA) scenario contains 13
different text-to-speech or voice conversion attacks (labeled
A07. . .A19). The physical attack (PA) scenario, in turn, con-
sists of simulated replay attacks from 27 different environments
and 9 replay configurations. Both sets also contain additional
bona fide (human speech) utterances. The participants pro-
cessed the corresponding audio files blindly to obtain detection
scores. In the LA scenario, the 3-class evaluation set consists
of 5 370 bonafide/target, 1 985 bonafide/non-target, and 63 882
spoofed trials. For the PA scenario, the corresponding num-
bers are 12 960 bonafide/target, 5 130 bonafide/non-target, and
116 640 spoofed trials. For the LA scenario, the groups (see
Section 3) are formed from the 13 attacks plus the bonafide class
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(a total of 14 groups). For the PA scenario, we used all cross-
combinations of 27 environments × (9 replay configurations +
1 bona fide) to define 270 groups.

5. Results
The proposed method is demonstrated in a controlled-classifier
setting (ASV) and in a setting of unconstrained classifiers
(CMs).

5.1. Speaker Verification

Fig. 2 illustrates ASV results with varying number of fil-
ters, mixtures, and training data. The indicated Cmin

llr perfor-
mance [7, 15] is demonstrated for the lowest and highest num-
ber of mixture components to provide nominal guidance only.
For the top-5 systems, Cmin

llr varies between 0.466 and 0.481 (for
visual clarity, we do not show all the Cmin

llr values in Fig. 2).
Differences in classifier parameters expose observable

trends. For 12 filters, decision boundaries resulting from dif-
ferent training data become closer for as few as 4 components.
Similar trajectories are followed as the number of components
increases (as does the discrimination performance). Then, while
the LibriSpeech trajectory continues, the VoxCeleb trajectory
makes a sudden jump into the area of the top classifiers (at
512/1024 components and 20/24 filters). Adjacent classifiers
(to the top ones) have less filters but more components; the top
classifiers use more filters but less components. Our visuals
supplement conventional DET plots: they provide insights into
how decision boundaries are affected by data and parameters.

5.2. Anti-spoofing

Figs. 3 and 4 show visualisations for the LA and PA scenarios,
respectively. Note that the location of points in each panel for
each dataset (left-to-right) are identical. In each panel, circles
indicate a CM, whereas diamonds signify top-5 CMs. Colours
indicate performance and frontend/backend meta-data.

The plots give an indication of the diversity among systems.
Differences between the top-5 systems are reasonably represen-
tative of the full set of systems. The diversity may imply that
the top-performing single systems are complementary. This hy-
pothesis is supported by fusion results discussed in [1] which
shows that the combination of top-performing single LA and PA
systems leads to improved performance. One can presume that
the reason for the ineffective fusion strategies for PA primary

(a) Raw/FE (b) Grouped/FE (c) Raw/BE (d) Grouped/BE

Figure 4: Visualisation of CMs on ASVspoof 2019 PA task; sin-
gle systems. Frontends (FEs) and backends (BEs) are compared
for raw and grouped scores. Legend as in Fig. 3.

system submissions might be due to lack of complementary of
the systems involved in the ensemble.

5.3. Adjacency from raw vs. grouped scores

Finally, we address classifier adjacency through score averaging
by groups and subsequent use of the proposed method. Figs. 2
and 4 illustrate a comparison of the proposed method for raw
and grouped scores. Classifier adjacency is viewed through an
alternative lens. In the ASV task, a clear separation between
the two training is apparent. The VoxCeleb-trained classifiers
(comparatively in-domain) become more alike. By using raw
scores, trajectories by number of components (design parame-
ters) are more alike. Feature resolution (the number of filters)
corresponds to clear trajectories. In the uncontrolled CM set-
ting, frontends as well as backends are more alike after group-
ing: the separation of non-GMM and GMM classifiers becomes
oblivious.

Originally, we had two motivations for the grouped ap-
proach. First, the highly-compressed per-group average was hy-
pothesized to give potentially a stable high-level classifier sig-
nature. Second, there is a computational advantage for very
large trial sets. However, one needs additional metadata (and
domain knowledge) to define the trial grouping. As we see, raw
vs. grouped scores produce different findings. We prefer not to
recommend either variant without a further study. A related ap-
proach, convex optimisation of error trade-offs3, resonates with
the Bayesian decision framework; see use of the ROC convex
hull instead of the corresponding ‘steppy’ profile [7].

6. Conclusions
We proposed a simple approach to visualise classifier adja-
cency on common data. An example application under con-
trolled conditions show that the tool renders classifiers adja-
cent, when they are similar in metadata. In the absence of uni-
fied metadata, analyses for uncontrolled, challenge conditions
prove more challenging. The proposed tool nonetheless reveals
intriguing, new visual insights into classifier adjacency not pro-
vided by any existing tools.
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