DECODING OF NANOPORE-SEQUENCED SYNTHETIC DNA STORING DIGITAL IMAGES
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ABSTRACT

Digital media explosion has led to an exponential increase of
the amount of data generated worldwide and the need for new
means of storage able to keep up with the current growth of
digital information has become a critical challenge. During
the last decade, DNA has been proven to be a potential candi-
date thanks to its biological properties allowing to store infor-
mation at high density (215 petabytes in 1 gram) for centuries.
In previous works we have presented an end-to-end storage
workflow specifically designed for the efficient storage of im-
ages onto synthetic DNA and proven its feasibility in a wet-
lab experiment in which sequencing was performed using the
Illumina machine. In this work we are studying the sequenc-
ing using rather the MinION sequencer on the same data af-
ter being stored in a sealed capsule for two years. MinlON
is a very promising sequencer although introducing a much
higher error rate in the process of reading. In this paper, we
propose a solution to deal with the MinION sequencing noise
allowing to recover the original stored data.

Index Terms— DNA data storage, Nanopore sequencing,
image coding, error detection, consensus finding

1. INTRODUCTION

The exponential growth of digital information threatens to ex-
ceed the capacity of conventional storage devices, challenging
our ability to store all the data generated day after day. For the
past years, big companies like Facebook started building data
centers to fulfil their storage needs, which has an extremely
high financial and environmental impact. As a consequence,
the search for new efficient ways to store digital information
able to keep up with the current needs has become of great
interest as it is the case of DNA data storage. DNA is a com-
plex molecule corresponding to a succession of four types of
nucleotides (nts) A, C, T and G and is the support of hered-
ity in living organisms. Its biological properties allow to store
information at a high density for thousands of years (an exam-
ple of that is the decoding of the DNA of a woolly mammoth
that had been trapped into permafrost for 40,000 years [1]]).
Very roughly, the general workflow for DNA data storage
can be described as depicted in figure (I} Any kind of input
data can be stored into DNA as long as it is encoded first into a

quaternary representation using the 4 symbols of the DNA (A,
C, T and G). This sequence is then biologically synthesized in
a lab and, under the right conditions, it can be stored for long
periods without any loss of information. Whenever the stored
data needs to be retrieved, it can be read using some special
machines called sequencers. This process is called sequenc-
ing. Finally, the initial data can be decoded by following the
inverse process of the encoding. However, the biological pro-
cesses of DNA synthesis and sequencing are error-prone and
introduce some major constraints, adding extra complexity to
the encoding and decoding steps. As it is the case of the er-
ror introduced during DNA synthesis, which is not signifi-
cant when the length of the synthesized strands do not exceed
300 nts and it increases exponentially for longer DNA strands.
Consequently, the encoded sequence has to be cut into shorter
fragments, which are called oligos, which contain some gen-
eral headers and a payload. The payload of the oligos can
contain encoded data (data payload), or only headers regard-
ing the image characteristics and encoding (header oligos) as
depicted in figure

Since the release of nanopore sequencing devices, some
works about DNA storage have included it in their work-
flow, exploring ways to overcome the higher error rate that
this technology introduces. [2] proposes a pipeline which in-
tegrates random access and generates the consensus sequence
by combining different existent multiple sequence alignments
(MSA). In [3] Takahashi et al. present an end-to-end automa-
tion of DNA Data Storage in which nanopore reads are pro-
gressively filtered. After, the remaining reads are decoded
and the corrupted ones discarded. One of the latest works [4]]
addresses the high error rate in the nanopore reads by inte-
grating a Viterbi error correction decoder with the basecaller
and using convolutional codes.

In [5] we introduced a method for the specific encoding
of digital images into DNA which includes compression to
control the DNA synthesis cost (DWT and quantization of
each produced subband) and a biologically constrained en-
coding that respects the restrictions imposed by the process
of DNA sequencing. For a detailed explanation of the encod-
ing algorithm, readers can refer to the aforementioned publi-
cation. The performance of the proposed encoding algorithm
was tested in a biological experiment, in which the encoded
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Fig. 1. General workflow for DNA data storage.

and formatted sequences were synthesized and stored in spe-
cial capsules that allow long preservation of the DNA. For the
decoding, the DNA strands were sequenced using the Illu-
mina Next Seq machine [6]], allowing a perfect reconstruction
of the stored images. After two years of storage, the syn-
thesized oligos have been sequenced with Nanopore which
is a very promising sequencer although introducing a much
higher error rate in the process of reading.

In this paper, we propose a decoding method to deal with
the MinION sequencing noise allowing to recover the original
stored data.

2. DNA SEQUENCING

DNA sequencing is the process of reading DNA strands, pro-
viding as a result a quaternary sequence. There are many se-
quencing machines currently available but two of the most
widely used are [llumina and Nanopore sequencers. Although
they share the same goal of reading DNA strands, those se-
quencers are based on different technologies which provide
each of them with different assets. Despite the high accuracy
provided by the Illumina Next Seq sequencing machine [6]
which has proven to achieve a perfect decoding of the data
in previous works [5]], its high cost and low speed constitute
two major drawbacks for the use of this device for DNA data
storage applications. Aiming to overcome those obstacles,
we tested the feasibility of including nanopore sequencing in
our decoding workflow by performing a second sequencing
of the data synthesized in [3]] after being stored for 2 years in
a sealed capsule [7] preventing its contact with oxygen and
water and allowing its preservation.

For the new experiment, we used the MinION nanopore
machine [8]]. The speed, small size and affordability of this
user-friendly sequencer makes it suitable for real-time appli-
cations, bringing DNA data storage one step closer to reality.
As stated earlier, despite the advantages introduced by this
technology, it also has one major drawback concerning its ac-
curacy, ranging from 95% to 97%, which it is much lower
compared to the one provided by Illumina Next Seq.

Prior to the sequencing step and aiming to add extra re-
dundancy to deal with the errors that it introduces, the initial
oligos are replicated into many copies thanks to a biological
process called Polymerase Chain Reaction (PCR). Hence, the
result of the DNA sequencing is a pool of reads which in-

cludes many noisy copies of each reference sequence.
2.1. Comparing the efficiency of the sequencers

After being stored in a sealed capsule for two years, we have
sequenced the DNA strands which store 2 different images
of size 128 by 128 pixels and 120 by 120 pixels represent-
ing a total amount of 662 and 875 oligos respectively. All the
oligos had a length of 91 nts (without considering primers,
which are special sequences required by the sequencer). In
both cases, 11 oligos contained only headers encoding impor-
tant information about the characteristics of the image and the
parameters of the encoding. The rest of the oligos contained
the encoded data itself.

Due to the low error rate introduced by [llumina Next Seq
and the nature of the errors, the selection of the most frequent
ones as the most reliable led to a perfect reconstruction of the
data. It is important to note that with the Illumina machine we
were also able to fully retrieve the header oligos. The results
are depicted in figures[5[al) and[5[b1).

However, when using the MinlON sequencing machine,
due to the high error rate introduced by nanopore, the decod-
ing is not that trivial and the aforementioned approach is no
longer reliable. Instead, we decoded by following the process
explained in the next paragraphs.

As mentioned in section [2| the output of the sequencing
step is a pool of reads containing many noisy copies of the
initial oligos. This noise comes in the form of substitutions,
insertions and deletions of nucleotides, which affects dramat-
ically both ends of the DNA strands. The resulting reads will
also contain the adapters needed for nanopore sequencing,
which were removed using the library Porechop [9)]. In ad-
dition, the introduction of insertions and deletions at different
rates creates significant variations in the length of the output
reads. Thus, the next step of the decoding phase is to clean
the data, discarding those reads that are highly corrupted due
to the noise and will not contribute to the improvement of the
results. Consequently, reads are filtered by length, keeping
only those reads whose size belongs to the interval L + 10
nts, being L the expected size of the reads.

The second step corresponds to the retrieval of the reads
corresponding to the data we want to decode as the pool of
reads does not only contain one image but several as well as
other kind of data. To do so, we need prior knowledge about



the identifier of the stored data encoded in some header field
of the oligos, the ID field (see figure [3) and its position. As a
consequence of the errors introduced by sequencing, the po-
sition of the identifier might be shifted so in order to retrieve
as many reads as possible, we look for the identifier not only
in the original position but within a range around it.

Once the reads which correspond to the data we aim to
decode have been retrieved, they are clustered according to
their headers. All the reads with non-decodable headers are
discarded as they cannot be assigned to any cluster.

The last step before the decoding of the data is the selec-
tion of the most representative sequence of each cluster. One
of the most widely used algorithms for consensus finding is
based on majority voting, assigning to each position inside
the sequence the most frequent symbol along the cluster.

Finally, the quaternary sequence obtained after consensus
is transformed back to its initial representation to reconstruct
the stored information.

The results are depicted in figures [5(a2) and [5[b2). Even
though we were able to retrieve reads corresponding to all the
reference oligos, the information decoded from the header oli-
gos that contain important parameters regarding the decoding
was corrupted, compromising the decoding of the rest of the
data. To allow the decoding, we make the assumption that
those parameters are known to the decoder. Although this
might not be a realistic scenario, the synthesized oligos had
been encoded to be read by a more accurate sequencer (Illu-
mina Next Seq) and thus, those header oligos did not need
stronger protection to be correctly retrieved. One solution
to this problem when sequencing with MinlON which has a
much higher error rate would be protecting those important
fields with the use of error correcting codes as for example
error correcting DNA barcodes [[10/11]. The above results
prove that despite the assumption of knowledge of the header
oligos there is still too much noise corrupting the decoded
data. Therefore, it is clear that we are in need of applying a
more sophisticated consensus finding algorithm.

3. ANOVEL DECODING METHOD FOR
NANOPORE SEQUENCING

As shown in the section [2] it is clear that the nanopore se-
quencer introduces much noise in the visual quality of the de-
coded images. In this section, we propose an advanced decod-
ing method which takes advantage of the encoding proposed
in [5] in order to improve the quality of the results. This al-
gorithm was tested on the same data presented in section 2.1}
In the following paragraph we briefly describe the algorithm
that has been used for the encoding of the wet-lab experiment
presented in [5]].

3.1. Constructing the codewords

The encoding algorithm used to translate the input values into
a quaternary code is inspired by the restrictions imposed by
the biological procedures of DNA sequencing mentioned in
section[I} Those constraints involve avoiding homopolimers

and keeping the GC content between 40% and 60%. The main
idea is the creation of codewords by selecting elements from
the following dictionaries:

« Dy = {AT, AC, AG,TA, TC,TG,CA,CT,GA,GT}
« Dy ={A,T,C,G}

Codewords of an even length [, are constructed by selecting
% pairs from dictionary D;. Codewords of an odd length [,
are constructed by selecting Z_Tl pairs from D; also adding a
symbol from D5 at the end of the codeword. To ensure that the
code does not create homopolymers, dictionary D; omits the
pairs AA, TT, CC, and GG and to keep the GC content within
an acceptable range, the pairs CG and GC are also excluded.
Although the fact that this encoding algorithm does not con-
tain all the possible permutations of the four DNA symbols
(A, C, T and G) could be considered a drawback in terms
of coding potential, the a priori knowledge about the words
which are not considered in our code can be used to achieve
a better decoding by adding some sort of error detection and
correction during the decoding phase, as it will be further de-
scribed in the following section. Figure 2] depicts an example
of a 3-nt codebook where the red words are omitted accord-
ing to the above code construction algorithm, ensuring that
the concatenation of the codewords will respect the biologi-
cal constraints of DNA sequencing.

’ AAA ’ AAT ’ AAC ‘ AAG ATA ATT ATC ATG ACA ACT

ACC ACG AGA AGT AGC | AGG TAA TAT TAC TAG

’ TTA ’ TTT ’ TTC ‘ TTG TCA TCT TCC TCG TGA TGT

TGC TGG CAA CAT CAC CAG CTA CTT CTC CTG

’ CCA ’ CcCcT ’ Cccc ‘ CCG ’ CGA ’ CGT | CGC | CGG | GAA GAT

GAC | GAG GTA GTT GTC GTG GCA

GCT I GCC l GCG ‘

’ GGA | GGT | GGC l GGG ‘

Fig. 2. All the possible permutations of the four DNA symbols for creat-
ing codewords of 3 nts. Our algorithm for the construction of the codeword
excludes all the codewords in red.

3.2. Proposed method for the decoding

As shown in figure [2] the above codec is using a dictionary
of 4-ary words that are constructed using known pairs of
symbols. Consequently, according to this algorithm there are
some words that are excluded from the codebook. In case
of a sequencing error (insertion deletion or substitution), it is
probable that a correct codeword is transformed into one of
those words that are not included in the code, thus denoting
an error. This fact can be used for improving the consen-
sus finding algorithm so to provide better estimation of the
correct oligos.

In this section, we propose a new implementation of this
algorithm which is based on the same principle of majority
voting but acts on DNA codewords rather than single nu-
cleotides (see figure [d).
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Fig. 3. Format of the oligos - All oligos contain primers that are needed
for the sequencing: S denotes the sense nucleotide which determines whether
a strand is reverse complemented when sequenced. P is a parity check nu-
cleotide while the ID is an identifier of the image so to be distinguished from
other data that may be stored. The payload can either contain encoding head-
ers only which hold information about the image characteristics and the en-
coding parameters used (header oligo), or it can contain some data headers
and an offset to denote the position and nature of the data field that follows
(data oligo).

The consensus by codeword algorithm is applied to each
cluster of reads and is briefly described as follows:

1. Divide each oligo into the different words
2. Sort words by frequency

3. Select as consensus the most frequent decodable word
(i.e. the most frequent word that exists in our dictio-

nary)

With this new consensus we allow an extra step of error
correction to find a better consensus by ensuring that the final
estimation does not contain undecodable words.

|A|T|T|A|G|C|T|C|A‘ |ATT|AGC|TCA‘
AT|C|A|G|C|T|TIT‘ |ATC|AGCI'ITI"
|A|T|T|A|G|C|T|T|T‘ |ATT|AGC|'ITI"
|A|T|T|A|G|C|T|T|T‘ |ATT|AGC|TCA‘

Fig. 4. Comparison of two methods for consensus finding. Left: majority
voting on single nucleotides. Right: majority voting on DNA code-words,
“"TTT” is non-decodable as it does not exist in our dictionary (see figure |Z|),
therefore, it is discarded when building the consensus even though it appears
with a higher frequency.

For both images, the PSNR had a significant improvement
of around 20 dB when using the proposed method for consen-
sus finding compared to the previous results, leading to a no-
table improvement on the visual quality of the reconstructed
images (see figures[5{a3) and [5(b3)).

4. CONCLUSIONS

This work is a very first demonstration of the potential of the
proposed decoding method which takes advantage of the en-
coding that has been introduced in our previous works for the
storage of images into synthetic DNA. To this end we have
sequenced the data encoded and synthesized 2 years ago us-
ing two different sequencing technologies: Illumina Next Seq

(al) (b1)
PSNR = Inf, mse =0 PSNR = Inf, mse = 0

(a2) (b2)
PSNR =21.7 dB, mse = 437 PSNR =13.2 dB, mse = 3113
[ %

(a3) (b3)
PSNR =40.5 dB, mse = 5.81 PSNR =30.9 dB, mse = 33.23

Fig. 5. Visual results of the decoded data - (al) and (bl) correspond to Illu-
mina sequencing and consensus based on the selection of the most frequent
reads. (a2) and (b2) correspond to MinION sequencing and simple consensus
based on Majority Voting in single nts. (a3) and (b3) correspond to MinION
sequencing and our novel consensus algorithm based on Majority Voting in
codewords

(accurate but slow and expensive) and MinlON (real-time,
user friendly and affordable but error prone). Our results
prove that the proposed decoding can significantly improve
the quality of the reconstruction. It is important to denote
that even though the decoding is not perfect, this proposed
method was proven to be very promising for the extremely
high error rate of Nanopore sequencing and the results might
be even improved by adapting the encoding algorithm to this
sequencing technology and by further strengthening the error
correction method.
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