Tackling Pilot Contamination in Cell-Free Massive
MIMO by Joint Channel Estimation and Linear
Multi-User Detection

Roya Gholami Laura Cottatellucci Dirk Slock
EURECOM Friedrich-Alexander University EURECOM
Communication Systems Departmentinstitute for Digital Communications Communication Systems Department
Sophia Antipolis, France Erlangen, Germany Sophia Antipolis, France
Email: roya.gholami@eurecom.fr Email: laura.cottatellucci@fau.de Email: dirk.slock@eurecom.fr

Abstract—In this paper we consider cell-free (CF) massive processing than MR processing in CF MaMIMO to guarantee
MIMO (MaMIMO) systems, which comprise a very large number  superior performance of CF MaMIMO systems compared to
of geographically distributed access points (APs) serving a much small-cell systems. The performance of CF MaMIMO systems

smaller number of users. We exploit channel sparsity to tackle . o S .
pilot contamination, which originates from the reuse of pilot is critically affected by the so-callegilot contamination This

sequences. Specifically, we consider semi-blind methods for jointimpairment originates from the reuse of training sequences
channel estimation and data detection. Under the challenging or pilots utilized in channel estimation, which preventg th
assumption of deterministic parameters, we determine sufficient possibility of obtaining an adequate estimate of the chianne
cor)dltlons and necessary cgndltlor]s for seml-bllnd |dent|f|ab!llty, state information (CSI). The detrimental effects of pilone
which guarantee the non-singularity of the Fisher Information o s . .

Matrix (FIM) and the existence of the Cramer-Rao bound tamination Wer.e'hlghhghted in [11] fo.r centralized MaMIMO
(CRB). We propose a message passing (MP) algorithm which Systems. Specific features of centralized MaMIMO channels
determines the exact channel coefficients in the case of semi-such as channel hardening and favorable propagation or lim-
blind identifiability. We show that the system is identifiable if jted angular spread could be exploited to “separate” user

the Karp-Sipser algorithm yields an empty core. Additionally, channels in power domain [12], angular domain [13], [14], or
we propose a Bayesian semi-blind approach which results in an . . ty i d lar d in 115 d th itigat
effective algorithm for joint channel estimation and multi-user jointly in power and angular domain [15] an us, mitigate

detection. This algorithm alternates between channel estimation Of anni_hilate pilot contqmination._ However, these appegli
and linear multi-user detection. Numerical simulations verify the properties of channels in centralized MaMIMO systems are

analytical derivations. destroyed in a distributed setting and pilot contamination
is still an open and challenging problem in CF MaMIMO
systems. Several pilot assignment (PA) methods for mitigat
Recently, cell-free (CF) massive MIMO (MaMIMO) sys-pilot contamination in CF MaMIMO systems were proposed
tems are attracting extensive research interests as attiedfe recently in [1], [16]-[18]. In [1], a greedy pilot assignmen
and promising approach for next generation wireless syste(GPA) based on knowledge of large-scale fading channel coef
thanks to their potential to reap the benefit of both MaMIMG@icients was proposed. In [16], a location-based greedy (LBG
and distributed antenna systems (DAS). CF MaMIMO systerpdot assignment scheme utilized the location information
consist of a massive number of access points (APs) whighGPA algorithm. The structured PA approach proposed in
serve a much smaller number of single-antenna users and [af§ maximized the minimum geographical distance between
geographically distributed over a large coverage areathdl users sharing the same pilot sequences. An additional PA
APs are connected through a back-haul network to a centna¢thod based on graph coloring was proposed in [18]. All
processing unit (CPU). The massive number of antenntéese techniques address the pilot contamination problam v
improves spectral efficiency [1] whereas energy efficiengy careful assignment of pilots and do not exploit the inhieren
[2], [3] and macro-diversity gain result from the distribdt structure of channels and data in CF MaMIMO systems in
topology and ultra-densification. Additionally, since katser contrast to blind or semi-blind estimation and detectiarhte
is surrounded by a large number of serving APs, with highiques. A blind pilot decontamination approach was progose
probability all the users enjoy good channel conditions [4iirst in [12] for centralized MaMIMO systems and utilized
Therefore, CF MaMIMO systems are expected to providesymptotic orthogonality of user channels to remove umedsi
significant improvements in terms of spectral/energy efficiy interference including pilot contamination from the reeei
and coverage probability. In [1], [5], the performance of CBignal. The same property was also exploited for semi-blind
MaMIMO and small-cell systems were compared under tlehannel estimation, e.g., [15], in centralized MaMIMO but i
assumption of employing maximum ratio (MR) processingloes not hold in CF MaMIMO systems [8], [9]. Blind and
In [6]-[10], the authors advocated the use of more effectimi-blind channel estimation have been thoroughly iiwvest

I. INTRODUCTION



gated in general settings, see, e.g., [19]-[22] and refeen M > K. The M APs are connected to a central processing
therein. In this context, the concept of identifiability wasinit (CPU) via a back-haul network. The channel matrix
very relevant since it guarantees the non-singularity @f tibetween the APs and users is given Hye CM <X whose
Fisher information matrix (FIM) and thus, the existence dfmn, k)-elementh,,;, is the channel coefficient between AR
the Cramer-Rao bound (CRB). The corresponding conditioaad userk and is modeled as follows

provide fundamental insights into the feasibility of rélia B = / Bone G 1)

communications in the analyzed system. Conditions undefwereﬁmk represents the large-scale fading coefficient which

identifiable have been thoroughly studied in various Wina}lccounts for path loss and shadowing effects gpgd rep-

for centralized systems, see, e.g., [23], [24]. resents the small-scale fadlng. We assume m., m-
) 1.---M, k = 1,---K, are independent and identically
CF MaMIMO channels are inherently sparse due to the . . - . .
C istributed (i.i.d.) complex normal random variables,.,i.e
distribution of APs over a large area and the natural pa "
. . o gmk ~ CN(0,1). Additionally, we assume perfect knowledge
loss of wireless channels. In this paper, we study semdbli

joint channel estimation and data detection for exploiting ?f .th.e[(laggt;?r-lzcgll?)&ad[;rsjge igi‘:‘g'egﬁ’%g Th;’ chzﬁr’]:I ?oeffi-
sparsity of the channel support in CF MaMIMO systems ta . P '

combat pilot contamination. The potential of this approac?{ents are assumed to be negligible at distances higherathan

is analyzed via system identifiability and sets of sufﬁcier?t'ven thresholdy. Then, for each Afn, the CPU is required

o o : estimate only the channels of the users in a disc centered
conditions and necessary conditions under which channels . . . . )
. o : . ahound APm with radiusy while the signals transmitted from
and data are identifiable are provided. We define a gra

that has APs and users as factor and variable nodes Bsgrs external to the disc are treated as additive noise. We

ropose a message passing (MP) algorithm over this gra %note byKy(m) and Ko(m) the sets of users inside the
brop ge p g  algortt : S 9rahd: centered around AR and remaining users, respectively.
which computes the channel coefficients if the identifisypili

conditions are satisfied. As by product. we also show thé% a global level, this determines a partition of the channel
o - [\S Dy proguct, . ... coefficients into two groups, the channel coefficients tlzaeh
the conditions for semi-blind identifiability are satisfiéd _
X : . to be detectedC; = {hpmir/m = 1,... M,k € K;(m)} and
the Karp-Sipser algorithm [25]-[27] yields an empty core, o complement s8€o = {hyelm = 1,... M, k € Ko(m)}.

Additionally, we derive the FIM and CRB for joint channel . . : N
o . . Consistently with this partition, we decompose the channel
estimation and data detection and propose a Bayesian semi-

blind method that alternates between channel estimation aln[iatnx H into two matricesH, ar_1d Ho such thatH =
) . . 1 + Hg. Then, H;y and Hy of size M x K denote the
linear multi-user detection.

The remainder of this paper is organized as follows V\;natnces of the relevant and negligible channel coeffisient
i pap g . . ' %spectwely. Throughout this paper, we assume that D
describe the system and channel model in Section Il. The s .
. e . .. and the APs are distributed over the whole region such that
CRB and the identifiability conditions under the assumptibn .
S ) . atrix H; has a large number of zero elements.
deterministic parameters are presented in Section Il &d

X ; . o . In the uplink transmission, each user sends oné gfilot
respectively. In Section V, we propose a Bayesian semdbllrée uences known by the CPU followed by. P unknown data
iterative algorithm that alternates between channel esiim q y ¥

. . . ) .. symbols. The pilot sequences are assumed to be ortho-normal
and linear multi-user detection. Numerical results aresill y P d n

trated in Section VI. Finally, concluding remarks are drawn 5" orthogonal with unit norm. Thé received symbols at the
Section VII M APs are given by

Notation: In the following, superscript$’, *, and stand Y=ypH X+ /pHy X+ W, (2)
for transpose, conjugate, and conjugate transpose, tesgpgc where p denotes the transmit power at each user terminal
Uppercase and lowercase bold symbols denote matrices andnalized by the noise varianc¥. € CM*L is a matrix
vectors, respectively. The expectation operator is inditédy of the L received symbols at the/ APs andX € CE*L is
E{.} andIp is the P x P identity matrix. Here||-|| anddiag(.) a matrix of the transmitted symbols. Note that theh row
denote the Euclidean norm operator and the squared diagar@responds to the signals transmitted by useThe matrix
matrix consisting of the diagonal elements of matrix argntne W € CM*L is the additive white Gaussian noise (AWGN)
respectivelyvec(.) denotesvec(A) = [Af} AT,- ATn]T with i.i.d. components having zero mean and unit variance.
where A.; is the j-th column of matrixA and t{.} is Let X, € C**F and X; e CK*(L=F) denote the
the trace operator. The Kronecker operator is denoted pyot sequences and data symbols, respectively. Thens
®. Finally, N'(1,0%) and CN (i, 02) denote a real and a[X, Xg]. Similarly, Y = [Y,, Y,] whereY, € CM** and
complex Gaussian distribution with meanand variancer?, Yq € CM*(:=P) represent the matrices of received training
respectively. and data signals, respectively.

Il. SYSTEM MODEL IIl. CRB FORSEMI-BLIND JOINT CHANNEL ESTIMATION

We consider the uplink of a CF MaMIMO system consisting AND DATA DETECTION

of K users andM APs equipped with a single antenna and To analyze the performance of the semi-blind channel esti-
randomly distributed over & x D square area. We assume thatation, we derive the CRB in a deterministic framework. In



the deterministic framework, both data sigd&} and relevant

identifiability conditions are satisfied. Finally, we shdvat the

channel coefficientsl; are modeled as unknown deterministicystem is identifiable via semi-blind algorithms if the Karp

guantities. Thus, we have

y ~ CN (my (), Cyy) 3)
wherey = vec(Y) and = [h¥ vec (X,)]¥ is the complex
unknown parameter vector to be estimated. Heyds a vector
deduced from the non-zero elements of the mdkfix whose

support is known. Mean and covariance of received signal

are given bymy (0) = \/pvec(H;X) andCyy = I}, ® Cyvy,

respectively, withCyy = I; + p Cy and covariance matrix

C, specified in the following:
Co = E{HH{} = diag( Y Bue, Y Aunr).
keKo keKo
The probability density functidn(pdf) of the observationy
in the paramete® is given by
1
Y|9) = _ —1/2(<, _ 2\
1Y18) = Srrraaieayr 0L 1637 = my)I)
Computing the Jacobian of., (8) with respect tod, the de-
terministic complex Fisher information matrix (FIM) deerdt
as jé{e on the basis of the daf¥ is given by

3mH _ amH H ’ H / /
Tio= (g ) (Gt ) =2 @ RT"[Q R @
whereQ' = Cy,/?Q, Q = \; gﬁl}’ andR' = Cy,/"R,
1 omy !

1
= 5 e (Xa)' Note that\/ﬁmy = vec(H; X) =
Qh; = vec(H; [X,, 0]) + Rvec(Xq). The FIM J 4 is a
2 x 2 block matrix. The deterministiCRB“ is obtained as
the inverse of the Fisher information matwg

CRB? = (Jg) " (5)
The blocks(1,1) and(2,2) of the CRB in (5) relative to the
estimation of the channel coefficients; and data symbols
vec(Xy), respectively are given as follows
1 / /
d 1
CRBhI - ; (QHPR/ Q)

—1

(6)

1 / " —1
CRB..(x,) = p (R"PyR) 7

where Py = A(AHA)_lAH and Py = I — Pa denote
the projection matrices on the column space of makiand
its orthogonal complement, respectively. In the deterstini
identifiability analysis that follows, we shall ignofg, (Cy =

0) and henceCvyy = Iy, Cyy = Inr.

IV. | DENTIFIABILITY

Sipser algorithm applied to the same graph yields an empty
core paving the way to an analysis of asymptotically large
networks based on core percolation properties.

In the framework of deterministic identifiability, we asseim
that vector parametd? is deterministic and consider channel
Hj negligible. Then, the observatignis Gaussian distributed,
i.e.,y ~ CN(my(0),I) ) with covariance matrix indepen-
dent of . The identifiability of @ relies only on the known
meanmy (6) and, for semi-blind method%; andh; are said
to beidentifiable[23] if

H,X=H,X = h;=h; andX,=X, (8)

Let my~o be the expectation dY in (2) obtained assuming
H, negligible. The identifiability problem reduces to analyze
the following bi-linear system of equations in the unknowns

h; and Xy

My~o0 = \/EHIX
and determine under which conditions this system admits a
unique solution, which is assumed to exist. These idenififiab
ity conditions are summarized in the following proposition

PropPosITION1 Sufficient Identifiability Conditions —Let
Si denote the support of the channel of uggri.e., the set
of all the indicesm such thatH;,, # 0, and let |S|
be its cardinality. In a semi-blind joint data detection and
channel estimation method, the unknown paramelgrand
X, are identifiable if (i) theK x L matrix X, with L > K
has full row rank K, (ii) the channel of each user is sparse
and |Sy| < M — K + 1, and (iii) for each group of users
G, utilizing the same ortho-normal pilot sequenxg’% it is
possible to identify a sequené§, 1,G,.2, ... G, s} satisfying
the following properties:

1) Uj=1 9 = G, i-e., the sequence of subsets is a
partition of G,

2) In the support of the channel of each ude€ G, ; there
exists at least an index € Sj, that is not contained in
any of the channel supports of other users in the same
group G, ; or in the following groups of the sequence
Gpit1s---GOps-

REMARK 1 Condition iii-2 implies that the signal transmitted
by each userk in G,, impinges an AP in the disc\,
centered around usek with radius v and no other signal
transmitted by other users i, ; or subsequent subsets
Opi+1,Gp,i+2, - - - Gp,s IMpinges the same AP.

In this section, we derive sets of both sufficient and neREMARK 2 The assumption thaX has full row rank K
essary conditions for the identifiability of vector paraeret implies thatX, has at least ranki’ — P.

6 under the assumption th#& is a deterministic unknown

Proof: Observe that since in CF MaMIMO systemg >

that determines the exact channel coefficients if the safftci

1For the sake of compactness, we adopt an identical notatidr|@)
to indicate the pdf of random variable (r.vY in vector parametef or

nels, we can assume that it has full row rank equaktevith
probability 1. Thanks to the assumptions of Proposition 1,
also matrixX has full row rank equal td< as well as matrix

conditioned to r.v@ when@ is assumed to be a deterministic unknown vectof?Y ~0- Then, the smgular value decomposmon (SVD) of the

parameter or a r.v., respectively.

noise-free system is given by



imeo =H,;X =UXVH (9) tification of h; and X; from the productt; X leads to the

VP global necessary identifiability condition
whereU € CM*K andV € CE*X are the matrices of the

left and right singular-vectors anl is the K x K diagonal
matrix of singular values. Additionally, the left and right
singular value matrice¥J andV span the channel subspace
H; and the signal spackX, respectively. Then, the problemor the per pilot necessary identifiability condition
of identifiability reduces to determine & x K non-singular K
matrix T such thatH; = UT and then, also matriX is | | Z Sl < M=K+ 157 |Q | p=tbo P (1)
unequivocally given byX = T~V In order to determine Pl keg, P
matrix T, we utilize the following properties and information: Proof: Consider again the SVD in (9H;X — USV¥,
« The support of each user channel is known and spakgfh V# partitioned intoP plus L — P columns similar taX
and at least{ — 1 channel coefficients are zero. , V1 = [VH VH] Introducing again the unknowk x K
« The contaminated channeMore specifically, let us con- mlxtureT th|s leads to the equations
sider the linear system of equations correspondlng to the -
transmission of the pilot sequences, |e— H;X,, H;=UT, TX, =%V, (12)

wheremy ~o denotes the expectation &, = \/pH;X,,. which together represenfK(M + P) equations in the

By post- multlplylng both sides of the system by thezk . |S| unknownsh; and thek® unknownsT. The proper
pilot sequencex”’ and EXP|0'“”9 the ortho-normality conditions for solvability of the equations (12), that thember

of the training sequenceX, x;~ = 1g, where1lg, of equations needs to be at least equal to the number of
is the K-dimensional vector Wlth elements with indicesunknowns, then leads to (10). If now we consider the equsition
in Gp, |e indices corresponding to users transmittingyr group of usergj,,, multiplying T X,, = EV{){ by X;)p) and
pilot x ), equal to one and and zero elsewhere. The@xplomngx Xz(>) — 1g, then we get

it is apparent that this system of equations enables to

determine exactly at each AP the sum of all the non-(H;)g, = U(T)g, , Tlg, = (T)g, 1 =X VZxP (13)

zero channel coefficients of the users in each grGp

which representd/ K equations in th S
Pyie, Lmyox? = H, 1g,. P 1951 + K eq D reg, 1Skl +

' f K |G, | unknowns in(Hy)g, and(T)g,, hence leading to (11).
Then, Iet us focus on a user in G,;. Thanks to the g
assumptions on the partition gf,, there exists at least an AP |t js worth noting that the proof of Proposition 1 along with
m such that; ,,, . 1g, = hpm k. = ﬁ My o0 X;()p) # 0, where the sufficient conditions for identifiability of the detemistic
H; ,,,. denotes then-th row of the matrixH;. Furthermore, parameters, provides also a constructive method to determi
thanks to the assumption on the sparsity of the channels, tie unknown parameteid; and X, if for eachp =1,... P,
can obtain from the system of equatiokk; ., = UT.; the sequenceG,1,Gp2,...Gp s} partitioning setG, were
K — 1 equations where the channel of ugeis zero. Then, known. In the following, we address this problem and provide
we can construct a non-homogeneous system of equationgainMP algorithm that enables to identify at iteratibthe set
the unknownT. ; and the vector of constant terms consisting, ; and determine the channel coefficients of all users in the
of zeros and at least the non-zero elemeny.. This system set. Let us focus on the sét, and associate to each uger
can be unequivocally solved to determilig,. Thanks to the and APm variable nodek and factor noden, respectively.
properties of the sequen€k 1,G,2,...G, s, it is possible to We construct a bipartite graph by connecting a variable node
determine sequentially, the columns of matiixcorrespond- with a factor node if the distance between the corresponding
ing to a certain group, compute exactly the correspondinger and AP is lower than. We further assume that the
channels of the users in the group and cancel them frdattor nodes are initialized with the values of the vector
the contaminated channel for grogp, until the complete h; = H;lg,, i.e., the sum of all the channel coefficients
computation of all the columns of matriX corresponding of Users in the correspondingneighborhood. Each variable
to all the users inG, and the corresponding channels. Thisiode knows the matriU that spans the channel subspace.
approach can be repeated for all the groups up to the complEke initial step of the MP algorithm starts at the factor reode
computation of matriXI' and channeH;. Then, we observe Each factor noden that is a leaf transmits its initialization
that'T has full rankK’ sinceH; has full row rank. The inverse value 47, ,,, to its neighbor. It transmits an erasufe if it
of T exists and enables the computatior¥f. This concludes is not a Ieaf At iterationi, each variable nodé& that has
the proof. B received at least a message that is not an erasure solves the
In the following, let(H)g, denote a reduced version of thesystem of equation®)T. , = H; ., utilizing that value. The
matrix H containing only the columns corresponding to theonstruction of a system df equations to determin@. ; is
users ing,. detailed in the proof of Proposition 1 and exploits the clenn
sparsity. OnceT. ;, is known, it is possible to determine all
PropPosITION2 Necessary Identifiability Conditions 4den- the non-zero channel coefficier¥; . ;. Then, variable node

K
1
EZ\SMSM—K—FP (10)



k transmits to all its neighbors the corresponding chant D=100, K=20, M=100, L=20, P=5
coefficients. Variable nodé: transmits the same message ‘ ‘ ‘ ‘ ‘ ‘
in all the following iterations. If variable nodé receives e .
all erasures it transmits erasures to all its neighbors. 1 |
second step of iteratiohdetermines the messages at the fact
nodes. A factor noden computes a message for the outp!
edge< m,k > as the difference between its initializatior
value hg , . and all the incoming messages. The resultir
message is not an erasure if all the incoming messages are
erasures otherwise the factor node transmits an erasuee.

10} 4
—&— Deterministic CRB
+ —— Bayesian Estimation

NMSE [dB]
S

-30F

MP algorithm ends when all the channel coefficients have be a0l 1
determined and in this case the identifiability conditione a
satisfied or when no additional erasure can be determined 50 ‘ ‘ : I K

10 20 30 40 50 60 70 80 90

thus the system is not identifiable. S&t; includes all the disc radius (y)

users/variable nodes that compute their channel coefficien

at iterationi. Interestingly, this algorithm is closely relatedrig. 1. NMSE [dB] versus disc radiusy) for Bayesian estimation and

to the MP algorithm for decoding of low density paritydeterministic CRB.

check (LDPC) codes in transmissions through binary erasure

channels in [28]. It is worth noting that also. for randon?elation described foh; andH.

generated CF MaMIMO systems with nodes mdependem‘é;oz1 L -
) ! ~can be initialized withX,; = 0.

generated, the corresponding graphs have edges inttlgsica

correlated due to the underlying geometric constraints and VI. NUMERICAL RESULTS

the corresponding sparse graphs do not have tree-like neigh ) )

borhoods in asymptotic conditions. Then, the performanceFirst, we describe the path loss and shadow fading models

analysis of LDPC codes based on density evolution, see [28§€d in numerical simulations for performance evaluafidre

is not directly applicable although the graph is sparse hed t@rge-scale fading coefficient,,; in (1) models path loss and

message passing yields exact results thanks to the naiseff@dow fading as follows
PL,, TshZm

g?;l;;eggrigf considered system and thus the absence of error B = 1075 E o Zhime (16)

Additionally, let us consider the Karp-Sipser or greedyf legyhere P1,,,, represents the path loss (expressed in dB),
removal procedure [25]-[27] which consists in removingniro 5nq 10™45* represents the shadow fading with standard
a graph sequentially all the leaves and observe that segleffeyiation o,;, and z,,; ~ N(0,1). The three-slope model
or simultaneous removal of leaves is equivalent in asymptof, [29] is adopted for the path loss. The uplink transmit
conditions. Then, the sufficient identifiability condit®nn nower isp = 100mW, for all users. The performance of

Proposition 1 are satisfied if the greedy leaf removal proced {he Bayesian estimation is assessed by the normalized mean

yields an empty core. squared error (N,\/|S|5);wg\|h;mH2 where avg stands for

. avgllh |2 : .
V. BAYESIAN SEMI-BLIND average. Fig. 1 shows theqNMSE versus disc radiuand

Whereas deterministic parameter identifiability allows fo(l:ompazsst;?gRl\BlDA}SE of Bayesian estimation and deterministic
LI with M= 100 and K = 20. The

consistency in SNR in the approximated model which ignor&RB, — -
Cy, in practice performance can be improved by furthermoBayesian estimation outperforms the deterministic CRB.
exploiting prior information. Hence, exploiting the Raiglke

This alternating procedure

fading channel prior and capturing the uncorrelatedness an VII. CONCLUSION

constant variance of the data symbols with an i.i.d. Gaossia | this paper, we tackled the problem pilot contamina-

prior, we get the overall log-likelihood tion in CF MaMIMO systems leveraging only the channel
In £(Y]0) +1In f(h;) + In f(X,) sparsity. We considered semi-blind methods for joint clednn
=-tr{(Y - /pH/X)PCyy, (Y — /pH;X)}  (14) estimation and data detection and derived the FIM and the
—hfCyl, hy —t{XI Xy} + . CRB. Additionally, we determined sufficient conditions and

where ¢* denotes a scalar constant. Alternating optimizatidhtcessary conditions for semi-blind identifiability undee

with respect toh; and X, leads to assurr_1pt|pn of.de.t_ermmlsnc parameters. An MP algo_nthm
N S 1 Nl AR 12 to verify identifiability and compute the channgl coeffidien
hy=p(p Q7CyQ+ Ch}h,) QA Cyy "y (15) was proposed and the relation with the Karp-Sipser proeesdur

o el 6 1 S e was highlighted. Finally, we proposed a Bayesian semidblin
XdA* VP (f H CYXHI +1x)  Hi'CyyYa approach resulting in an algorithm which alternates betwee
whereQ = Q(X,) andH; denotes the estimate of the matrixhannel estimation and linear multi-user detection. Wéieelr
H;. The relation betweerh; and H; is the same as the the analytical derivations via numerical simulations.
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