FADIA: FAirness-Driven collaboratlve remote Attestation

Mohamad Mansouri
Thales SIX GTS, EURECOM, France

Md Masoom Rabbani

KU Leuven, Belgium
mdmasoom.rabbani@esat.kuleuven.be

ABSTRACT

Internet of Things (IoT) technology promises to bring new value
creation opportunities across all major industrial sectors. This will
yield industries to deploy more devices into their networks. A key
pillar to ensure the safety and security of the running services on
these devices is remote attestation. Unfortunately,existing solutions
fail to cope with the recent challenges raised by large IoT networks.
In particular, the heterogeneity of the devices used in the network
affects the performance of a remote attestation protocol. Another
challenge in these networks is their dynamic nature: More IoT
devices may be added gradually over time. This poses a problem in
terms of key management in remote attestation.

We propose FADIA, the first lightweight collaborative remote
attestation protocol that is designed with fairness in mind. FADIA
enables fair distribution of load/tasks on the attesting devices to
achieve better performance. We also leverage the Eschenauer-Gligor
scheme to enable efficient addition of devices to the network. We
implement our solution on heterogeneous embedded devices and
evaluate it in real scenarios. The evaluation shows that FADIA can
(i) increase the lifetime of a network by an order of magnitude and
(ii) decrease the remote attestation runtime by a factor of 1.6.

CCS CONCEPTS

« Security and privacy — Security protocols; Distributed sys-
tems security; Mobile and wireless security; « Networks — Mobile
ad hoc networks.

KEYWORDS

remote attestation, collaborative attestation, heterogeneous IoT
networks, fairness, embedded systems

ACM Reference Format:

Mohamad Mansouri, Wafa Ben Jaballah, Melek Onen, Md Masoom Rabbani,
and Mauro Conti. 2021. FADIA: FAirness-Driven collaboratlve remote Attes-
tation. In Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’21), June 28-Fuly 2, 2021, Abu Dhabi, United Arab Emirates. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3448300.3468284

1 INTRODUCTION

The evolution of the Internet of Things (IoT) technology leads to
a tremendous increase in the deployment and use of IoT devices

WiSec '21, June 28—July 2, 2021, Abu Dhabi, United Arab Emirates

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec "21), June 28-Fuly 2, 2021,
Abu Dhabi, United Arab Emirates, https://doi.org/10.1145/3448300.3468284.

Wafa Ben Jaballah
Thales SIX GTS, France
mohamad.mansouri@thalesgroup.com wafa.benjaballah@thalesgroup.com

Melek Onen
EURECOM, France
melek.onen@eurecom.fr

Mauro Conti
University of Padua, Italy
conti@math.unipd.it

in the industries and factories [19]. The number of IoT devices is
likely to grow to achieve 125 billion devices in 2030 as suggested
by a study in [29]. These devices hold critical roles in production
or operational lines and thus their use raises serious concerns with
respect to the safety and the security of the system. They are usually
designed or deployed so that they can connect to their manufac-
turers or simply to the Internet. An IoT device could be an entry
point or attack vector for malicious hackers to explore [12, 19].
For example, the Mirai attack [12] infected insecure devices on a
large scale and resulted on a massive distributed denial of service
which hits the Internet access. Due to their low-cost design, IoT
devices cannot support sophisticated security measures. This inher-
ent weakness can be exploited by adversaries whose primary goal
would be to target the compromise of IoT devices with little effort.
One should therefore continuously verify the software integrity
of IoT devices. Remote attestation (RA) helps achieve this goal by
enabling a device acting as a prover to prove the integrity of its
software configuration to a remote verifier. There exist many RA
solutions in the literature [2, 25-27]. While existing solutions have
improved a lot in terms of scalability, security and robustness, they
unfortunately fall short in addressing the heterogeneous aspects
of the network. Indeed, IoT devices deployed in the same network
may feature different configurations. Furthermore, based on their
role and/or position in the network/system they may also differ
in terms of battery and computation level. Another problem that
is untackled in the existing literature is the increasing size of the
network (i.e., devices are added to the network gradually over time).
Such problem raises challenges in terms of key management since
new keys need to be distributed to existing devices in the network
to enable the device-to-device communication. This often turns to
be impractical and does not scale well.

To address these challenges, we propose a fairness-driven ap-
proach whereby RA tasks/operations are not equally distributed
to all devices in the network. Instead, their capabilities in terms of
computation and energy are taken into account and devices with
more power perform more operations related to the RA compared
to more lightweight devices. With this goal, we introduce FADIA, a
lightweight collaborative RA protocol whereby all devices partici-
pate to the protocol by computing their own attestation and also
forwarding others’ ones. The protocol uses a tree-based architec-
ture where each node in the tree aggregates its attestation with
the ones received by its children nodes and forwards the result to
its parent node. The number of children of a given node and its
role in the tree is determined based on its capabilities (ex. hardware
specifications) and current capacity (ex. battery level). With FADIA,
we show that by tuning these two parameters, we can achieve a

https://doi.org/10.1145/3448300.3468284
https://doi.org/10.1145/3448300.3468284

WiSec 21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Table 1: Comparison btween previous work on collaborative
remote attestation and FADIA. The big O notation represents
the complexity of the cost on a prover with respect to n (num-
ber of provers in the network).

Scalability Supported Features
L 2 "

€3 @ =5 \
ES 8., £ B: iz 23 &
I

<

S = fE Z <8 &
SEDA [5] | O(1) o(1) O (@] @) (@] (@]
SENA [2] | O(1) o(1) ©) (@] @) (@] (@]
LISAq [7] | O(logn) O(1) ©) (@] @) (@] (@]
LISAs [7] | O(1) o(1) ©) @) @) (@] (@]
DARPA [20] | O(n) O(n) O [] O (@] (@]
SALAD [26] | O(n) O(n) [} (@] @) (@] (@]
PADS [3] | O(n) O(n) (] (@] [J (@] (@]
PASTA [27] | O(n) O(n) ® [] [J (@] (@]
FADIA | O(1) 0o(1) (] [] @) ([] []

more optimized runtime of the RA protocol and a longer lifetime in
sensor networks (i.e., time to the first sensor node failure). FADIA
is also lightweight since it uses symmetric message authentication
codes and integrates the efficient key management scheme pro-
posed by Eschenauer and Gligor [17]. Thanks to this scheme each
node probabilistically shares a symmetric key with other nodes in
the network and can therefore authenticate each other without the
need for a key redistribution on each device addition.
Our contributions can be summarized as follows:

e We study the heterogeneity problem in RA protocols and
we present a solution that integrates fairness by design. We
show by experiments that fairness can provide a better per-
formance for a RA protocol;

e We present FADIA a RA protocol that supports efficient addi-
tion of devices at runtime, without extra overhead, but only
with a limited sacrifice of the connectivity of the devices;

e We implement our solution on heterogeneous embedded
systems, namely Rasberry Pi 2 devices and Tmote Sky sensor
nodes;

e We evaluate the performance of our solution in heteroge-
neous and homogeneous networks. We compare the results
of our solution to the other best existing protocols [26, 27]
in the same network scenarios. The results show that our
solution outperforms the previous solutions in all aspects.

The rest of the paper is organized as follows. In § 2 we go over the
previous work and compare them to FADIA. We then explain the
problem scope in § 3. We give a background about Eschenauer and
Gligor which is required for a better understanding of FADIA in § 4.
We present the threat model in § 5. We give a high level description
of our approach in § 6, and a detailed description of its design in
§ 7. We analyze the security of FADIA in § 8 and evaluate it in § 9.
Finally, we conclude our work in § 10.

2 RELATED WORK

Remote Attestation. Remote Attestation (RA) schemes are pro-
tocols that enable a device to prove the integrity of its software
to another remote device [22, 24]. It involves two roles: the prover
(the device that proves its software integrity) and the verifier (the
device that verifies the integrity of the prover’s software). Lately,

Mohamad Mansouri et al.

to adhere to the increasing number of embedded devices in the
network, collaborative RA protocols are proposed. Some are de-
signed for static networks such as SANA [2], LISA [7], SEDA [5],
and SHeL A [32]. These approaches run on devices deployed in a
static tree topology. Another line of research propose RA schemes
that share a design of a gossip-based mechanism and run in dy-
namic networks. Examples of such an approach are DARPA [20],
PADS [3], and SALAD [26]. Gossip-based protocols suffer from high
bandwidth overhead and long runtime. An alternative approach
are remote attestation schemes for IoT services that work on a pub-
lish/subscribe paradigm based on asynchronous communication
pattern, for example SARA [15]. Nonetheless, this protocol is not
applicable for large networks. Recently, Kohnhauser et al. proposed
PASTA [27], an autonomous RA protocol in which provers create
multiple spanning trees in the network and generate the so-called
tokens to attest the provers participating in the tree. Each token
embeds the proofs of all the nodes in the tree. Later, these tokens
are distributed among all the provers in a gossip-like approach. The
parallelized tree generation process in PASTA allows a relatively
fast proof aggregation between the provers. Also, the token dis-
tribution offers autonomy to the RA protocol. However, PASTA
does not scale well in terms of communication due to the flooding
process it requires. Also, PASTA requires provers with high storage
and computation capabilities. This is because it uses asymmetric
cryptography for the token generation. Compared to all the other
approaches, FADIA the first solution to introduce the concept of
fairness to remote attestation protocols targeting heterogeneous
IoT networks. Remote attestation tasks/operations are distributed
among nodes in a fairly manner. Furthermore, we also show that
FADIA shows better performance when the network is homoge-
neous with respect to the previous approaches (see § 9). Finally, the
cost of the addition of new provers to the network is also optimized
thanks to the use of the efficient key management scheme in [17].
We overview and compare existing solutions and FADIA in Table 1
with respect to different features. In terms of communication and
computation scalability, we observe that for FADIA these costs do
not depend on the number of provers in the network. FADIA, similar
to PASTA, supports mobile devices and detects tampering attacks.
The only feature that FADIA does not support is autonomy.

Key Management for IoT devices. In RA protocols, two types of
secret keys are defined: the communication keys which are used
to establish a secure channel between provers and the attestation
keys which are used for attestation, i.e., to generate a proof of the
integrity of a prover’s software. A RA protocol may define a unique
key shared among all provers for both purposes (e.g., PADS [3]).
Such an approach enables the efficient addition of new devices to
the network at runtime. Nevertheless, solutions become inefficient
if a single node is compromised (as all nodes need to update their
keying material). On the other hand, some RA protocols [20, 26, 27]
distribute pairwise unique keys for each couple of provers and a
unique attestation key for each prover. This approach increases
the security of the protocol and enables an efficient revocation
mechanism. However, the addition of new devices to the network
becomes costly since one additional key needs to be distributed to
each existing prover. FADIA implements the symmetric key man-
agement scheme proposed in [17] in order to optimize the cost

FADIA: FAirness-Driven collaboratlve remote Attestation

incurred by the addition and revocation of nodes. In FADIA, each
node is pre-loaded a keyring (a set of communication keys) ran-
domly selected from a key pool. Devices which share at least one
key in their keyrings can directly establish a secure communication
channel. Similar to [20, 26, 27], FADIA defines one attestation key
per prover.

3 PROBLEM SCOPE

Large-Scale analysis has been performed on embedded devices [4]
and has shown that a large number of them are vulnerable to un-
known security bugs. This makes attestation of the software con-
figurations of IoT devices a necessity as a defence-in-depth mecha-
nism against malware infections. The relevance of RA on embedded
devices has been studied lately and many solutions are proposed
accordingly, addressing scalability, security and robustness features.
Unfortunately, these solutions may become inefficient and some-
times even impractical for some applications of IoT networks. This
is mainly because the current state of the art solutions disregard
two common characteristics of IoT networks: (i) the heterogene-
ity of IoT network and (ii) the increasing size of the network (i.e.,
devices are added to the network gradually over time).

Heterogeneity of devices: Large-scale RA protocols involve col-
laborative tasks across devices. These tasks include generating and
forwarding attestations. Existing solutions perform the distribution
of this load (i.e., RA tasks) randomly or uniformly. This may result
in a significant performance decrease in heterogeneous networks.
We define heterogeneity in the IoT network as the diversity in the
(hardware and/or software) characteristics of the IoT devices. For
instance in Industry 4.0 IoT applications [34], sensor devices in the
network (ex. Tmote Sky [11]) have low computational capabilities
Microcontroller Units (MCU) compared to a Raspberry Pi operating
in robots. The quality of the MCU affects directly the speed of pro-
cessing the attestation messages from peer devices. Therefore, a RA
collaborative protocol that does not consider this gap in the hard-
ware capabilities between devices will end up putting either equal
attestation load on different devices or higher load on less capable
devices. The number of proofs (i.e., attestations) that a node can
receive and forward should thus be depending on its capabilities.
The heterogeneity of the network can also threaten the lifetime
of the services. Running a RA protocol on a device consumes a
significant amount of its battery due to the frequent participation
in transmission and reception of attestation messages. Thus, if sen-
sors with lower battery levels engaged in many energy-consuming
operations, this can end up with battery depletion of some devices
causing potential disruption in the service. To this end, we see
heterogeneity as a problem that can have a strong impact on both
the performance and lifetime of a collaborative RA protocol.

Dynamic nature of IoT networks: With the continous advance-
ment of IoT applications, IoT networks gradually increase in size
(i.e., new devices are added). Existing devices in the network know
little about the new device. This leaves a problem for RA since
it requires the device’s pre-knowledge of shared key materials to
secure the communication while running the protocol. A typical
solution is to use a centralized server that manages the distribution
of keys at run-time. However, this solution lacks scalability and

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

adds a high overhead to the runtime of the RA protocol. Based on
that, we identify the need for a dynamic management and distribu-
tion of the key materials as a missing requirement for a practical
remote attestation protocol.

4 ESCHENAUER AND GLIGOR’S SCHEME [17]

We present a background knowledge of E-G’s scheme that is neces-
sary for understanding the rest of the paper. E-G’s key distribution
scheme follows a probabilistic approach to efficiently distribute
the keys over a large number of devices. It facilitates the addition
and the revocation of nodes (and the corresponding keys) in the
network without substantial computation and communication over-
head on the end devices. The scheme defines a main key pool which
the participating devices pick a key ring from. Devices having at
least one shared key from their key rings can communicate securely.
This scheme has been shown to be simple and highly scalable and is
therefore, suitable for resource-constrained devices. FADIA utilizes
E-G’s scheme to distribute the keys to the provers. Only provers
who share common keys can establish secure communication chan-
nels.

Connectivity Analysis. FADIA’s connectivity is defined as the
average percentage of provers a prover can connect to (i.e., com-
municate with). Since FADIA’s key-distribution is based on E-G’s
scheme, the connectivity property translates to the probability of
two provers sharing at least one key in their key rings (Ps).

— N2
(= "
(p—2r)ip!
For example, with a key ring of size r = 300 and a key pool of size
p = 100000 we obtain a connectivity of Ps ~ 0.6.

P =

5 ASSUMPTION AND THREAT MODEL

In this section, we describe the assumptions on the network. Then
we define our security model.

5.1 Network Assumptions

We consider a mesh network topology where devices acting as
provers, communicate within their communication range. Addi-
tionally, all provers are connected to a more powerful device (the
controller C) acting as the verifier. For example, this can be the
edge router. The network may contain more than one controller
such that these controllers share their information and synchronize
their data on a different layer. For the sake of simplicity, in this
paper, we consider a single controller that connects to all provers
in the network. Both, the provers and the verifier are managed by
the network operator O. The participating provers can have het-
erogeneous characteristics. Moreover, they can be static or mobile
within the network. New provers may be added to the network at
any point in time.

5.2 Security Model

Security assumptions: We assume that provers have the minimal
secure hardware features to perform RA [18]. Additionally, provers
are equipped with loosly synchronized real-time clocks. The min-
imal secure hardware can be implemented using a secure Read-
Only-Memory (ROM) to store the keys and a Memory Protection

WiSec 21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Unit (MPU) that stores FADIA’s attestation code. The aforemen-
tioned execution space on each prover is referenced as the Trusted
Anchor (7#). Additionally, we assume that the controller is not
compromised and fully trusted. Furthermore, similar to previous
research, FADIA only considers invasive and semi-invasive physical
attacks. Thus, non-invasive attacks such as side-channel attacks
are out of the scope of this paper. In this context, we rely on a
common assumption that for an attacker to successfully bypass
the 7, it needs to take the devices offline for more than a §;, time
which is predefined and known to be non-negligible [9, 10]. This
is because such attacks require expensive and complex laboratory
equipment and requires the full possession of the target for a signif-
icant amount of time (from hours to weeks)[35, 36]. This becomes
even more expensive especially when devices are equipped with
tamper-resistant mechanisms [21, 30, 33]. We finally assume that
the implementation of FADIA and its cryptographic components
does not contain any security bugs.

Adversarial Model: The main objective of an Adversary is to per-
form malicious activities by corrupting the memory of a prover and
also damaging the network communication while being undetected.
We consider two types of adversaries, Software Adversary A and
Hardware Adversary Ay. As has full control of the execution of
a prover apart from the 7. It also has full access to the prover’s
memory except the memory protected by the MPU. Thus, As can
launch attacks like spoofing attack, Man in the middle attacks, re-
play attacks. In addition to Ay capabilities, Ay, has physical access
to the devices in the network. This provides him/her with the ability
to leak any secret or modify FADIA’s code on the targeted prover.
However, this is only possible after turning the prover off for more
than Jy, time, as stated previously. &y, is defined by C for all provers
participating in the protocol. FADIA is considered secure if an ad-
versary (under the aforementioned assumptions) cannot forge a
"healthy" state for a compromised prover. Inline with other RA
schemes [2, 3, 5, 27] we keep Distributed Denial of Service (DDoS)
attack out of our current context. Nevertheless, in section 8 we
mention possible ways to detect DDoS attack in FADIA.

6 OUR APPROACH

We present our approach solving the problems mentioned in § 3
(namely, heterogeneity and device addition). We design a light-
weight collaborative RA protocol (FADIA). To solve the heterogene-
ity problem, FADIA is designed with fairness in mind. In a collab-
orative RA protocol, we define fairness as the ability to distribute
the load of the protocol according to the capabilities of the provers.
The goal is to increase the performance of the protocol and to reach
a better lifetime for the network. In a fair RA protocol, provers
in FADIA will be assigned a score depending on their capabilities
and behave accordingly. This score will be frequently computed
and the protocol should adapt to any change. In FADIA, similar to
PASTA [27], a group of provers collaborate and create a spanning
tree in which parent nodes collect attestations from children nodes.
However, in contrast to PASTA, the choice of the position and the
number of children of a prover in the tree are adaptively regulated.
These are determined by the scoring function which is computed
based on the hardware capabilities (e.g., CPU) of the prover and its
current residual battery. The score function outputs a score value

Mohamad Mansouri et al.

Table 2: Notations

Entities

Pi,C, 0 A prover of index i, Collector, and Network Operator

Ap, As Hardware adversary and software adversary

Parameters

uid Unique id of a prover

cntr Counter for the number of attestation of a prover

ag Max size of the set of uids in an attestation message.

S Minimum time required by Ay, to compromise a prover

OS¢ Time a prover waits to receive invite before it calls generateTree()
Cmax Maximum number of children for a node in a tree

Climit Maximum number of children a prover can accept in a tree

Kic Secret key shared between #; and the controller

K Secret key shared between C and O

KII]D s Kij Secret key (and it corresponding key id) shared between #; and P;
sch The hash of the software configuration on a prover

between 0 and 1. When the score is closer to 1, the prover can assign
more tasks with respect to the RA protocol (for example, the node
can have a higher number of children). To cope with the dynamic
nature of the network, the protocol should support the addition
of new devices at runtime. As mentioned previously, involving
a central key server for key distribution at runtime results in a
significant overhead. Instead, we propose to rely on Eschenauer-
Gligor’s (E-G) scheme [17] for the distribution of communication
keys. Thanks to this scheme, FADIA easily addresses the trade-off
between the connectivity of the provers and the security of the
communication. Furthermore, thanks to [17], the addition of a new
prover to the protocol does not require any modification at the
other provers. Additionally, each prover is assigned a unique attes-
tation key. The proofs are aggregated by the provers on the way
towards the initiator.

7 DESIGN OF FADIA

In this section, we describe the design of FADIA. The protocol is
composed of four different phases: the initialization, joining, attesta-
tion and revocation phases. The first initialization phase consists of
an offline setup phase where the keying material are installed at all
involved provers. During the joining phase, a prover identifies itself
to the controller. The prover further starts the attestation phase.
During the attestation phase (which is the core phase of FADIA), the
active prover periodically participates in virtual attestation trees to
send its attestation report and forward others’. The active prover
keeps running this phase until it is dropped from the network (ei-
ther intentionally because it is detected as malicious or incidentally
because it left the network). On such an event, the revocation phase
starts whereby the dropped prover becomes offline and its keys are
revoked. In the following, we describe each phase in details.

7.1 Initialization Phase

Provers, before participating in FADIA, are considered offline. In
order for a prover #; to enter the protocol, it has first to be set by
the network operator O. O defines a key pool (O.Pool) according
to [17], (see § 4). This key pool is stored in a safe location (offline).
The key pool contains p symmetric keys together with their key
ids {(K™P, K)}. P; randomly receives a key ring of size r from the

FADIA: FAirness-Driven collaboratlve remote Attestation

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

‘P; (Joining prover) C (Controller)
uid, Ring, kic cid, ks

! joinReq(): :
keyids + {K'PV (K'P K) € Ring} !
jreq < uid|| keyids :

E handIeJoinReq(jreq, mac):
K. + KDF(Kj, jreq)

authSend(Kic, jreq) 1% mac = MAC(K,, jreq) Then: |
___ ! registerProver(jreq, Kic, time())
. ! jresp cid|| Oy || o || Cmaz
___]E resp i authSend (K., jresp)

| startAttesting(): : 1 Else:
! H ignoreRequest()

Figure 1: FADIA’s joining phase

key pool:
P;i.Ring «— {(X'P,K)} c O.Pool

O also assigns a unique id (uid) for #; and a cryptographic hash of
the current software configuration (sch). #; then obtains a unique
key Kij (the attestation key) derived from the chosen keyring ids
and the prover’s unique id. This key is computed by O using a key
derivation function (KDF) and a secret key (Ks) known only by O
and the controller. More formally,

Kic « KDF(K,{K'PV (K'P K) € P;.Ring} U {uid}) (2)

K¢ is used in the later phases of the protocol to provide secure
communication between a P; and the controllers. Moreover, O
also defines a function score() which evaluates at the runtime the
required load #; should take based on its hardware capabilities
and its current capacity. This function outputs a value between 0
and 1 that indicates the amount of load #; can take (0 indicating
that this device should take the least load possible, and 1 indicating
that it should take the maximum load that can be given to one
device). The implementation of score() depends on the underlying
environment and application. For example, in the case of a network
of wireless devices with batteries, the function score() will evaluate
the battery percentage level of a prover; For a network of devices
with microcontrollers of different computational speed, score() will
categorize different types of microcontrollers into different classes,
and output a higher value for more powerful classes.

7.2 Joining Phase

Once #; is initialized, it can join the network. $; sends a join
request message (jreq) to the controller (C) in the network. The join
message contains its unique ID (uid) and the set of key ids in its key
ring. This message is authenticated using a message authentication
code (MAC) computed with Kj.. Based on the received uid and
the key ids, C computes Kj. (see equation 2) and authenticates ;.
Upon validation, C registers #; in the table of provers currently
participating in the protocol. The table of registered provers records
the current state of each prover (being either healthy or unhealthy)
along with the last time the prover attested. $; is first registered as
"healthy". C sends back a response message jresp (authenticated
using Kj¢) to confirm the joining process. jresp includes (i) cid: the
controller’s id (ii) 5, which corresponds to the maximum time a
prover can stay active without attesting in the network, (iii) ay
which defines the maximum number of attestations that can be
aggregated, and (iv) ¢inqx that is the maximum number of children a
prover can have. After P; is registered, C regularly checks its status

P; (Initiator prover)
uid, Ring, kic

P; (Intermidiate prover)
uid, Ring, kj.

nerateTree():

treeid « randomINT()

parent « (cid, treeid, K;.)

keyids + {K'?V (K'P, K) € Ring}
sre < uid

invite < src|| keyids || treeid
sendBroadcast(invite)

ndlelnvitationResp(iaccept, mac)
If |children| = crimi; Then:
ignoreResponse()

Else: H

Kij K| (iaccept. K[, K) € Ring

1f mac = MAC(K;;, iaccept) Then: :
src +— uid; dst < taccept. src
children « children U {(dst, K;;)}
caccept < src|| dst || treeid :
authSend(K; || iaccept. r, caccept)

Ise:
ignoreResponse()

L invite .
et |

! caccept
—_—

invitationReceived(invite):
If attested Then:

ignoreRequest()
Else:
keyids + {K'PV (K'P, K) € Ring}
S = keyids N invite. keyids
If.S = 0 Then:
ignoreRequest()
Else:

iaccept K{jD — KgIp | KD cgs
: Ki; = K| (K',K) € Ring
sre < uid; dst « invite. src
7 < randomINT() :
iaccept = src|| dst || KIP || treeid||r |
authSend (K, iaccept) :

i childrenAccepted(caccept, mac):
i Ifmac =MAC(K;; || r, cack) Then:
parent « (caccept. sre, treeid, Kj)
If ¢jimit = 0 Then:
sendAttestation(()

se:
kids « {K'PV(K'P | K) € Ring}
src < uid
invite src|| kids || treeid
H sendBroadcast(invite) : invite
IO b >

iaccept
L

! caccept
i caccept

Figure 2: Tree construction in FADIA’s attestation phase.

and if P; does not attest in Jy, time, its status becomes "unhealthy".
Figure 1 provides the specification of the joining phase.

7.3 Attestation Phase

Provers start running this phase immediately after completing the
joining process. P; enters a new attestation period every &, /2 time.
(8p /2 is chosen to guarantee that two consequent attestations are
always received within no longer than §;, time.) At each attestation
period a P; starts by performing an integrity check on its software
configuration. The check is performed against the software config-
uration hash (sch) stored in the prover. The method of this check
and the format of sch is out of the scope of this paper. This can be a
simple technique based on computing the hash of the firmware or
more complex techniques such as the ones proposed in [1, 8, 14, 38].
If the integrity check fails, then #; quits the attestation phase and
will be eventually dropped from the protocol. After succeeding the
integrity check, #; should particiapte in the construction of a tree
in which it will attest in. First, $; generates a unique proof of its
attestation using the function generateProo f (). It further evaluates
score() and uses the result to decide on its role in an attestation
tree. More specifically, $; updates two parameters namely, ¢jjp,i;
and &;:

® CJimir is the maximum number of children #; can accept in
the upcoming attestation tree.

Climit < score() X cmax

e 5. (which is less than §3,/2) is the amount of time P; waits
to receive a participation invitation to an attestation tree.
When &, is reached and #; did not receive any invitation, it
starts the tree construction protocol.

8¢ « score() X 8y /2

WiSec 21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Neighboring provers that share common keys and are ready to
provide their attestations construct a tree. Note that if a prover
does not share any key with its neighbors, it directly sends the
attestation to the controller. However, such cases appear with a
low probability in realistic networks. For example, if the average
number of neighbors for a prover is 5, and the connectivity Ps = 0.6,
then the probability of a prover being isolated is (1 — Pg)® ~ 0.01.
The tree construction and the attestations collection processes are
described next.

7.3.1 Tree Construction. A tree construction starts by an initiator
prover (P;) after waiting for d. time. The latter broadcasts an in-
vitation message (invite) to its neighbors. The invitation message
includes the unique id (uid) of P; as well as a tree id (treeid) (gen-
erated from a timestamp to guarantee freshness) and the set of key
ids which #; holds in its keyring. When P; receives invite, it first
checks if it did not attest in the last §5/2 time. Then it checks if it
shares at least one key with #; . Let K; ; denote the shared key
between #; and P;, and Kl.IJD be its corresponding key id. P; re-
sponds with an invitation acceptance message (iaccept) containing
the key id K{]D . The message also includes the unique ids of the
source and the destination, the tree id sent by #;, and a random
value (r) and a Message Authentication Code (MAC) computed
using the shared key Kl.j . Pi accepts P; as a child only if it has not
acquired cyj,,;; children yet and responds with a child acceptance
message caccept authenticated with the shared key concatenated
with the random value (r). To this end, both provers established a
secure channel with the shared key K; e Next, P; either extends
the tree and thus acts as an intermediate prover, or it finishes the
tree construction process thus acts as a leaf prover. A prover acts as
aleaf prover in two cases: either it does not accept any children (i.e.,
Climir = 0) or its invite message is timed out without receiving any
response from its neighbors. The details of the tree construction
messages are shown in Figure 2. The secure channels established
between parent nodes and children nodes in the tree are used next
to transmit the attestation messages.

Algorithm 1: Aggregation of two attestations.

ax = {proofy : uidsq, proofy : uidsp, ...} ;
uidsx C {uidy, uidy, ..., uidp } ;
Algorithm aggregateAttestation(ay, az)
res « aj
for proof, uids in az do
if |uids| = ag then
ay < az \ {proof : uids}
res « resU {proof : uids}
else
for proof’,uids’ inres do
if |uids| + uids’| < ag then
az « az \ {proof : uids}
res « res\ {proof’ : uids’}
res « res U {proof @ proof’ : uids U uids’}
break
for proof,uids in az do
| res < resU {proof : uids}

7.3.2 Attestations collection. The leaf nodes send attestation mes-
sages (attst) to their parents. The attestation message of P; contains
the generated proof which is computed as follows:

generateProof () : proof < MAC(Kjc,uid || cntr|| treeid) (3)

Mohamad Mansouri et al.

where cntr is a counter that is incremented each time P; attests.
Parent nodes aggregate the attestation messages from their chil-
dren using the function aggregateAttestation(). Similarly, the new
attestation message is sent to the parent and processed. This is
repeated until the initiator prover receives all the aggregated at-
testation messages. It then sends the final attestation message to
the controller. An attestation message is composed of multiple sets
of prover ids. The number of provers in a set is controlled by the
parameter ay. Each set is linked with a single proof which is the
XOR of all proofs provided by the provers in that set. The algorithm
that describes aggregateAttestation() is depicted in Algorithm 1.

The granularity of the aggregation of the attestation is parame-
terized by ay. If g is 0, then none of the proofs are XORed, and thus,
all individual proofs are transmitted to the controller. If a, larger
than the number of provers participating in the tree, all proofs are
XORed forming a single proof for all provers.

When C receives the aggregated attestation it validates the
proofs. For each set, it computes the MAC according to equation 3
using the unique keys (Kj¢) of each prover #;. For each verified
aggregated proof, the status of all provers in the set is updated.
More specifically, C updates the time of the last proof received
from these provers by the current time. We show the attestations
collection details in Figure 3.

7.4 Key Revocation Phase

When prover $; becomes "unhealthy", it cannot be trusted anymore.
So it is required by C to revoke all the shared keys between #;
and the other provers. Since C knows the ids of all the keys in the
keyrings of all provers, it can find out the affected devices (i.e., the
ones which share at least a key with the "unhealthy" device). C
sends a revocation message (revk) to each of them. The message
contains the uid of the receiving prover, and the set of key ids that
should be revoked. revk is authenticated with a MAC using K. of
the corresponding prover.

revk « cid || uid || affectedKeys() (4)

When a prover receives revk, it removes the affected keys from its
keyring. When the size of its keyring goes under a certain threshold
0, the prover goes to the offline state and requires reinitializing to
go back online.

7.5 Role of the score function

The fairness by design approach can be achieved thanks to the
tuning of mainly two parameters set with the help of the score
function: cj;,,;; and .. These help configure the behavior and the
load of each prover during the attestation phase and their correct
setting hence ensure a fair distribution of the load caused by FADIA
on the active devices.

The first parameter cj;,;,;; represents the number of children
a prover can hold during one attestation round in the virtual at-
testation tree. The number of children has a direct impact on the
amount of load put on the prover. The load involves the use of
cryptographic tools (MACs) to establish a secure channel with each
child and forwarding the attestation proofs.

The second parameter J. is the time which a prover waits for
to receive the invitation message (invite) before it decides to start

FADIA: FAirness-Driven collaboratlve remote Attestation

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

C (Controller)
cid,reg = {(Py. uid, P cntr, knc) }nzij,..

P; (Initiator prover)
uid, Ring, ki.

Py, (Leaf prover)
uid, Ring, ky.

‘P; (Intermidiate prover)
uid, Ring, ke

E validateProvers(attst, mac):
K. + K| (attst. sre,K) € reg
If mac = MAC(Kj, attst) Then:
pualid « getValidProvers(attst. a)
updateState(uid) Yuid € pvalid

! attestationReceived(attst, mac):

i sendAttestation(a):

I p < generateProof()
a' + {p: {uid}}
a +—aggregateAttestation(a, a') !
src + uid; dst < parent.uid |
attst < src||dst||a :
authSend(parent. K, attst)

Ky — K| (attst. src, K) € children
If mac = MAC(K i, attst) Then:
a + aggregateAttestation(a, attst. a) |
children « children \ {attst. src, Kjx} !
If children = () Then: :
sendAttestation(a)
attested = True

Figure 3: Attestation collection in FADIA’s attestation phase.

its own tree and sends invite itself. It is important to mention here
that when a prover finishes an attestation round, it can switch
to a sleeping state since it has completed its attestation for this
round. Reasearches on wireless ad-hoc networks have studied the
scheduling of the nodes sleeping state to optimize the network lif-
time [28]. Inlighted by these studies we control the sleeping time of
a prover based on a fair policy. In FADIA for each attestation round,
a prover is first being actively waiting for invitation messages, then
performs the requested attestation operation in the tree and finally
switches to a sleep state until the next round. Consequently, J; is
a critical parameter that influences directly the average amount
of time a prover spends in the sleep state and hence optimizes its
resource consumption. Research has shown that being in an active
state (listening or sending) can be intensively resource-consuming
compared to being in a sleep state [23]. Therefore, . parameter is
also used to control the amount of load on a prover in FADIA.

In FADIA, these two parameters are calculated at runtime by each
prover. Their corresponding values are updated at each round of the
attestation phase using the score function. We present examples of
how to build this function depending on the scenario of deployment
in section § 9.2.1.

8 SECURITY ANALYSIS

The main goal of an adversary is to perform malicious activities
and evade detection. However, a remote attestation scheme should
identify the presence of malicious actors in the network to safe-
guard the network operation. We consider the system secure if an
attacker cannot forge a “healthy" state for a “non-healthy" prover.
Remainder of this section informally discuss the security of FADIA
w.r.t. adversarial assumptions mentioned in 5.

Attacks Performed by As:

e Spoofing attacks: FADIA is immune to attackers trying to
spoof a prover’s identity. Since all message exchanges are
protected by keys stored in an inaccessible location for soft-
ware attacker and can only be accessed through 74, an
attacker will not be able to produce authenticated messages
without the keys from the key ring. Please note that the
invite message is an exception, as this message is not au-
thenticated. However, this does not affect the security of
FADIA since attackers spoofing this message will not be able
to complete the 3-way handshake, (i.e., respond with a valid
caccept).

e MITM attacks: FADIA will identify this attack as it suffers the
same limitations of spoofing attacks. Ay using this attack
technique will not be able to manipulate messages without
being detected since the integrity of these messages is en-
sured using the keys from the key rings that is protected by
Ta.

Replay attacks: FADIA prevents replay attacks since all mes-
sages are unique and cannot be used twice without being
detected. Specifically, freshness is guaranteed in invite mes-
sages thanks to using a timestamp in the treeid. Similarly,
iaccept and caccept includes randomness for each prover-
to-prover communication. Further, attst messages are also
resilient to replay attacks since they contain a counter which
is incremented at each attestation round.

DoS Attacks: Although FADIA does not include these types
of attacks in its threat model, it is worth noting that FADIA
can detect the effect of such attacks. This is because Aj
performing DoS attacks on a prover (or prover group) will
prevent the attestation of these provers. The controller will
therefore, inevitably discover a missing attestation from the
provers under attack.

Attacks Performed by Ay,. In addition to the software adversaries,
hardware adversaries have the ability to tamper with a device to
extract the keys from its keyring or alter the attestation code. Under
the assumption that a hardware adversary needs to take the system
offline for at least a §;, duration, FADIA provides resilience against
these attackers. This is because FADIA requires that within every
O, period, each prover provides evidence of its "healthiness". This
helps the network owner to ensure that the provers are not taken
offline and thus not corrupted. On the other hand, a hardware
adversary may use leaked keys to attack other provers sharing the
same key. However, the key revocation process ensures that if a
prover no longer participates in the protocol, these keys are revoked.
Additionally, even if an attacker leaked all the key materials from
a prover, the attacker will not be able to forge a legitimate proof
as this forgery involves the targeted prover’s Kjc. The state of a
"unhealthy" device will thus not be forged by Ay,

9 IMPLEMENTATION AND EVALUATION OF
FADIA

In this section, we evaluate the performance of FADIA in a hetero-
geneous network and demonstrate the advantages originating from

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Table 3: Benchmarks and energy consumption measure-
ments of cryptographic functionalities of FADIA when im-
plemented on Tmote Sky and Raspberry PI 2 devices.

HMAC-SHA256 SHA256
Time (ms) | Energy (m]) | Time (ms) | Energy (m])

32B 0.068 - 0.025 -

4 KB 1.075 - 1.049 -
pr2 8 KB 2.083 - 2.032 -

32KB 8.131 - 8.079 -

32B 63.28 0.3384 15.54 0.0862
SKY | 4KB 1035 5.5908 988 5.3388

8 KB 1998 10.7892 1960 10.6128

its fairness-driven approach by evaluating the energy consumption,
the computational cost and the bandwidth. We further study its
performance in a homogeneous network and show that even in
this case, FADIA outperforms the relevant state-of-the-art solutions,
namely PASTA [27] and SALAD [26].

9.1 Implementation of FADIA on Tmote Sky
and Raspberry PI 2

To illustrate heterogeneity, we implement FADIA on two types of
devices: Tmote Sky [11] and Raspberry PI 2. The Tmote Sky which
represents a resource-constrained device, is equipped with an i16-
bits 8 MHz msp430 MCU, 10 KB of RAM, and 48 KB of non-volatile
memory. On the other hand, the Raspberry PI 2 is more powerful
as it is equipped with a 900MHz quad-core ARM Cortex-A7 CPU, 1
GB of RAM, and 32 GB of non-volatile memory. Both types of de-
vices are equipped with CC2420 RF transceivers. The CC2420 chip
operates on 2.4 GHz and is compliant with IEEE 802.15.4 standards.
We do not follow a certain security architecture for implement-
ing FADIA on the devices. However, FADIA can be implemented
based on any security architecture. Previous research has shown
that achieving a security architecture on sensor devices is indeed
possible [6, 13, 16, 31]. In our implementation, and without loss
of generality, an ARM TEE can be used for the Raspberry PI, and
TYTAN [6] can be used for the Tmote Sky. We use HMAC-SHA256
for authenticating the messages and creating the proofs. We use
the SHA256 of the device’s firmware as the software configuration
hash (sch).

In order to conduct our study, we first evaluate the cost of one
attestation round for a prover in terms of the execution time and
the energy consumption of FADIA. Since one round mainly involves
MAC and hash computation operations, we have obtained some
benchmarks on HMAC-SHA256 and SHA-256 respectively. Results
are shown in Table 3. As expected, Tmote Sky takes more time to
generate attestation proofs. We also benchmark the throughput
and the round-trip time (RTT) of the CC2420 transceiver in a real
environment. The throughput on the application layer is 25.2 Kbps
and the RTT is 61.4 ms.

9.2 Evaluation

We first evaluate FADIA on a heterogeneous network to measure
the influence of fairness on the performance in terms of energy
consumption and computational cost. To evaluate the benefits of
fairness, we consider two variants of FADIA. Variant (1) with fair-
ness activated and variant (2) without fairness. Our results show

Mohamad Mansouri et al.

)
S
S

1000

@
=3
S

800

o
=3
S

600

S
S
S

400

Residual Energy (Joule)

N
15
S

200

°

= = o \
0 10000 20000 30000 40000 0 10000 20000 30000 40000

Time (sec) Time (sec)
100 (a) Energy trace
B 104 —— 1st crash
=
2 80 = —e— 3rd crash
] 5 8 5th crash
o =]
g 60 £ 6
g P
7] £ a4
g 40 &
© 2 .
x 20 "“\,‘\
20 40 60 80 100 0 20 40 60

% Initial Energy % selfish provers

(b) Consumed energy (c) Selfishness experiment

Figure 4: Evaluation of the energy consumption. (a) the
residual energy over time. w/ (left side) and w/o (right side)
activating fairness. (b) the average consumed energy w.r.t.
initial energy after 16.6 hours of running FADIA with fairness
activated. The green-colored area represents the residual en-
ergy and the orange-colored area represents the consumed
energy at the end of the experiment. (c) the time taken until
1st, 3rd, and 5th crash (energy depletion at a prover) with dif-
ferent percentage of selfish provers in the network. Dotted
lines represent the results when fairness is not activated.

that fairness improves the lifetime of the network and the runtime
of the RA protocol. We then evaluate the performance of FADIA
on a homogeneous network in terms of storage, computation and
communication cost. Our results show that FADIA outperforms the
state-of-the-art solutions. Additionally, we evaluate the robustness
of FADIA against selfish provers. We also evaluate the efficiency
of the revocation phase. Due to the lack of space, we present it
in appendix C. We perform our simulations using the Omnet++
simulator [37]. We implement FADIA on the application layer of the
devices. For the lower layers, we use a simplified medium access
control version which makes sure that no device within the com-
munication range transmits at the same time. Provers communicate
in a half-duplex fashion and store messages in queues when the
medium is busy.

9.2.1 Evaluation in a heterogeneous network.

Test Case 1: Optimizing the energy consumption. To measure the
optimization of energy consumption, we simulate FADIA on 500
Tmote Sky sensors acting as provers. sch is set as the SHA256 hash
of the firmware of size 30 KB. The network and cryptographic
delays are set according to the values measured in Table 3. Ad-
ditionally, we consider a simple energy consumption model: The
model updates the current energy consumption based on the sta-
tus of the transceiver and the microcontroller of the prover. The
transceiver can either be transmitting, listening, or OFF. Similarly,
the microcontroller can either be ON or idle. For each of the fol-
lowing statuses, the energy is computed according to the energy
measurements shown in Table 4. The provers move in a random

FADIA: FAirness-Driven collaboratlve remote Attestation

Runtime (sec)
»)
o)

IN)
o

Fair
Unfair

0

0 2K 4K 6K 8K 10K
Provers

Figure 5: Runtime of FADIA with (in green) and without (in
orange) fairness integrated in dynamic network.

waypoint model at a linear speed uniform between 1mps and 2mps
in a 300m X 300m area. Each of the provers is equipped with a
battery of 1000 max capacity. The initial energy level a prover
starts with is chosen randomly (uniformly [100], 1000]]). Evalua-
tion of different random distribution functions for the initial energy
are shown in appendix A. Note that the maximum capacity of an
alkaline AA battery is around 13,000]. But we use 1000] as the
maximum capacity for the seek of the feasibility of the experiment.
We run FADIA for 60, 000 seconds. For variant (1) of FADIA we im-
plement the score() to return the current battery level of a device.
Alternatively, for variant (2) score() always retrurns 0.5.

We measure the consumption of energy of each prover with
respect to time. Figure 4a shows the energy traces of the provers
in both variants of FADIA. As expected, variant (2) of FADIA (i.e.
fairness is not activated), shows a fast depletion of the energy of all
the provers while for variant (1), most of the provers remain active
after 40, 000 seconds. The reason for the fast depletion of energy in
the "unfair” protocol (i.e. variant 2) is that provers with low energy
are treated indifferently from high energy provers. This leads to
putting a significant load on these devices due to the high (i.e. unfair)
number of children they need to collect attestations from. Moreover,
since &, is not adapted to the energy level of the device, provers may
spend more time waiting to be invited to a tree construction process.
This keeps the transceivers of these devices in the listening state
for a longer time instead of switching sooner to the OFF/idle state.
This brings a serious problem since the part that mostly consumes
energy in sensor devices is the transceiver. This is the case for
Tmote Sky as shown in Table 4. Notice that, when provers with low
battery crash, this decreases the number of provers in the network
and causes fewer tree constructions to appear, causing a domino
effect and faster depletion for other devices. Differently, in the case
of FADIA variant (1), the low battery provers preserve their energy
which prevents the early loss of provers.

We also look into the consumed energy of the provers at the end
of the experiment (i.e., after 16.6 hrs). We group provers that had
similar initial battery levels at initialization and we measure their
average consumed energy level after the experiment. Figure 4b
shows the relation between the consumed energy with respect to
the initial energy. The graph shows that provers with high initial
battery level (more than 50%) consumed more energy than provers
with fewer initial battery level thus providing a longer lifetime to the
network. Additionally, we measure the time taken until we detect
1st, 3rd and 5th crash of a prover (i.e., its energy is completely
depleted). We observe that the lifetime of the provers in a fair
protocol is an order of magnitude longer.

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

= FADIA === 2-ary tree 8-ary tree === chain
= PASTA === 4.arytree —o— grid m— ring
25
200
2.0 =
1) %)
8 8 150
215 <
£ £
g £ 100
g10 - S
2 2|
05 501 oA .
— 1 1,7 1.9 2.

0.0 0+
0 200K 400K 600K 800K 1M 0 2K 4K 6K 8K 10K
Provers # Provers

Figure 6: Runtime of FADIA and PASTA with different num-
ber of provers in tree, grid, chain, and ring topologies.

Test Case 2: Optimizing the runtime. In order to measure the opti-
mization of the runtime achieved thanks to fairness, we evaluate the
runtime of FADIA on a heterogeneous static tree topology. In this
scenario, we use two types of devices such that 50% of provers are
Tmote Sky (MSP430) devices and the other 50% are Raspberry PI 2
devices. Both types of devices use the same transceiver (CC2420).
We use the throughput, network delay, and the cryptographic de-
lays for each type of device according to the benchmarks measured
in table 3. We measure the time taken from the start of the tree
construction, until the final attestation is sent from the root node
to the collector. The function score() is defined such that it returns
0.05 for the MSP430 provers and 1 for Raspberry PI provers. Accord-
ingly, the number of accepted children (c;;,,,;;) will be 1 for the less
powerful provers and 20 for the powerful ones. On the contrary,
we simulate FADIA variant (2) which assigns 10 children for each
prover regardless of its type. Figure 5 shows the runtime results of
both approaches with respect to a varying number of provers in
the network. The results show that FADIA with fairness option can
run 1.6 faster in static topologies.

9.2.2 Evaluation in a homogeneous network.

Memory consumption of FADIA. Each prover in FADIA stores one
key ring. The storage consumption derived from the key ring is
(4B + 32B) X R, where 4 is the size of the key ring in number of
keys. The prover also stores uid (4B), the controller key k;. (32B),
the attestation counter cntr (4B), and other FADIA parameters (20B).
The total memory consumption is 56 + 36 X R Bytes. For example,
with a key ring of size 300, this results in 10.6KB of memory. It is
worth to notice that the memory consumption depends only on
the key ring size and is independent from the number of provers
on the network. This provides very high scalability compared to
most of the state-of-the-art solutions that incurs a cost linear to
the number of provers. Our experimental study shows that FADIA
can run on 10, 000 provers while each of them consuming only 10.6
KB which is significantly low compared to PASTA with 780K B of
memory usage and SALAD with 365K B.

Runtime of FADIA. To measure the runtime for FADIA, we have
implemented the protocol in a static network defined under four
common topologies: the tree, chain, ring and grid topologies. We
consider the construction of single attestation tree where all provers
participate to it. The running time is evaluated by measuring the
time it takes until the report is collected by the controller. For a fair
comparison with the state-of-the-art, the scenario, the types of the

WiSec 21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

* SALAD-Simple === gg=1,r=300, p=100K === g,=1, r=100, p=10K
+ SALAD-Greedy ay=4, r=300, p=100K ag=w, r=100, p=10K
SALAD-Smart @y=w, r=300, p=100K

20 - 4

=

T

Data Sent (KB)
[-
o «»
Data Sent (KB)

3
.

w

[N)

-

0
0 100 200 300 400 500 100 200 300 400 500
Provers # Provers

Figure 7: Average amount of data sent by a prover during a
one round of attestation in FADIA and SALAD protocols.

devices, the network delays and the cryptographic benchmarks are
all set as the ones used in the evaluation of PASTA protocol in [27].
We use ESP32-PICO-D4 devices in the simulation as provers and set
the size of their firmware to 50K B. The throughput of the provers
on the application layer is 12.51 MB/s and the round trip time is 4.63
ms. The time a device takes to generate the proof is set according to
Table 5 in the appendix. The provers perform 10 attestation rounds
and the runtime of the attestation is averaged. The position of the
nodes are randomized between rounds to force reinitialization of
the tree costruction. We set the keyring size r = 300, and o = inf.
Figure 6 shows the runtime results of FADIA and PASTA.

We observe that FADIA shows a low runtime in tree topologies.
It can attest 1,000, 000 provers in less than 2 seconds in a 4-ary
tree. The runtime of FADIA and PASTA are close to each other in
a tree topology since most of the attestation time corresponds to
the network delays. Moreover, FADIA shows better performance at
higher degree trees because messages are broadcasted during the
construction of the attestation tree, whereas for PASTA, one-to-one
tree commitment requests are sent from the prover to its neigh-
bors. Additionally, FADIA is faster than PASTA by approximately
17 times for grid topologies and 1.3 times for ring topologies. In
grid topologies, the tree construction results in an unbalanced tree.
This creates a problem for PASTA since the tree construction hap-
pens in two steps. In the first step, all provers first commit to the
tree. Then in the second step, all provers receive the aggregated
commitment. This requires all provers to wait for the tree construc-
tion to finish before they start attesting. FADIA does not have this
problem since the leaf nodes can immediatly send their attestations
without waiting for the tree construction to finish. On the other
hand, PASTA outperforms FADIA in chain topologies with a large
number of provers (i.e., > 8000). This is explained by the fact that
in FADIA, every prover sends all the key ids in the keyring to its
neighbors which turns to be not effective in large chain topologies.
Fortunately, such topologies do not often exist in real applications.

Bandwidth consumption of FADIA. We evaluate the bandwidth
consumption of FADIA in a dynamic network. We consider devices
moving in a random way point model (i.e., provers choose random
destinations and move toward them) at a linear speed uniform
between 1mps and 2mps. The provers move in an area of 500m X
500m. We measure the average amount of data sent and received
by a prover in an attestation round (i.e., for all provers to attest).
Notice that the scenario, the device type, the network delays, and

Mohamad Mansouri et al.

the cryptographic benchmarks are all set the same as the ones
used in the evaluation of SALAD protocol in [26]. We use Stellaris
LM4F120H5QR devices in the simulation as provers and set the size
of their firmware to 30KB. The throughput of the provers on the
application layer is set to 35.0 kbps and the round trip time is set to
15ms. The cryptographic delays are set according to Table 5 in the
appendix. We choose the value of ag as 1, 10, and infinity. We also
use different values for the keyring and pool sizes: more specifically
we set r = 100, p = 10,000 and r = 300, p = 100, 000. Both cases give
the same connectivity of the graph being Ps = 0.6 (see 4). Figure 7
shows the results. In particular, the results show that FADIA has
highly scalable bandwidth consumption since the data consumption
is nearly constant with respect to the number of provers. It also
shows that the bandwidth consumption depends mostly on the size
of the keyring. However, this cost always remains less than the
average consumption of SALAD which increases linearly with the
number of provers in the network.

9.2.3 Evaluation with selfish provers. We evaluate the impact of
selfish provers on the lifetime of the network (time till 1st, 3rd and
5th crash of a prover). A selfish prover is a prover that does not
will to participate in the tree generation process. It thus greedily
attest indvidualy to the controller and goes to sleep state as early
as possible. Note that such extreme selfish behavior can be easily
detected. We consider this extreme case to evaluate the worst case
scenario. A more careful selfish prover will still collaborate however
less than it is supposed to. We consider the same energy consump-
tion scenario in Test Case 1 (see 9.2.1). However, selfish provers
are chosen with initial battery level greater than 250]. Figure 4c
shows the results with different percentage of selfish provers. We
observe that FADIA is robust against selfishness. This is because
the lifetime drops significantly only when more than 40% of the
provers are selfish. With high number of selfish provers the perfor-
mance degrades since there is a sort of race toward the collector
to provide attestation. This creates too many contention between
provers accessing the wireless medium leading for the attestations
to be delayed.

10 CONCLUSION AND FUTURE WORK

We propose FADIA, a lightweight collaborative attestation protocol
that can be deployed on heterogeneous networks of IoT devices.
FADIA is the first RA protocol that integrates fairness in its design.
We show that fairness is an important feature for remote attestation
protocols. Fairness can increase the performance of the protocol by
a factor of 1.6 in a network where Tmote Sky sensors and Raspbery
PIs coexsists. The lifetime of the network can increase by an order
of magnitude, thus achieving less failures. We also show that FADIA
outperforms the state-of-art-solutions in terms of scalability. The
only drawback of FADIA is that it is not suited for autonomous
networks.

In future work, we aim to improve FADIA to apply it on au-
tonomous networks without affecting its scalability. We are also
interested in investigating other possible parameters for the score
function (e.g. the importance of a prover in the network, the bit-rate
of a prover’s transceiver, etc.). Also, we look further into devloping
automatic methods to optimize the score() function.

FADIA: FAirness-Driven collaboratlve remote Attestation

REFERENCES

(1]

[10]

[11]

[12

[13]

[14

[15

[16

[17]

(18

[19]

[20]

[21]

[22]

T. Abera, N. Asokan, L. Davi, J. E. Ekberg, T. Nyman, A. Paverd, A. R. Sadeghi,
and G. Tsudik. 2016. C-FLAT: Control-Flow Attestation for Embedded Systems
Software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16). Association for Computing Machinery.

M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A. R. Sadeghi, and M. Schunter.
2016. SANA: Secure and Scalable Aggregate Network Attestation. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). Association for Computing Machinery.

M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise. 2018. PADS:
Practical Attestation for Highly Dynamic Swarm Topologies. In 2018 International
Workshop on Secure Internet of Things (SIoT).

C. Andrei, Z. Jonas, F. Aurélien, and B. Davide. 2014. A Large-Scale Analysis
of the Security of Embedded Firmwares. In 23rd USENIX Security Symposium
(USENIX Security 14). USENIX Association.

N. Asokan, F. Brasser, A. Ibrahim, A. R. Sadeghi, M. Schunter, G. Tsudik, and C.
Wachsmann. 2015. SEDA: Scalable Embedded Device Attestation. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS ’15). Association for Computing Machinery.

F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl. 2015.
TyTAN: Tiny trust anchor for tiny devices. In 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC).

X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik. 2017. Lightweight
Swarm Attestation: A Tale of Two LISA-s. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS ’17). Association
for Computing Machinery.

X. Carpent, G. Tsudik, and N. Rattanavipanon. 2018. ERASMUS: Efficient re-
mote attestation via self-measurement for unattended settings. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE).

M. Conti, R. Di Pietro, A. Gabrielli, L. V. Mancini, and A. Mei. 2010. The Smallville
Effect: Social Ties Make Mobile Networks More Secure against Node Capture
Attack. In Proceedings of the 8th ACM International Workshop on Mobility Manage-
ment and Wireless Access (MobiWac ’10). Association for Computing Machinery.
M. Conti, R. Di Pietro, L. Vincenzo Mancini, and A. Mei. 2008. Emergent Proper-
ties: Detection of the Node-Capture Attack in Mobile Wireless Sensor Networks.
In Proceedings of the First ACM Conference on Wireless Network Security (WiSec
’08). Association for Computing Machinery.

Moteiv Corporation. 2016. Tmote Sky Details.
"http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf".

The New Jersey Cybersecurity and Communications Integration Cell (NJCCIC).
December 28, 2016. "Mirai Botnet". Retrieved 28 December 2016..

K. M. El Defrawy, N. Rattanavipanon, and G. Tsudik. 2017. HYDRA: hybrid design
for remote attestation (using a formally verified microkernel). Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(2017).

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A. R. Sadeghi. 2017. LO-FAT: Low-Overhead Control Flow ATtestation in
Hardware. In Proceedings of the 54th Annual Design Automation Conference 2017
(DAC ’17). Association for Computing Machinery.

E. Dushku, M. M. Rabbani, M. Conti, L. V. Mancini, and S. Ranise. 2020. SARA:
Secure Asynchronous Remote Attestation for IoT Systems. IEEE Transactions on
Information Forensics and Security (2020).

K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik. 2012. SMART: Secure and
Minimal Architecture for (Establishing a Dynamic) Root of Trust. In NDSS 2012,
19th Annual Network and Distributed System Security Symposium, February 5-8,
San Diego, USA.

L. Eschenauer and V. D. Gligor. 2002. A Key-Management Scheme for Distributed
Sensor Networks. In Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS °02). Association for Computing Machinery.

A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. 2014. A minimal-
ist approach to Remote Attestation. In 2014 Design, Automation Test in Europe
Conference Exhibition (DATE).

W. He, M. Golla, R. Padhi, J. Ofek, M. Diirmuth, E. Fernandes, and B. Ur. 2018. Re-
thinking Access Control and Authentication for the Home Internet of Things (IoT).
In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18).
USENIX Association.

A. Tbrahim, A. R. Sadeghi, G. Tsudik, and S. Zeitouni. 2016. DARPA: Device
Attestation Resilient to Physical Attacks. In Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks (WiSec ’16). Association
for Computing Machinery.

V. Immler, J. Obermaier, K. Kuan Ng, F. Xiang Ke, J. Lee, Y. Peng Lim, W. Koon Oh,
K. Hoong Wee, and G. Sigl. 2018. Secure Physical Enclosures from Covers with
Tamper-Resistance. JACR Transactions on Cryptographic Hardware and Embedded
Systems (2018).

C.Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. 2009. Remote attestation
to dynamic system properties: Towards providing complete system integrity

[23

[24

[25]

[27

[28

[29

[30

[31

[32

[33

[34
[35
[36

[37

]

]

]

]

]

]

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

evidence. In 2009 IEEE/IFIP International Conference on Dependable Systems Net-
works.

W.Kim and I. Jung. 2019. Smart Sensing Period for Efficient Energy Consumption
in IoT Network. Sensors (2019).

P.Koeberl, S. Patrick, S. Schulz, A. R. Sadeghi, and V. Varadharajan. 2014. TrustLite:
A Security Architecture for Tiny Embedded Devices. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys '14). Association for Com-
puting Machinery.

F. Kohnhéuser, N. Biischer, S. Gabmeyer, and S. Katzenbeisser. 2017. SCAPI:
A Scalable Attestation Protocol to Detect Software and Physical Attacks. In
Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’17). Association for Computing Machinery.

F. Kohnhéuser, N. Biischer, and S. Katzenbeisser. 2018. SALAD: Secure and Light-
weight Attestation of Highly Dynamic and Disruptive Networks. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (ASIACCS
’18). Association for Computing Machinery.

F. Kohnhiuser, N. Biischer, and S. Katzenbeisser. 2019. A Practical Attestation
Protocol for Autonomous Embedded Systems. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P).

S. Mahfoudh and P. Minet. 2008. Survey of Energy Efficient Strategies in Wireless
Ad Hoc and Sensor Networks. In Seventh International Conference on Networking

(icn 2008).
IHS Markit. 2017. Number of Connected IoT Devices
Will Surge to 125 Billion by 2030, IHS Markit Says.

https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-
devices-will-surge-125-billion-2030-ihs-markit-says.

S. Moein, T. Aaron Gulliver, F. Gebali, and A. Alkandari. 2017. Hardware Attack
Mitigation Techniques Analysis. International Journal on Cryptography and
Information Security (2017).

J. Noorman, J. Van Bulck, J. Tobias Miithlberg, F. Piessens, P. Maene, B. Preneel, I
Verbauwhede, J. Gotzfried, T. Miiller, and F. Freiling. 2017. Sancus 2.0: A Low-Cost
Security Architecture for 10T Devices. ACM Trans. Priv. Secur. (2017).

M. M. Rabbani, J. Vliegen, J. Winderickx, M. Conti, and N. Mentens. 2019. SHeLA:
Scalable Heterogeneous Layered Attestation. IEEE Internet of Things Journal
(2019).

S.Ravi, A. Raghunathan, and S. Chakradhar. 2004. Tamper resistance mechanisms
for secure embedded systems. In 17th International Conference on VLSI Design.
Proceedings.

V. Roblek, M. MeA ko, and A. KrapeA%. 2016. A Complex View of Industry 4.0.
SAGE Open 2 (2016).

S. Skorobogatov. 2011. Physical Attacks on Tamper Resistance: Progress and
Lessons. 2nd ARO Special Workshop on HW Assurance, Washington DC.

S. Skorobogatov. 2012. Physical Attacks and Tamper Resistance. Springer New
York.

A. Varga and R. Hornig. 2008. An Overview of the OMNeT++ Simulation Envi-
ronment. In Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops (Simutools
’08). ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering).

S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A. Sadeghi.
2017. ATRIUM: Runtime attestation resilient under memory attacks. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

A ENERGY CONSUMPTION EVALUATION

STATE Energy Consumption
MCU ON 0.0054]
X 0.0585]
RX 0.0654]
IDLE 0.00016 J

Table 4: Energy consumption of Tmote Sky devices while in
different states. MCU ON represents a state where the micro-
controller performing computations. TX and RX represents
the CC2420 state while transmitting or receiving respec-
tively. IDLE represents and idle state where the transceiver
is off and the MCU is in low power mode. Data taken from
Tmote Sky datasheet [11].

WiSec "21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

100

_-
o
S

®
S

60

% Consumed Energy
0
o

% Consumed Energy

[N}
o

20 40 60 80 100 20 40 60 80 100
% Initial Energy % Initial Energy

(a) Normal distribution (b) Pareto distribution

Figure 8: Evaluation of the fairness in energy consumption
for 500 provers. Figures show the average of the percentage
of consumed energy with respect to the percentage of ini-
tial energy. Details of the experiment are shown in section
9.2.1 (a) the initial energy of the provers is chosen following
a normal distribution (¢ = 500, o = 200). (b) the initial energy
of the provers is chosen following a shifted Pareto distribu-
tion (80% of the provers has an energy between 100J and 300J.
The rest has an energy between 300J and 1000]).

Fair
5th Unfair
3

—_
<

39 5th
15t 3rd 5th

Time (hours)
-
o

<

Normal Uniform Pareto

Figure 9: Time taken until 1st, 3rd, and 5th crash is seenina
network of provers running FADIA with (in green) and with-
out (in orange) fairness integrated.

B BENCHMARKS OF ESP32-PICO-D4
DEVICES AND STELLARIS LM4F120H50QR

MICROCONTROLLERS
ESP32-PICO-D4 LM4F120H5QR
Function Size Time (ms) Size Time (ms)
SHA256 5KB 13.171 32 KB 40.02
16 B 0.042 32B 0.23

HMAC-SHA256 o4 8 0.301 32 kB 39.86
Table 5: Benchmarks of SHA256 and HMAC-SHA256 with

different input sizes on ESP32-PICO-D4 devices and Stellaris
LM4F120H5QR MCUs (data from [27] and [26] respectively).

C EVALUATION OF THE REVOCATION
PHASE IN FADIA

The revocation phase starts when a prover is dropped from the
network. The controller detects the event during the next §j, time
and sends a revocation message revk to all the affected provers. To
measure its efficiency, we evaluate the following:

o (E1) The number of provers affected when a device is dropped.

o (E2) The number of connections affected.

o (E3) The number of keys revoked for each prover.

o (E4) Time taken until all affected provers receive the revocation.

Mohamad Mansouri et al.

=—P=10K == P=1M
—— P=100K =« = Connectivity

8 1.0

= Revokation == 1 prover dropped === 4 provers dropped

2 provers dropped === 5 provers dropped
= 3 provers dropped

o
@

)
-
=)
S

Revoked Keys
~ IS >

s o o

v os o
Connectivity (Ps)
Time (sec)

N wu ~

5 o o

o
g
o

=}

100 200 300 400 0 200 400 600 800 1000
Keyring size (r) # Provers

(a) Number of revoked keys (b) Revocation time

Figure 10: Revocation efficiency. (a) shows the the number
of revoked keys on a prover with respect to different key
ring sizes. (b) shows the average amount of time taken till
the revocation process is completed with respect to variable
number of provers in the network.

E; is estimated as the number of provers in the network multi-
plied by the probability of two provers being connected (n X Ps).
This means that the average number of affected devices is propor-
tionally tied to the connectivity of the provers in the network. An
example of a keyring of size 300 and a key pool of size 100,000 gives
Pg = 0.6, thus in this example 60% of the provers are affected with
the revocation process. However, this is not a problem since most
of the keys revoked at the prover are not actually used. Therefore,
a more important metric to look into is the average number of con-
nections affected (i.e., connections established using a key which is
revoked). This is equal to ¢ X r/p which estimates E; (c is the total
number of connections established at the time of the revocation).
Following our example, the averaged affected connections will be
only 0.003 X c thus only 0.3% of the current connections need to be
re-established. Third, E3 estimates the expected amount of decrease
in the size of a keyring on each revocation process and it is equal
to the following:

K l::l K= I{_—l‘—l P—K-ij .
£ b = I J)Xix(l) o
S -))

i=0

We demonstrate this equation in Figure 10a. The figure shows
the relation between the averages number of keys revoked per
prover and the connectivity of the graph with respect to different
keyring size and key pool size. We can see that for r = 300 and
p = 100,000, 0.8 keys are revoked per prover on average. It thus
requires 190 provers to drop for an active prover to revoke half
of its keys. Finally, to evaluate E4, we run a simulation in which
we deploy FADIA in a network of provers and we set r = 300 and
p = 100, 000. During the run of the protocol, we start the revocation
process at a random point in time. We measure the time it takes
till all provers receive the revocation message. We also consider
cases where multiple revocations start simultaneously. Results are
shown in Figure 10b. The revocation process increases linearly
with the number of provers in the network and is performed within
34 seconds for 1,000 provers. When multiple provers are dropped
simultaneously, the revocation time scales linearly with the number
of dropped provers.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Scope
	4 Eschenauer and Gligor's Scheme E-G
	5 Assumption and Threat Model
	5.1 Network Assumptions
	5.2 Security Model

	6 Our Approach
	7 Design of FADIA
	7.1 Initialization Phase
	7.2 Joining Phase
	7.3 Attestation Phase
	7.4 Key Revocation Phase
	7.5 Role of the score function

	8 Security Analysis
	9 Implementation and Evaluation of FADIA
	9.1 Implementation of FADIA on Tmote Sky and Raspberry PI 2
	9.2 Evaluation

	10 Conclusion and Future Work
	References
	A Energy consumption evaluation
	B Benchmarks of ESP32-PICO-D4 Devices and Stellaris LM4F120H5QR Microcontrollers
	C Evaluation of the Revocation Phase in FADIA

