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Abstract

We derive a low-complexity receiver scheme for joint multiuser decoding and

parameter estimation of CDMA signals. The resulting receiver processes the users

serially and iteratively, and makes use of soft-in soft-out single-user decoders, of soft

interference cancellation and of expectation-maximization parameter estimation as

the main building blocks.

Computer simulations show that the proposed receiver achieves near single-user

performance at very high channel load (number of users per chip) and outperforms

conventional schemes with similar complexity.

Keywords: Interference cancellation, joint data detection and parameter estimation.
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1 Introduction

Among the several multiuser detection schemes proposed for CDMA [1], Serial and Parallel

Interference Cancellation (SIC and PIC) are particularly attractive because they process

directly the output of a bank of single-user matched �lters (SUMF). The receiver front-

end is identical to that of conventional detection. Therefore, these methods can be seen

as an \add-on" post-processing to enhance the performance of a conventional base-station

receiver when particularly high channel load is needed, and can be applied easily to either

short and long spreading sequence formats [2, 3, 4].

The main performance limitation of SIC/PIC schemes are: 1) error propagation caused

by feeding back erroneous symbol decisions; 2) imperfect interference cancellation due to

non-ideal knowledge of channel parameters (e.g., the complex amplitudes and delays of

the users' multipath channels). In this work, we propose a receiver scheme which handles

successfully both problems.

SIC is both simpler and more robust than PIC with respect to error propagation, since

users can be ranked according to their signal-to-interference plus noise ratio (SINR) and

decoded in sequence [5, 6, 7, 8]. Hence, we focus on SIC schemes. In early works [6, 5], SIC

is applied to uncoded transmission and hard decisions are used at each stage to remove the

already detected users from the received signals. In order to prevent error propagation,

the use of soft (or partial) interference cancellation and iterative SIC schemes has been

proposed in di�erent forms and by di�erent authors (see for example [9, 10, 8]). More

recently, the SIC approach has been combined with channel coding and Soft-In Soft-Out

(SISO) decoding [11]. The number of works in this direction is overwhelming. Without

the ambition of being exhaustive, we refer to [12, 13, 14, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23]

and references therein. A common feature of these algorithms is that single-user SISO

decoders provide at each iteration an estimate of the a posteriori probabilities (APP)

for the user code symbols, which are used to form a soft estimate of interference to be

subtracted from the received signal. In this way, the contribution of a user is e�ectively

subtracted from the signal only if its symbol decisions are suÆciently reliable.

A uni�ed framework to iterative multiuser joint decoding based on factor-graphs and

sum-product algorithm [24] is provided in [25]. In this framework, almost all algorithms

previously proposed (notably, those of [12] and of [23]) have been re-derived in a simple

direct way. Moreover, as a consequence of the sum-product approach, it is found that

extrinsic (EXT) probabilities [26] rather than APPs should be fed back to form the soft

interference estimate. As con�rmed experimentally by [27], APP-based soft interference

cancellation yields a biased residual interference term which tends to cancel the useful
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signal, and the APP-based algorithms of [12, 23] attain a worse overall spectral eÆciency

than their EXT-based counterparts derived and analyzed in [25].

In order to reduce parameter estimation errors, iterative SIC schemes can be naturally

coupled with iterative parameter estimation in order to (hopefully) improve the estimates

with the iterations, as long as the signal is \cleaned-up" from interference (see for exam-

ple [28]). In [29] the trade-o� between the number of users per chip (channel load) and

the amount of training symbols is investigated in a general iterative joint decoder which

re-estimates the channel parameters at each iteration.

We propose a low-complexity iterative soft-SIC algorithm for joint data detection and

channel parameter estimation. The main building blocks of our receiver are SISO single-

user decoders, soft interference cancellation stages and a channel parameter estimation

updating step which is formally equivalent to one step of the Expectation-Maximization

(EM) algorithm [30, 31]. The key idea to achieve polynomial complexity in the number of

users is to apply EM \locally", i.e., instead of using the true a posteriori distribution of the

missing data given the observation and the current parameter estimate, we use the product

distribution induced by the a posteriori marginal (symbol-by-symbol) probabilities output

by the SISO decoders at each receiver iteration.

We restrict our treatment to synchronous CDMA with frequency non-selective propa-

gation channels. Users are synchronous at the chip, symbol and frame level and encoding

and decoding is performed frame by frame. We assume also that the channel parameters

remain constant over each frame. The reason for adopting this simple model is twofold:

on one hand, this model allows the development of the algorithm in a simple and clear

way, on the other hand frame-synchronous transmission with piecewise constant channel

parameters is quite realistic in systems like UMTS-TDD [3], applied to indoor and pic-

ocells with slowly moving user terminals. Generalization to asynchronous transmission

and continuously time-varying multipath channels is left as an interesting topic for future

work.

Related work can be found, for example, in [32] (see also [31] and references therein),

where EM channel estimation is applied to SIC in an uncoded system. In [33], joint pa-

rameter estimation and data detection in a multiuser multipath environment is tackled

by using an alternating maximization strategy and EM is used to solve the parameter

estimates updating step. In [34, 35, 36], the EM approach is applied to the joint data

detection and parameter estimation in a single-user space-time coded system. In [37],

the SAGE algorithm [38] is applied to joint MAP symbol-by-symbol detection and pa-

rameter estimation in an asynchronous CDMA system. The algorithms obtained in [37]

have exponential complexity in the number of users as the SAGE is not applied \locally"
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(as opposed to what we do here). Classical references on the application of EM in com-

munications problems are [39], where EM is applied to parameter estimation in digital

receivers, and [40], where several iterative multiuser schemes for uncoded CDMA (with

perfectly known parameters) are derived as applications of EM and SAGE.

The paper is organized as follows. In Section 2 the synchronous CDMA signal model is

presented. In Section 3 we derive the proposed receiver structure In Section 4 we present

some numerical results and in Section 5 we summarize our conclusions.

Notation conventions:

� Let A be a matrix, then an; a
k and ak;n (or equivalently [A]k;n) denote the n-th

column, the k-th row and the (k; n)-th element of A.

� z � NC (�;�) indicates that the random vector z is complex circularly-symmetric

jointly Gaussian with mean E[z] = � and covariance E[(z� �)(z� �)H ] = �.

� The superscript H indicates Hermitian transpose.

� A / B indicates that A and B di�er by a multiplicative term.

� A
:
= B indicates that A and B di�er by an additive term.

� Probability density functions (pdf) are denoted by p(�) and probability mass func-

tions (pmf) are denoted by Pr(�).

2 System Model

We consider the uplink of a coded direct-sequence CDMA system with synchronous trans-

mission over frequency-non-selective channels and Nyquist chip-shaping pulses [41]. The

system is frame-oriented, i.e., encoding and decoding is performed frame-by-frame and

users are synchronous also at the frame level. In each frame, the complex baseband

equivalent discrete-time signal originated by sampling at the chip rate the output of a

chip-matched �lter is given by [1](
Y = SWX+N Data transmission phase

Y(t) = SWX(t) +N(t) Training phase
(1)

where:

� Y 2 C
L�N and Y(t) 2 C

L�T are the arrays of received signal samples in the data

and training phases, respectively.
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� N 2 C
L�N and N(t) 2 C

L�T are the corresponding arrays of noise samples, assumed

complex circularly-symmetric Gaussian i.i.d. � NC (0; N0).

� S 2 C
L�K contains the user spreading sequences by columns.

� W = diag(w1; : : : ; wK) contains the user complex amplitudes wk.

� X 2 C
K�N is the array of transmitted code symbols.

� X(t) 2 C
K�T is the array of transmitted training symbols (known at the receiver).

� N; T; L and K denote the code block length and the training sequence length (in

symbols), the spreading factor (number of chips per symbol) and the number of

users, respectively.

The total frame length in symbols is equal to N + T . Since the channel amplitudes

remain constant over the whole frame and the system is synchronous, the position of

training symbols in the frame is irrelevant and arbitrary. 1 With reference to the above

model and to our notation conventions, sk;x
k;yn and xn denote the k-th user spreading

sequence, the k-th user code word, the received signal vector in the n-th symbol interval

and the transmitted symbol vector in the n-th symbol interval, respectively. The user

spreading sequences are normalized such that jskj2 = 1 for all k. Hence, the signal-to-

noise ratio (SNR) of user k is given by SNRk = jwkj2=N0. The corresponding system

block-diagram is shown in Fig. 1.

At each frame, each user encodes a sequence of information bits into a code word

xk 2 Ck, where Ck is the code book of user k, de�ned over a given complex signal set (e.g.,

a PSK or QAM constellation). In this paper we consider non-systematic non-recursive

convolutional codes with trellis termination, mapped onto BPSK, so that xk;n 2 f�1;+1g.
Each code word is independently interleaved before transmission.

3 Iterative joint data detection and parameter esti-

mation

Without loss of generality, we assume that the user decoding order at each iteration is

k = 1; 2; : : : ; K. Decoding of user k at iteration m in the soft-SIC receiver is based on the

1In practice, for slowly-varying frequency-selective channels it is convenient to place the training phase

in the middle of each frame [3].
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observed signal sequence

z
(m)
k;n

=
1bw(m)
k

sH
k
yn| {z }

SUMF output

�
k�1X
j=1

sH
k
sj
bw(m)
jbw(m)
k

bx(m)
j;n| {z }

current iteration

�
KX

j=k+1

sH
k
sj
bw(m)
jbw(m)
k

bx(m�1)
j;n| {z }

previous iteration

(2)

for n = 1; : : : ; N , where fbw(m)
j

: j = 1; : : : ; Kg are estimates of the user amplitudes at

iteration m, fbx(m)
j;m

: j = 1; : : : ; k � 1g are estimates of the user symbols already decoded

at iteration m and fbx(m�1)
j;m

: j = k+1; : : : ; Kg are estimates of the user symbols provided

by the previous iteration, since these users are not yet decoded at iteration m.

Decoding is performed by a SISO decoder, which in the case of convolutional codes can

be implemented eÆciently by the forward-backward BCJR algorithm [42]. Let p(z
(m)
k;n
jxk;n =

a) be the conditional pdf of zk;n given xk;n = a, with a 2 f�1;+1g. The SISO decoder

for user k produces a marginal EXT pmf for xk;n, given by

EXT
(m)
k;n

(a) /
X

c2Ck:cn=a

Y
`6=n

p(z
(m)
k;`
jxk;` = c`) (3)

where the normalization EXT
(m)
k;n

(+1) + EXT
(m)
k;n

(�1) = 1 is enforced. The corresponding

APP is given by

APP
(m)
k;n

(a) / p(z
(m)
k;n
jxk;n = a)EXT

(m)
k;n

(a) (4)

with again the normalization APP
(m)
k;n

(+1) + APP
(m)
k;n

(�1) = 1.

Assuming that zk;n is conditionally (marginally) circularly-symmetric complex Gaus-

sian given xk;n, the pdf p(z
(m)
k;n
jxk;n = a) can be approximated as

p(z
(m)
k;n
jxk;n = a) / exp

 
�jzk;n � aj2

�
(m)
k

!
(5)

where �
(m)
k

= E[jz(m)
k;n

� xk;nj2] is the residual interference plus noise variance, which is

independent of n under mild uniformity conditions on the user codes [25].

The SISO decoders output also APPs for the information bits, which will be used for

�nal symbol-by-symbol decisions in the last iteration. For simplicity, we assume that the

total number of iterations M is �xed for all users. In practice, M should be optimized

according to the SNR and channel load K=L. Also, some dynamic stopping criterion

might be used in order to minimize the number of iterations. We leave this interesting

topic for future work.

Next, we address the estimation of the residual interference plus noise variance �
(m)
k

,

the estimation of the code symbols xk;n and the estimation of the user amplitudes wk
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used in the soft-SIC (equation (2)). We also address the initialization of the receiver with

training-based parameter estimation and some methods to combine training-based and

EM-based estimation. Finally, we summarize the resulting soft-SIC receiver with joint

data detection and parameter estimation.

3.1 Estimation of the residual interference plus noise variance

The variance �
(m)
k

is unknown, and must be estimated on-line before each SISO decoding

step. Let �
(m)
k;n

= z
(m)
k;n

� xk;n denote the residual interference plus noise term in (2). A

simple estimator for �
(m)
k

is given by 2

b�(m)
k

=
1

N

NX
n=1

jz(m)
k;n
j2 � 1 (6)

Beside its simplicity, the motivations for using (6) to estimate �
(m)
k

are:

1. If �
(m)
k;n

and xk;n are uncorrelated, then b�(m)
k

is an unbiased estimator.

2. If xk;n is i.i.d., uniformly distributed on f�1;+1g (as in our case), �
(m)
k;m

is i.i.d.

� NC (0; �
(m)
k

), and xk;n; �
(m)
k;n

are uncorrelated, then the error variance of b�(m)
k

is

given by

E

�����(m)
k

� b�(m)
k

���2� = 1

N

�
4�

(m)
k

+ (�
(m)
k

)2
�

while the error variance of the Maximum-Likelihood (ML) estimator with known

xk;n is given by

E

24������(m)
k

� 1

N

NX
n=1

jz(m)
k;n

� xk;nj2
�����
2
35 =

1

N
(�

(m)
k

)2

Hence, if 4�k=N � 1 the proposed estimator performs very close to the ML estimator

for known code symbols.

3. If the complex amplitude is estimated reliably, i.e., bw(m)
k

� wk, and if xk;n is uncorre-

lated with bxj;n for j 6= k, then �
(m)
k;n

and xk;n are practically uncorrelated. Moreover,

under mild conditions on the user amplitudes, for large K the residual interference

term �
(m)
k;n

is asymptotically Gaussian [43, 25]. We conclude that for large N and

2It is easily shown that b�
(m)

k;n
is the Maximum-Likelihood estimator for the variance of the process �

(m)

k;n

from the observation z
(m)

k;n
= xk;n + �

(m)

k;n
when xk;n and �

(m)

k;n
are white, statistically independent, and

Gaussian with xk;n � NC (0; 1) and �
(m)

k;n
� N

C
(0; �

(m)

k
).
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K the estimator b�(m)
k

performs very close to the ML estimator for known coded

symbols.

In the actual receiver implementation, the EXT and APP pmfs (3) and (4) are calculated

by using (5) where �
(m)
k

is replaced by its estimate b�(m)
k

given by (6).

3.2 Soft estimation of the code symbols

The (non-linear) MMSE estimate of symbol xk;n given the observation Y is given by the

conditional mean [44]

x
mmse
k;n

= E[xk;njY] = +Pr(xk;n = +1jY)�Pr(xk;n = �1jY) = 2Pr(xk;n = +1jY)�1 (7)

where Pr(xk;n = ajY) is the a posteriori pmf of symbol xk;n given the observation Y.

We are tempted to replace Pr(xk;n = ajY) by APP
(m)
k;n

(a) given by the SISO output at

iteration m and let bx(m)
k;n

= 2APP
(m)
k;n

(+1) � 1, and claim that this choice minimizes the

residual interference variance and it is therefore optimal. Unfortunately, this reasoning is

incorrect. An intuitive way of seeing this is by contradiction: if the true a posteriori pmfs

Pr(xk;n = ajY) were available at some iteration, then optimal symbol-by-symbol MAP

decisions could be made and there would be no need for further interference cancellation.

Moreover, the exact calculation of a posteriori probabilities Pr(xk;n = ajY) is in general an

NP-complete problem [1]. Therefore, if after a �nite number of iterations m an iterative

algorithm (with polynomial complexity in K) obtains exact values for Pr(xk;n = ajY) the

NP-completeness would be violated. Hence, we conclude that APP
(m)
k;n

(a) 6� Pr(xk;n =

ajY), for any �nite number of iterations m.

Interestingly, the above \non-linear MMSE argument" has been used in several papers

(e.g., [22, 23, 8, 18]), sometimes with claim of optimality. On the contrary, by using a

rigorous derivation based on factor-graphs and on the application of the sum-product

algorithm, it can be shown that [25]:

1. Even for perfectly known amplitudes and SISO input variances (i.e., bw(m)
k

= wk andb�(m)
k

= �
(m)
k

), the residual interference term �
(m)
k;n

= z
(m)
k;n

� xk;n in (2) when usingbx(m)
k;n

= 2APP
(m)
k;n

(+1) � 1 is conditionally biased and the bias tends to cancel the

useful signal, i.e.,

E[�
(m)
k;n
jxk;n = a] = ��(m)

k;n
a

where �
(m)
k;n

is a non-negative quantity that may depend on k; n and on the iteration

index m.
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2. By using EXT-based instead of APP-based symbol estimates, i.e., by using bx(m)
k;n

=

2EXT
(m)
k;n

(+1)�1, the resulting residual interference term is conditionally unbiased,

i.e., E[�
(m)
k;n
jxk;n] = 0, and the overall soft-SIC algorithm attains better performance

than its APP-based version. Remarkably, this e�ect is not visible for small channel

load but, as K=L increases, the di�erence between APP-based and EXT-based soft-

SIC schemes is more and more evident [27].

In passing, we notice also that a biased residual interference implies that xk;n and �
(m)
k;n

are

correlated (even for perfect amplitude estimation). Hence, the variance estimator (6) is

asymptotically optimal for large N;K only when the symbol soft estimates are obtained

from EXT pmfs.

Driven by the results of [25] and by the above considerations, we shall use the following

soft symbol estimates bx(m)
k;n

= 2EXT
(m)
k;n

(+1)� 1 (8)

which can be regarded as a \local" MMSE estimate of xk;n assuming that the a posteriori

pmf of xk;n is EXT
(m)
k;n

(a) (even if it is not true!). 3

3.3 Estimation of the user complex amplitudes

Let w = (w1; : : : ; wK)
T denote the vector of complex amplitudes to be estimated. The

ML estimate of w given the observation Y is given by

wML = arg max
w

log p(Yjw) (9)

where p(Yjw) is the conditional pdf of the observed signal given w, given by

p(Yjw) /
X
X

p(YjX;w) Pr(Xjw)

/
X
x
12C1

� � �
X

x
K2CK

exp

 
� 1

N0

NX
n=1

jyn � SXnwj2
!

(10)

where we have de�ned the diagonal matrix Xn = diag(x1;n; : : : ; xK;n) and where we have

used the fact that the channel input X is independent of the channel amplitudes, so that

3In [25], expression (8) is derived as a direct consequence of the application of the sum-product

algorithm, without any heuristic motivation based on MMSE estimation. The fact that EXT-based

algorithms perform better than APP-based algorithms just puts in evidence the power and generality of

the sum-product approach to statistical inference problems on Bayesian networks (see [45] and references

therein).
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Pr(Xjw) = Pr(X) = uniform on the Cartesian product of the code books C1 � � � � � CK
and zero outside, since each user k selects its code word with uniform probability on its

code book Ck and independently of the other users. From (10) it is clear that direct ML

estimation of w is infeasible in any practical case, as it has complexity proportional to

the total number of user code words
Q

K

k=1 jCkj.
Now, assume that the estimate bw(m) and the a posteriori probability Pr(XjY; bw(m))

are available at iteration m. Then, we can produce an updated estimate bw(m+1) for

next iteration by following the EM approach. In the language of the EM algorithm [31],

Y;X and fY;Xg play the role of incomplete, missing and complete data. The EM

update consists of computing the expected log-likelihood function of the complete data

conditionally on the incomplete data and on the current parameter estimate (E-step),

and maximizing the result with respect to the parameter (M-step) [31]. In our case, the

complete data log-likelihood function is given by

log p(Y;Xjw) :
= log p(YjX;w)
:
= � 1

N0

NX
n=1

jyn � SXnwj2

:
=

2

N0

Re
�
rHw

	� 1

N0

wHRw (11)

where we de�ne the vector

r =

NX
n=1

XnS
Hyn =

NX
n=1

266664
x1;ns

H

1 yn

x2;ns
H

2 yn
...

xK;ns
H

K
yn

377775 (12)

and the K �K matrix

R =

NX
n=1

XnS
HSXn (13)

with (i; j)-th element

[R]i;j =

(
N for i = j

sH
i
sj
P

N

n=1 xi;nxj;n for i 6= j

By using (11) we obtain the E-step in the form

Q(w; bw(m)) = E[log p(Y;Xjw)jY; bw(m)]

=
X
X

Pr(XjY; bw(m)) log p(Y;Xjw)

:
=

2

N0
Re
�
rHw

	� 1

N0
wHRw (14)
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where we let r = E[rjY; bw(m)] and R = E[RjY; bw(m)]. These are given by

r =

NX
n=1

XnS
Hyn (15)

and by

[R]i;j =

(
N for i = j

sH
i
sj
P

N

n=1 xi;nxj;n for i 6= j
(16)

where Xn = diag(x1;n; : : : ; xK;n) and where xk;n and xk;nxj;` denote the �rst and second

moments of the joint a posteriori pmf Pr(XjY; bw(m)), given by

xk;n =
X
X

xk;n Pr(XjY; bw(m))

xk;nxj;` =
X
X

xk;nxj;` Pr(XjY; bw(m)) (17)

By noticing that (14) is a quadratic form in w and that R is non-negative de�nite, the

M-step is readily obtained as

bw(m+1) = arg max
w

Q(w; bw(m)) = R
�1
r (18)

The above procedure has still complexity exponential in K, since the computation of the

moments (17) is equivalent to the marginalization of the joint pmf Pr(XjY; bw(m)), which

has complexity exponential in K. Then, we shall apply the above EM step \locally", i.e.,

by replacing Pr(XjY; bw(m)) by the product of the marginal APPs produced by the SISO

decoders at the end of iteration m. Namely, we use the approximation

Pr(XjY; bw(m)) �
KY
k=1

NY
n=1

APP
(m)
k;n

(xk;n) (19)

As shown in the previous section, the APPs do not coincide in general with the true

marginals of the joint pmf Pr(XjY; bw(m)). However, the utility of the approximation (19)

is twofold: on one hand, the product pmf in the LHS is readily available from the SISO

outputs. On the other hand, thanks to the product form, the exponential complexity of

the moment computation is reduced to linear. In fact, the moments of the product pmf

are given by

exk;n = +APP
(m)
k;n

(+1)� APP
(m)
k;n

(�1) = 2APP
(m)
k;n

(+1)� 1

x̂k;nxj;` =

(
1 for (k; n) = (j; `)exk;nexj;` otherwise

(20)
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Finally, the proposed approximated EM updating step consists of computing (18) where

R and r are given by (15) and by (16) when replacing the true moments (17) by their

approximations (20).

The complexity of (18) is then dominated by the matrix inverse R
�1
, which must be

computed at each iteration. A suboptimal M-step that does not require a matrix inverse

can be obtained by noticing that, under mild conditions on random interleaving and on the

uniformity of user codes, the averaged symbols exk;n are symmetrically distributed (their

distribution is induced by the noise and by the random choice of the user code words over

the code books). Moreover, exk;n and exj;n are weakly correlated for k 6= j. Then, 1
N
R � I

for large block length N . Hence, under these conditions (18) can be approximated by

bw(m+1) =
1

N
r (21)

Notice that both (18) and (21) are directly computed from the SUMF outputs, since r

de�ned in (15) depends on the observed signal Y only through the SUMF outputs sH
k
yn.

3.4 Initialization and combining with the training phase

The overall iterative soft-SIC algorithm needs a suÆciently reliable initial estimate bw(0) of

the complex user amplitudes. Otherwise, for completely unknown w, the SISO decoders

at the �rst iteration yield APPs very close to 1=2, i.e., exk;n � 0 for all k and n. This

yields r � 0 and R = NI, which in turns yields bw(1) � 0, so that the receiver never

\bootstraps" and remains stuck at the \zero" �xed point.

For the sake of initialization, a joint ML estimate of the complex amplitudes is obtained

from the training phase. This is readily given by [44]

bw(t) =
�
R(t)

��1
r(t) (22)

where r(t) and R(t) are given by (12) and by (13), respectively, when replacing N by T

and the code symbols xk;n by the known training symbols x
(t)
k;n
. If the training sequences

are mutually orthogonal, i.e., such that (X(t))HX(t) = T I, we obtain R(t) = T I and no

matrix inverse is needed in (22). It can be shown that this choice also minimizes the

estimation error variance [46]. Then, if a set of mutually orthogonal training sequences

exists, this choice should be preferred. 4

The receiver is initialized by letting bw(0) = bw(t). Then, at iterations m = 1; 2; : : : ; the

receiver exploits the updated estimate bw(m) provided by the EM step (18) by combining it

4The existence of such set of training sequences depends on the training symbol alphabet and on the

training length T , which must be � K. See [46] and references therein for more details.
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in some way with the training-based estimate. 5 We investigate the following two methods

for combining the training phase with the EM update.

The mixing method. For m = 1; 2; : : :, the \local" EM estimation described above is

applied to the incomplete data fY;Y(t)g with missing data X, by treating X(t) as known

parameters. The same result is obtained by including the known training symbols in the

missing data and by de�ning their marginal pmfs as APP
(t)
k;n
(a) = 1 if a = x

(t)
k;n

and 0

if a 6= x
(t)
k;n
, so that for training symbols we have exk;n = x

(t)
k;n

[29]. After straightforward

algebra, completely analogous to the derivation of the previous section and not reported

here for the sake of space limitation, we obtain the mixing estimator as

bbw(m)

mix =
�
R+R(t)

��1 �
r+ r(t)

�
(23)

The combining method. Assume for simplicity that the training sequences are mu-

tually orthogonal. Then, bw(t) = w + �
(t) with �

(t) � NC (0;
N0

T
I). In particular, the

training-based estimator bw(t) is unbiased.

Now, from (15) and (1) we obtain

r =

NX
n=1

eXnS
H(SXnw + nn) = R0w + �

where R0 =
P

N

n=1
eXnS

HSXn and � � NC (0; N0R
00) with R00 =

P
N

n=1
eXnSS

H eXn. By

using this into (18) we have

bw(m) = R
�1
R0w +R�1

� (24)

Since R 6= R0 unless the code symbols are perfectly known, the result of EM is biased.

For the sake of simplicity, we assume that N is suÆciently large so that the following

approximations hold

R � NI

R0 � diag

 
NX
n=1

x1;nex1;n; : : : ; NX
n=1

xK;nexK;n

!

R00 � diag

 
NX
n=1

jex1;nj2; : : : ; NX
n=1

jexK;nj2
!

(25)

5The eÆcient use of the available training symbols in addition to some blind parameter estimation

technique is a problem common to many semi-blind schemes (see [47] and references therein).
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(this follows by the fact that, under mild conditions, the out-of-diagonal terms are nor-

malized empirical correlations between uncorrelated zero-mean sequences, which vanish

for large N). By using (25) in (24) we obtain the biased EM estimate of user k amplitude

as bw(m)
k

= �kwk + �
0

k
(26)

where

�k =
1

N

NX
n=1

xk;nexk;n
and where �0

k
� NC (0;

N0

N
�2
k
) is the k-th component of R

�1
�, with

�
2
k
=

1

N

NX
n=1

jexk;nj2
Now, our goal is to obtain a combined estimator in the form

bbw(m)

k;comb = ak bw(m)
k

+ bk bw(t)
k

(27)

where the coeÆcients ak and bk are chosen in order to minimize the error variance subject

to the unbiased constraint, i.e., they are the solution of(
minimize E[jak�0k + bk�

(t)
k
j2]

subject to ak�k + bk = 1

Since �0
k
and �

(t)
k

are mutually independent (they depend on the mutually independent

noise samples N and N(t) in the data and training phases), we obtain easily the solution

of the above problem as

ak =
�k

�2
k
+ T

N
�2
k

bk =
T

N
�2
k

�2
k
+ T

N
�2
k

(28)

One last problem is represented by the fact that �k depends on the unknown code symbols

xk;n. Then, an estimate of �k can be obtained as follows. We notice that

xk;nexk;n =
(
jexk;nj for sign(exk;n) = xk;n

�jexk;nj for sign(exk;n) 6= xk;n

Since sign(exk;n) is the maximum a posteriori symbol-by-symbol decision on the code sym-

bol xk;n based on the a posteriori pmf APP
(m)
k;n

(a) output by the SISO decoder at iteration
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m, for large N the following approximation holds

�k � (1� 2�k)
1

N

NX
n=1

jexk;nj (29)

where �k is the symbol error probability (on the coded symbols, not on the information

bits!) at the output of the SISO decoder for user k at iteration m. If the residual

interference plus noise process �
(m)
k;n

is Gaussian with variance �
(m)
k

, the error probability

�k is a known function of �
(m)
k

, determined by the user code Ck. This can be pre-computed

and stored in a look-up table, and an estimate b�k of �k can be easily obtained from the

estimate b�(m)
k

given by (6). Finally, �k can be approximated by replacing �k by b�k in (29).

Remark. We provide a qualitative and intuitive discussion on the behavior of the mixing

and combining methods.

The mixing method su�ers from bias in the case of large K=L and T=N � 1 (which is

clearly the most interesting case, as it is usually desirable to maximize the channel load

and minimize the length of the training phase). In fact, suppose that at iteration m = 0

the signal at the input of each SISO decoder is \very noisy", since the interference has

not been removed yet and K=L is large. Then, the averaged symbols exk;n output by the

SISO decoders are all close to zero. Assuming orthogonal training sequences (the best

case), the mixing method yields R+R(t) � (N + T )I, r � 0 and r(t) = Tw+ noise. The

resulting estimator is bbwmix � T

N + T
w + noise

which is clearly biased. In particular, if T=N � 1, the bias might prevent the whole

receiver to bootstrap. 6

On the contrary, the combining method (assuming �k known) provides an unbiased

estimate at each iteration. At the �rst iterations, when �k � 1=2, then ak � 0, bk � 1 andbbw(m)

comb � bw(t), i.e., only the result of training-based estimation is used. As the soft-SIC

cleans-up the signal from interference and �k becomes small (converging to the single-user

performance), then jexk;nj � 1, �k � �2
k
� 1 and ak � N

N+T
, bk � T

N+T
. These limiting

values are precisely the maximal-ratio combining coeÆcient [41] for estimatingw from the

6Interestingly, in [29] training symbols are used in an iterative joint decoder and channel estimation

scheme according to the mixing method. The analysis in [29] is uniquely based on propagating the

variances of residual interference and of channel estimation errors from one iteration to the next, and

does not take into account the bias. Unfortunately, the interference cancellation algorithm of [29] is based

on APPs and hence it is plagued by biased residual interference [25], and the mixing method yields biased

channel estimates (as outlined here). Therefore, the results of [29] are questionable.
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unbiased noisy observations w+ �
(t) and w + �, with �(t) and � independent, Gaussian,

with covariances N0

T
I and N0

N
I, respectively. Comparisons between the mixing and the

combining methods are provided in Section 4.

3.5 Algorithm summary

Fig. 2 shows the block diagram of the proposed receiver. The users are ranked in decreas-

ing order of their estimated signal-to-interference ratio, given by

jbw(t)
k
j2P

j 6=k jsHk sjj2j bw(t)
j
j2

Without loss of generality, we assume that the decoding order is k = 1; 2; : : : ; K. The

algorithm is initialized by letting bw(0) = bw(t), bx(�1)
k;n

= 0 for all k and n and m = 0. Then

we have:

� User loop: For k = 1; : : : ; K, do

� Symbol loop: For n = 1; : : : ; N , do

� Compute the soft-SIC signal samples according to (2) and the estimated residual

interference plus noise variance b�(m)
k

according to (6).

� Compute the k-th SISO decoder EXT and APP outputs and compute the soft

interference estimate bx(m)
k;n

according to (8) and the average symbols exk;n according

to (20).

� End symbol loop.

� End user loop.

� Parameter estimation update: If the mixing method is used, compute the updated

amplitude estimate according to (23). If the combining method is used, compute

the EM amplitude estimate according to (18) and the updated estimate according

to (27).

� If m = M , make symbol-by-symbol decisions on the information bits APP outputs

of the SISO decoders, otherwise let m := m+ 1 and go back to the user loop.
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4 Results

In order to demonstrate the performance of the proposed soft-SIC receiver, we considered

the following simulation setting, loosely inspired by the UMTS-TDD system [3]:

� Spreading factor L = 16, QPSK chips with \short" random spreading sequences. A

new set ofK sequences is generated randomly and independently with i.i.d. elements

at each frame. Obviously, the BER is averaged over several frames so that the e�ect

of the random sequences is smoothed.

� The user code is the same for all users. For the sake of simplicity, we chose the 4-

state rate-1/2 convolutional code (CC) with generators (5; 7)8 (octal notation [41]).

� Code block length N = 2000 coded symbols, corresponding to 1000 information bits

per frame.

� K = 32 and 40 users, corresponding to channel loads of 2:0 and 2.5 users per chip,

respectively.

� Training sequence lengths T = 4 and 32 symbols.

� Users have the same received power. The channel complex amplitudes are given by

wk =
p
REbe

j�k where R is the user coding rate (R = 1=2 in our case), Eb is the

energy per information bit and �k is a uniformly distributed random variable over

[��; �], independently generated for each user.

� We considered a �xed maximum number of SIC iterations M = 10, in all cases.

In these examples we considered only the equal-rate equal-power users for the sake of

space limitation and since this is a worst-case for iterative soft-SIC decoders (see the

discussion in [14, 15]). In [25], by using the technique of density evolution, which is now

a standard tool for the analysis of iterative \message passing" algorithms (see [45] and

references therein), it is shown that the soft interference cancellation algorithm considered

here at target BER = 10�5, with perfect channel parameter knowledge, CC (5; 7)8 user

codes and equal power users attains channel load of 3 users/chip. The required Eb=N0

is 6 dB. Fig. 3 shows the BER curves for K = 40 users and perfect channel knowledge

(all BER curves show the worst user performance, which in the equal power case is

usually, but not necessarily, obtained by the user decoded �rst). The load in this case is

40=16 = 2:5, below the limit of 3 predicted by the analysis of [25]. For Eb=N0 � 5 dB

and 10 iterations the single-user BER performance is achieved for all users. Obviously,



18

for smaller K the convergence to the single-user BER occurs with less iterations and at

lower Eb=N0 threshold.

Fig. 4, 5 and 6 show the BER of the system with K = 32 users and T = 32 training

symbols per frame, with training estimation only, and EM+training estimation with mix-

ing and combining methods, respectively. Training-only estimation prevents the receiver

to achieve the single-user BER, since interference cannot be canceled completely because

of the estimation errors which do not vanish with iterations. The combining method

shows faster convergence than the mixing method. This con�rms the qualitative bias

analysis made in the remark of Section 3.3. However, for such \light" load 7 the di�erence

between the two methods is not very signi�cant.

Fig. 7, 8 and 9 show the BER of the system with K = 32 users and T = 4 training

symbols per frame, with training-estimation only, and EM+training estimation with mix-

ing and combining methods, respectively. With only 4 training symbols, the degradation

of system with training-only estimation is very evident (notice that for T = 4 and K = 32

it is obviously not possible to make the training sequences mutually orthogonal, and this

contributes to poor channel estimation). Also, the better convergence properties of the

combining method versus the mixing method are more evident: the combining method

attains the single-user BER at Eb=N0 = 4 dB, while the mixing method attains it at

Eb=N0 = 6 dB.

In order to put in evidence that the bias in the mixing method might prevent the

receiver to converge to the single-user BER while the combining method still works, we

consider the case K = 40 and T = 32 (again, orthogonal training sequences are not

possible here). Fig. 10 and 11 show the BER of this system. The mixing method does

not converge for the range of Eb=N0 considered in our simulations, since the estimated

amplitudes after the �rst iteration are biased by a factor � 32=(2032) = 0:0157, which

prevents cancellation, and the received does not bootstrap. On the contrary, the combin-

ing method is still able to converge for Eb=N0 � 7 dB. By comparing Fig. 3 with Fig. 11

we can quantify the degradation due to unknown channel amplitudes: with M = 10 iter-

ations this is about 1.6 dB at BER = 10�4, 0.8 dB at BER = 10�5 and 0.0 dB at BER

� 4 � 10�7, since in this BER range both systems achieve the single-user performance.

7It is worthwhile to point out here that K = 32 users with spreading factor L = 16 is a load already

far beyond any conventional practical CDMA system [2, 3]. We call this load \light" since it is far from

the threshold load predicted by the analysis of [25].
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5 Conclusions

We proposed a low-complexity iterative soft-SIC algorithm for joint data detection and

channel parameter estimation, based on SISO single-user decoders and soft interference

cancellation. The channel parameters estimates are updated along with the receiver

iterations. The updating operation has the form of a likelihood function expectation

of followed by maximization, i.e., it is formally equivalent to the basic EM step.

Even though similar algorithms can be found (with minor variations) in several other

works (see the discussion in Section 1), here we investigated in the details several new im-

portant aspects, namely: a simple and eÆcient way to estimate the residual interference

plus noise variance at the SISO inputs; the issue of soft interference estimation based on

EXT pmfs versus the conventional approach of using APPs; the correct formulation of

EM estimation with channel coding, and the key approximation to bring complexity from

exponential down to polynomial in the number of users; the use of training-based estima-

tion together with EM updating. In particular, we provided a new method for combining

the unbiased channel estimates provided by ML training-based estimation with the biased

estimates provided by EM. The new method (referred to as \combining") provides much

better convergence of the overall receiver than the more conventional method consisting of

treating training symbols and unknown code symbols together (referred to as \mixing").

The full investigation of the optimal trade-o� between training symbols fraction T=N

and channel load K=L is out of the scope of this paper. However, from the simulation

results shown here we can get some conclusions on the overall bene�t of the proposed

approach. With our receiver, we can �t � = 40=16 = 2:5 users/chip with coding rate

R = 1=2 bit/symbol at BER = 10�5, with actual channel estimation (T = 32 training

symbols out of N = 2000 coded symbol per frame) and non-recursive 4-state convolutional

codes. The required Eb=N0 is about 6.7 dB, i.e., user SNR � 3:7 dB, with 10 iterations

(10 SISO decoding per user per frame). In UMTS [3, 2], conventional SUMF receivers are

envisaged, but very complex and powerful user channel codes are considered (either turbo-

codes or 256-state convolutional codes). Consider for example a conventional system with

turbo-codes of rate R = 1=2, optimized interleavers of size 1024 [26] (corresponding to

coded block length N = 2048, similar to our case), recursive systematic 4-state CCs with

generators (1; 5=7)8 and 8 full iterations, corresponding to 16 SISO decoding per user per

frame. 8

8We allow more complexity in SISO decoding for the conventional system (16 SISO decoding steps

instead of 10) since our system requires also interference cancellation, which involves some additional

complexity
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In the conventional system we assume perfect channel estimation, since channel esti-

mation is much less critical than in the soft-SIC system. The turbo-code achieves BER

= 10�5 at SINR = �1 dB. The SINR at the output of the SUMF for equal-power users

and random spreading sequences, in the limit for K;L!1 with K=L = � [48], is given

by SINR = SNR
1+�SNR

. Then, the limit load of the conventional turbo-encoded system is

� = 1

SINR
� 1

SNR
. By letting SINR = �1 dB (as required by the target BER perfor-

mance) and SNR = 3:7 dB (as in the soft-SIC system), we obtain � = 0:83. Even by

letting SNR ! 1, the maximum possible channel load is not larger than � = 1:26. We

conclude that the proposed receiver with actual channel estimation is able to (at least)

double the cell capacity at roughly the same complexity of the conventional turbo-encoded

system.



21

References

[1] S. Verdu, Multiuser detection, Cambridge University Press, Cambridge, UK, 1998.

[2] 3GPP, \TS 25.224 V3.1.0,\3GPP-TSG-RAN-WG1; Physical Layer Procedures

(FDD)"," ETSI, December 1999.

[3] 3GPP, \TS 25.224 V3.1.0,\3GPP-TSG-RAN-WG1; Physical Layer Procedures

(TDD)"," ETSI, December 1999.

[4] A. J. Viterbi, CDMA { Principles of spread spectrum communications, Addison-

Wesley, Reading, MA, 1995.

[5] P. Patel and J. Holtzman, \Analysis of a simple successive interference cancellation

scheme in a DS/CDMA system," IEEE J. Select. Areas Commun., vol. 12, no. 5,

pp. 796{807, June 1994.

[6] T. C. Yoon, R. Kohno, and H. Imai, \A spread-spectrum multiaccess system with

cochannel interference cancellation for multipath fading channels," IEEE J. Select.

Areas Commun., vol. 11, no. 7, pp. 1067{1075, September 1993.

[7] M. Varanasi, \Decision feedback multiuser detection: a systematic approach," IEEE

Trans. on Inform. Theory, vol. 45, no. 1, pp. 219{240, January 1999.

[8] A. Lampe and J. Huber, \On improved multiuser detection with soft decision interfer-

ence cancellation," in Proc. ICC 1999, Comm. Theory Mini-Conference, Vancouver,

June 1999, pp. 172{176.

[9] A. Hui and K. Ben Letaief, \Successive interference cancellation for multiuser asyn-

chronous DS/CDMA detectors in multipath fading links," IEEE Trans. on Commun.,

vol. 46, no. 3, pp. 384{391, March 1998.

[10] D. Divsalar, M. Simon, and D. Raphaeli, \Improved parallel interference cancellation

for CDMA," IEEE Trans. on Commun., vol. 46, no. 2, pp. 258{268, February 1998.

[11] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, \Soft-Input Soft-Output

building blocks for the construction of distributed iterative decoding of code net-

works," European Trans. on Commun., April 1998.

[12] P. Alexander, A. Grant, and M. Reed, \Iterative detection in code-division multiple-

access with error control coding," European Trans. on Telecomm., vol. 9, no. 5, pp.

419{425, September 1998.



22

[13] L. Brunel and J. Boutros, \Code division multiple access based on independent codes

and turbo decoding," Annales des T�el�ecommunications, vol. 54, no. 7-8, pp. 401{410,

July 1999.

[14] N. Chayat and S. Shamai, \Iterative soft onion peeling for multi-acess and broadcast

channels," in Proc. PIMRC'98, Boston, September 1998.

[15] N. Chayat and S. Shamai, \Convergence properties of iterative soft onion peeling,"

in Proc. ITW 1999, Kruger national park, South Africa, June 1999, p. 9.

[16] M. Damen, Joint coding/decoding in a multiple access system: applications to mobile

communications, Ph.D. thesis, Ph.D Thesis, ENST Paris, 1999.

[17] N. Ibrahim, Codage et decodage de canal pour un syst�eme de communication �a acc�es

multiple, Ph.D. thesis, Ph.D Thesis, ENST Paris, 1999.

[18] A. Lampe, \Analytic solution to the performance of iterated soft decision interference

cancellation for coded CDMA transmission over frequency selective channel," in

IEEE 6-th Int. Symp. on Spread-Spectrum Tech. and Appl., ISSSTA 2000, NJIT,

N.J., USA, September 2000.

[19] G. Woodward M. Honig and P. Alexander, \Adaptive multiuser parallel decision-

feedback with iterative decoding," in Proc. ISIT 2000, Sorrento, Italy, June 2000, p.

335.

[20] M. Reed, C. Schlegel, P. Alexander, and J. Asenstorfer, \Iterative multiuser detection

for CDMA with FEC: near single-user performance," IEEE Trans. on Commun., vol.

46, no. 12, pp. 1693{1699, December 1998.

[21] C. Schlegel, \Joint detection in multiuser systems via iterative processing," in Proc.

ISIT 2000, Sorrento, Italy, June 2000, p. 274.

[22] F. Tarkoy, \Iterative multiuser decoding for asynchronous users," in Proc. ISIT '97,

Ulm, Germany, July 1997, p. 30.

[23] X. Wang and V. Poor, \Iterative (Turbo) soft interference cancellation and decoding

for coded CDMA," IEEE Trans. on Commun., vol. 47, no. 7, pp. 1047{1061, July

1999.

[24] F. Kschischang, B. Frey, and H.-A. Loeliger, \Factor graphs and the sum-product

algorithm," IEEE Trans. on Inform. Theory, vol. 47, no. 2, pp. 498{519, February

2001.



23

[25] J. Boutros and G. Caire, \Iterative multiuser decoding: uni�ed framework and

asymptotic performance analysis," submitted to IEEE Trans. on Inform. Theory,

also available at www.eurecom.fr/ caire, August 2000.

[26] C. Berrou and A. Glavieux, \Near optimum error-correcting coding and decoding:

Turbo codes," IEEE Trans. on Commun., vol. 44, no. 10, October 1996.

[27] S. Marinkovic, B. Vucetic, and J. Evans, \Improved iterative parallel interference

cancellation," in Intern. Symp. on Inform. Theory, ISIT 2001, Washington DC, June

2001.

[28] H. El Gamal and E. Geraniotis, \Iterative multiuser detection for coded CDMA

signals in AWGN and fading channels," IEEE J. Select. Areas Commun., vol. 18,

no. 1, pp. 30{41, January 2000.

[29] P. Alexander and A. Grant, \Iterative channel and information sequence estimation

in CDMA," in IEEE 6-th Int. Symp. on Spread-Spectrum Tech. and Appl., ISSSTA

2000, NJIT, N.J., USA, September 2000.

[30] A. Dempster, N. Laird, and D. Rubin, \Maximum-likelihood from incomplete data

via the EM algorithm," J. Royal Statistics Soc., Ser. B, vol. 39, no. 1, pp. 1{38,

January 1977.

[31] T. Moon, \The expectation-maximization algorithm," IEEE Signal Processing Mag-

azine, vol. 13, pp. 47{60, November 1996.

[32] M. Guernach and L. Vanderdorpe, \Performance analysis of joint EM/SAGE rsti-

mation and multistage detection in UTRA-WCDMA uplink," in Intern. Conf. on

Commun. ICC '2000, New Orleans, June 2000, pp. 638{640.

[33] U. Fawer and B. Aazhang, \A multiuser receiver for code division multiple access

communications over multipath channels," IEEE Trans. on Commun., vol. 43, no.

2/3/4, pp. 1556{1565, Feb./Mar./Apr. 1995.

[34] C. Cozzo and B. Hughes, \The Expectation-Maximization algorithm for space-time

communications," in Proc. ISIT 2000, Sorrento, Italy, June 2000, p. 338.

[35] Y. Li, C. Georghiades, and G. Huang, \EM-based sequence estimation for space-time

codes systems," in Proc. ISIT 2000, Sorrento, Italy, June 2000, p. 315.



24

[36] J. Boutros, F. Boixadera, and C. Lamy, \Bit-interleaved coded modulation for

multiple-input multiple-output channels," in IEEE 6-th Int. Symp. on Spread-

Spectrum Tech. and Appl., ISSSTA 2000, NJIT, N.J., USA, September 2000.

[37] A. Logothetis and C. Carlemalm, \SAGE algorithms for multipath detection and

parameters estimation in asynchronous CDMA systems," IEEE Trans. on Signal

Processing, vol. 48, no. 11.

[38] \Space-alternating generalized expectation-maximization algortihm," IEEE Trans.

on Sig. Proc., vol. 42, no. 9, pp. 2664{2677, October 1994.

[39] C. Georghiades and J. Choong Han, \Sequence estimation in the presence of random

parameters via th EM algorithm," IEEE Trans. on Commun., vol. 45, no. 3.

[40] L. Nelson and V. Poor, \Iterative multiuser receivers for CDMA channels: an EM-

based approach," IEEE Trans. on Commun., vol. 44, no. 12, pp. 1700{1710, Decem-

ber 1996.

[41] J. Proakis, Digital communications, 3rd Ed., McGraw-Hill, New York, 1995.

[42] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, \Optimal decoding of linear codes for

minimizing symbol error rate," IEEE Trans. on Inform. Theory, vol. 20, no. 3, pp.

284{287, March 1974.

[43] S. Verdu and S. Shamai, \Spectral eÆciency of CDMA with random spreading,"

IEEE Trans. on Inform. Theory, vol. 45, no. 2, pp. 622{640, March 1999.

[44] V. Poor, An introduction to signal detection and estimation, Springer-Verlag, New

York, 1988.

[45] \Special issue on iterative decoding," IEEE Trans. on Inform. Theory, vol. 47, no.

2, February 2001.

[46] G. Caire and U. Mitra, \Structured multiuser channel estimation for block-

synchronous ds-cdma," IEEE Trans. on Commun., vol. (to appear), 2001.

[47] E. de Carvalho and D. Slock, \Semi-Blind Methods for FIR Multichannel Estima-

tion", in: Signal Processing Advances in Communications, Volume 1: Trends in

Channel Estimation and Equalization, G. Giannakis and P. Stoica and Y. Hua and

L. Tong, editors, Prentice Hall, 2000.



25

[48] D. Tse and S. Hanly, \Linear multiuser receivers: E�ective interference, e�ective

bandwidth and capacity," IEEE Trans. on Inform. Theory, vol. 45, no. 2, pp. 641{

675, March 1999.



26

C1

C2

CK

Info frame
user K

X

ΝΝΝΝ

Y

Π1

Π2

ΠK

Info frame
user 2

Info frame
user 1 x1

x 2

xK

s1 w1

s2 w2

sK wK

Figure 1: Coded synchronous DS/CDMA system (�k denotes interleaving, di�erent for

each user).



27

SISO

IC

SISO

IC

SISO

IC

Training
estimation

Y

Y(t)

APP

EXT

EXT

EXT

EM
update

SISO

IC

SISO

IC

SISO

IC

APP

EXT

EXT

EXT

EM
update

Figure 2: Block diagram of the proposed soft-SIC receiver with iterative EM channel

estimation (only two iteration stages are shown for simplicity). APP and EXT denote

soft code symbol estimates obtained from APP and EXT SISO outputs. The \IC" blocks

denote interference cancellation and matched �ltering.



28

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-2 0 2 4 6 8

B
E

R

Eb/N0 (dB)

Perfect knowledge, K=40, L=16, CC(5,7)

Single-user
Iter.#1
Iter.#2
Iter.#3
Iter.#4
Iter.#5
Iter.#6
Iter.#7
Iter.#8
Iter.#9
Iter.#10

Figure 3: K = 40; L = 16, N = 2000, CC (5; 7)8, perfect channel knowledge.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-2 0 2 4 6 8

B
E

R

Eb/N0 (dB)

T=32 (Training only), K=32, L=16, CC(5,7)

Single-user
Iter.#1
Iter.#2
Iter.#3
Iter.#4
Iter.#5
Iter.#6
Iter.#7
Iter.#8
Iter.#9
Iter.#10

Figure 4: K = 32; L = 16, N = 2000, CC (5; 7)8, training-only estimation with T = 32.



29

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-2 0 2 4 6 8

B
E

R

Eb/N0 (dB)

T=32 (mixing), K=32, L=16, CC(5,7)

Single-user
Iter.#1
Iter.#2
Iter.#3
Iter.#4
Iter.#5
Iter.#6
Iter.#7
Iter.#8
Iter.#9
Iter.#10

Figure 5: K = 32; L = 16, N = 2000, CC (5; 7)8, EM+training estimation with T = 32

and the mixing method.



30

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-2 0 2 4 6 8

B
E

R

Eb/N0 (dB)

T=32 (combining), K=32, L=16, CC(5,7)

Single-user
Iter.#1
Iter.#2
Iter.#3
Iter.#4
Iter.#5
Iter.#6
Iter.#7
Iter.#8
Iter.#9
Iter.#10
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