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Abstract—This article studies a novel distributed precoding
design, coined team minimum mean-square error (TMMSE) pre-
coding, which rigorously generalizes classical centralized MMSE
precoding to distributed operations based on transmitter-specific
channel state information (CSIT). Building on the so-called
theory of teams, we derive a set of necessary and sufficient
conditions for optimal TMMSE precoding, in the form of an
infinite dimensional linear system of equations. These optimality
conditions are further specialized to cell-free massive MIMO
networks, and explicitly solved for two important examples, i.e.,
the classical case of local CSIT and the case of unidirectional
CSIT sharing along a serial fronthaul. The latter case is relevant,
e.g., for the recently proposed radio stripe concept and the related
advances on sequential processing exploiting serial connections.
In both cases, our optimal design outperforms the heuristic
methods that are known from the previous literature. Duality
arguments and numerical simulations validate the effectiveness
of the proposed team theoretical approach in terms of ergodic
achievable rates under a sum-power constraint.

I. INTRODUCTION

INTER-CELL interference is a major limiting factor of
wireless communication systems capitalizing on aggres-

sive spectrum reuse and network densification to increase
capacity. To mitigate this effect, future generation systems are
expected to implement advanced cooperative communication
techniques, in particular by letting geographically distributed
base stations jointly serve their users. However, the practical
deployment of cooperative wireless networks is currently
prevented by the severe scalability issue arising from network-
wide processing [2]. Specifically, the excessive amount of
data and channel state information (CSI) to be timely shared
for implementing fully cooperative regimes such as in the
original network MIMO or cloud radio access network (C-
RAN) concepts [3]–[5] often becomes the main bottleneck
when practical fronthaul capacity constraints are introduced.
Studying more realistic cooperation regimes entailing limited
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data and CSI sharing is hence of fundamental importance for
making network cooperation an attractive technology for next
generation systems [2], [6].

A. Cooperative transmission with distributed CSIT

In this work we explore a downlink (DL) cooperation
regime with full data sharing and general distributed CSI at
the TXs (CSIT) [7]–[9], that is, we let each TX operate on the
basis of possibly different estimates of the global channel state
obtained through some arbitrary CSIT acquisition and sharing
mechanism. This assumption is relevant, e.g., for all service
situations where, compared to data sharing, CSIT sharing
needs to be performed within much tighter time constraints,
and hence may dominate the fronthaul overhead. For instance,
it is suitable in case of rapidly varying channels due to user
mobility, where full CSIT sharing may result in outdated
information or occupy an excessive portion of the coherence
time, or when delay-tolerant data is proactively made available
at the TXs using caching techniques (see [9] and reference
therein for a detailed discussion). As an extreme example, a
cooperation regime with full data sharing and no CSIT sharing
(a configuration here referred to as local CSIT) is perhaps
the leading motivation behind the early development of the
now popular cell-free massive MIMO paradigm [10]. This
paradigm combines the benefits of ultra-dense networks with
simple yet effective TX cooperation schemes, and emerged
as a promising evolution of the network MIMO and C-
RAN concepts. The distributed CSIT assumption also covers
extensions of [10] to more complex setups ranging from
partial to full CSIT sharing (see, e.g., [11] [12]). Clearly,
these cooperation regimes are still far from being scalable,
since they all assume network-wide data sharing. Splitting the
network into clusters of cooperating TXs [12]–[14], possibly
dynamically and with a user-centric approach [15]–[18], and
applying similar transmission techniques assuming full data
sharing within each cluster, emerged as a viable solution for
implementing scalable cooperation regimes in practical sys-
tems. However, due to space limitations and to better focus on
limited CSIT sharing, in this work, we do not consider network
clusterization. In particular, we do not cover complementary
service situations where CSIT can be more easily shared than
data, hence entering the realm of interference coordination or
alignment [2], [19]. Nevertheless, if combined with network
clustering techniques, the results presented in this study can
be seen as a first step towards a more general theory jointly
covering limited data and CSIT sharing.
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B. Summary of contributions and related works

Although the importance of cooperative transmission
schemes based on limited CSIT sharing has been acknowl-
edged in the literature, a satisfactory understanding of systems
with distributed CSIT is still missing. Most of the available
information theoretical results rely on asymptotic signal-to-
noise ratio (SNR) tools [7], [9], or focus on simple settings
with a single receiver (RX) [20]. However, [7], [9], [20] do
not lead to practical schemes for complex settings such as cell-
free massive MIMO networks. On the other hand, the available
practical schemes are essentially based on heuristic adaptations
of known centralized precoding designs such as maximum-
ratio transmission (MRT), zero-forcing (ZF), or minimum
mean-square error (MMSE) precoding [10], [11], [18]. Hence,
there is a need to develop a mathematical framework that al-
lows the sound derivation of schemes that cater for distributed
CSIT setups.

This work provides considerable progress in this direction.
By using simplified yet practical point-to-point information
theoretical tools, namely by using standard linearly precoded
Gaussian codes, treating interference as noise, and the non-
coherent ergodic rate bounds popularized by the massive
MIMO literature [21], [22], we propose a novel distributed
precoding design, coined team MMSE (TMMSE) precoding,
generalizing classical centralized MMSE precoding [22] to
systems with distributed CSIT. Its optimality in terms of
achievable ergodic rates under a sum-power constraint is
formally established by revisiting the uplink-downlink (UL-
DL) duality principle [22] in light of the distributed CSIT
assumption. Our first main result1 is showing that the problem
of optimal TMMSE precoding design can be solved by means
of a useful set of optimality conditions in the form of an
infinite dimensional linear system of equations, for which
many standard solution tools exist. The key novelty lies in
the introduction of previously unexplored elements from the
theory of teams, a mathematical framework for multi-agent
coordinated decision making in presence of asymmetry of
information. This framework was pioneered in theoretical
economics by Marschak and Radner [23], [24], and then
further developed in the control theoretical literature (see the
excellent survey in [25]). Early applications of team theory to
wireless communication, including the problem of distributed
precoding design, are reported in [2], [8]. However, compared
to previous attempts for distributed precoding design, this work
is the first exploiting (and partially extending) known results
for the class of quadratic teams [24], [25], which is one of
the few cases where solid globally optimal solution approaches
are available.

In the second part of this work, the aforementioned opti-
mality conditions are specialized to cell-free massive MIMO
networks. To the best of the authors’ knowledge, this is the
first work connecting cell-free massive MIMO to the theory of
teams. The first non-trivial application is the derivation of the

1The preliminary version of this work [1] focuses on a simplified cell-
free massive MIMO setup. This work extends [1] to more general networks,
Gaussian fading, and channel estimation errors; provides complete theoretical
derivations; improves the comparison with the previous literature.

optimal TMMSE precoders based on local CSIT only, improv-
ing upon previous local precoding strategies studied, e.g., in
[10], [18], [26]. We then consider a cell-free massive MIMO
network with serial fronthaul, an efficient architecture also
known as a radio stripe [17], [27]. We derive optimal TMMSE
precoders by assuming that CSIT is shared unidirectionally
along the stripe. The proposed scheme can be efficiently
implemented in a sequential fashion, an idea that has been
explored already in [17], [27], [28] for UL processing, and
in [29] under a different cellular context. As a byproduct,
we also obtain a novel distributed implementation of classical
centralized MMSE precoding tailored to radio stripes. Finally,
we present extensive numerical results comparing the effects
of different CSIT sharing patterns in a radio stripe system
and evaluating the suboptimality of the competing schemes.
Interestingly, our numerical results suggest that unidirectional
information sharing is a promising candidate for enlarging the
domain of applications of radio stripes beyond the regimes
supported by centralized or local precoding; for instance, it
may allow effective interference management for a wider
range of mobility patterns. Moreover, we show that the known
local MMSE precoding scheme studied, e.g., in [18], [28], is
optimal in a non line-of-sight (NLoS) scenario, while it may be
significantly outperformed by the TMMSE solution for local
CSIT in the presence of line-of-sight (LoS) components.

C. Outline and notation

The present study is structured as follows: Section II
presents the system model and other necessary preliminaries.
The main results on team MMSE precoding and their special-
ization to cell-free massive MIMO networks are given respec-
tively in Section III and Section IV. The numerical results are
given in Section V (Reproducible Research: simulation code
available at https://github.com/emilbjornson/team-MMSE).

Hereafter, we use the following notation. We reserve italic
letters (e.g., 𝑎) for scalars and functions, boldface letters
(e.g., a, A) for vectors and matrices, and calligraphic letters
(e.g., A) for sets. Random quantities are distinguished from
their realizations as follows: a, A denote random vectors and
matrices; 𝐴 denotes a random scalar, or a generic random
variable taking values in some unspecified set A. We use
:= for definitions, and ⪯, ⪰ (≺, ≻) for (strict) generalized
inequalities w.r.t. the cone of nonnegative Hermitian matrices.
The operators (·)T, (·)H denote respectively the transpose and
Hermitian transpose of matrices and vectors, and ℜ(·) is
the real part. We denote the Euclidean norm by ∥ · ∥, the
Frobenius norm by ∥ · ∥F, and the trace operator by tr(·).
The (conditional) expectation of A (given B) is denoted by
E[A] (E[A|B]), and Var[𝐴] is the variance of 𝐴. Given
𝑛 > 2 random matrices A1, . . . ,A𝑛 with joint distribution
𝑝(A1, . . . ,A𝑛), we say that A1 → A2 → . . . → A𝑛 forms a
Markov chain if 𝑝(A𝑖 |A𝑖−1, . . . ,A1) = 𝑝(A𝑖 |A𝑖−1) ∀𝑖 ≥ 2. We
use diag(A1, . . . ,A𝑛) to denote a block-diagonal matrix with
the matrices A1, . . . ,A𝑛 on its diagonal, and vec(A) to denote
a vector obtained by stacking column-wise the elements of
A. We denote by e𝑛 the 𝑛-th column of the identity matrix
I, with dimension extrapolated from the context. We use
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∏𝑙
𝑖=𝑙′ A𝑖 := A𝑙A𝑙−1 . . .A𝑙′ for integers 𝑙 ≥ 𝑙′ ≥ 1 to denote the

left product chain of 𝑙 − 𝑙′ + 1 ordered matrices of compatible
dimension, and we adopt the convention

∏𝑙
𝑖=𝑙′ A𝑖 = I for

𝑙 < 𝑙′. Finally, ℎ(𝐴) (ℎ(𝐴|𝐵)) denotes the (conditional)
entropy, 𝐼 (𝐴; 𝐵) is the mutual information, and all logarithms
are expressed in base 2 unless differently specified.

II. SYSTEM MODEL AND PRELIMINARIES

A. Channel model

Consider a network of 𝐿 TXs indexed by L := {1, . . . , 𝐿},
each of them equipped with 𝑁 antennas, and 𝐾 single-antenna
RXs indexed by K := {1, . . . , 𝐾}. Let an arbitrary channel use
be governed by the MIMO channel law

y =

𝐿∑︁
𝑙=1
H𝑙x𝑙 + n

where the 𝑘-th element 𝑌𝑘 of y ∈ C𝐾 is the received signal at
RX 𝑘 , H𝑙 ∈ C𝐾×𝑁 is a sample of a stationary ergodic random
process modelling the fading between TX 𝑙 and all RXs,
x𝑙 ∈ C𝑁 is the transmitted signal at TX 𝑙, and n ∼ CN(0, I)
is a sample of a white noise process. This channel model is
relevant, e.g, for narrowband or wideband OFDM systems [30]
where transmission spans several realizations of the fading
process. For most parts of this work, we do not specify the
distribution of H :=

[
H1, . . . ,H𝐿

]
. However, we reasonably

assume the channel submatrices corresponding to different
TX-RX pairs to be mutually independent, and finite fading
power E[∥H∥2

F] < ∞. Furthermore, we focus on 𝑁 < 𝐾 , that
is, on the regime where cooperation is crucial for interference
management [2].

B. Distributed linear precoding

Consider a distributed CSIT configuration [8], i.e., where
each TX has some potentially different side information 𝑆𝑙
about the global channel matrix H. For instance, this could
model frequency division duplex (FDD) systems where each
𝑆𝑙 is composed by different feedback signals from the RXs,
or time-division duplex (TDD) systems where over-the-uplink
local estimates Ĥ𝑙 of the local channel H𝑙 are not perfectly
shared across the network. Importantly, this is more general
than the typical assumption in the cell-free massive MIMO
literature covering distributed operations, which limits 𝑆𝑙 to Ĥ𝑙
only [10], [18]. We assume (H, 𝑆1, . . . , 𝑆𝐿) to be a sample of
an ergodic stationary process with first order joint distribution
fixed by nature/design, and known by all TXs.

We then let each TX 𝑙 form its transmit signal according to
the following distributed linear precoding scheme:

x𝑙 =

𝐾∑︁
𝑘=1
t𝑙,𝑘𝑈𝑘 , t𝑙,𝑘 = t𝑙,𝑘 (𝑆𝑙), (1)

where 𝑈𝑘 ∼ CN(0, 𝑝𝑘) is the independently encoded message
for RX 𝑘 , shared by all TXs, and where t𝑙,𝑘 ∈ C𝑁 is a linear
precoder applied at TX 𝑙 to message 𝑈𝑘 based only on the
side information 𝑆𝑙 . More formally, by letting (Ω, Σ,P) be the
underlying probability space over which all random quantities
are defined, we constrain t𝑙,𝑘 within the vector space T𝑙 of

square-integrable Σ𝑙-measurable functions Ω → C𝑁 , where
Σ𝑙 ⊆ Σ denotes the sub-𝜎-algebra generated by 𝑆𝑙 on Ω, called
the information subfield of TX 𝑙 [24], [25]. This assumption2

rigorously describes the functional dependency of t𝑙,𝑘 on the
portion 𝑆𝑙 of the overall system randomness, and includes a
reasonable finiteness constraint E[∥t𝑙,𝑘 ∥2] < ∞ on precoders
power. We finally denote the full precoding vector for message

𝑈𝑘 by tT
𝑘

:=
[
tT

1,𝑘 . . . tT
𝐿,𝑘

]T
, and let t𝑘 ∈ T :=

∏𝐿
𝑙=1 T𝑙 .

C. Performance metric

We measure the network performance under the speci-
fied transmission scheme by using Shannon (ergodic) rates
𝑅DL
𝑘

:= 𝐼 (𝑈𝑘 ;𝑌𝑘), which are achievable without channel
state information at the RX (CSIR) by treating interference
as noise (TIN) and by neglecting any memory across the
realizations (H, 𝑆1, . . . , 𝑆𝐿) of the state and CSIT process
[31], [32]. Because of the difficulties in evaluating the mutual
information, we consider the following lower bound, known
as the hardening bound [21], [22],

𝑅hard
𝑘 := log

(
1 +

𝑝𝑘 |E[gH
𝑘
t𝑘] |2

𝑝𝑘Var[gH
𝑘
t𝑘] +

∑
𝑗≠𝑘 𝑝 𝑗E[|gH

𝑘
t 𝑗 |2] + 1

)
≤ 𝐼 (𝑈𝑘 ;𝑌𝑘),

(2)

where
[
g1 . . . g𝐾

]
:= HH. An alternative classical perfor-

mance metric would be given by the following upper bound

𝐼 (𝑈𝑘 ;𝑌𝑘) ≤ E

[
log

(
1 +

𝑝𝑘 |gH
𝑘
t𝑘 |2∑

𝑗≠𝑘 𝑝 𝑗 |gH
𝑘
t 𝑗 |2 + 1

)]
=: 𝑅ub

𝑘 , (3)

which is in fact achievable with perfect local CSIR {gH
𝑘
t 𝑗 }𝐾𝑗=1

by TIN and by taking into account channel memory [31],
[32]. We consider 𝑅hard

𝑘
instead of 𝑅ub

𝑘
because of the less

stringent CSIR requirements and, perhaps most importantly,
for treatability reasons. Due to its name and historical use,
it is sometimes believed that the ability of 𝑅hard

𝑘
to produce

good approximations of 𝑅DL
𝑘

relies on the channel hardening
effect arising in massive MIMO systems [22]. Although this
is correct for some precoding design such as MRT [32], we
remark that (2) may perform well also in absence of channel
hardening. For instance, 𝑅hard

𝑘
and 𝑅

up
𝑘

coincide under a ZF
scheme with perfect CSIT putting gH

𝑘
t 𝑗 = 0 for 𝑗 ≠ 𝑘 and

gH
𝑘
t𝑘 = 1, for any long-term power allocation policy {𝑝𝑘}𝐾𝑘=1

and feasible antenna regime.
We then let Rhard be the union of all rate tuples

(𝑅1, . . . , 𝑅𝐾 ) ∈ R𝐾+ such that 𝑅𝑘 ≤ 𝑅hard
𝑘

∀𝑘 ∈ K for some set
of distributed precoders {t𝑘}𝐾𝑘=1 and power allocation policy
{𝑝𝑘}𝐾𝑘=1 satisfying

∑𝐿
𝑙=1 E[∥x𝑙 ∥2] ≤ 𝑃sum < ∞. The set Rhard

is an inner bound for the capacity region of the considered
network with distributed CSIT and subject to a long-term sum
power constraint 𝑃sum. Due to its importance in system design
and resource allocation, we consider the notion of (weak)
Pareto optimality on Rhard and we mostly focus on the (weak)

2The measure theoretical formulation presented above is necessary for
establishing Theorem 3. However, the rest of this study does not require any
particular measure theoretical background.
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Pareto boundary of Rhard, denoted by 𝜕Rhard [15]. Note that,
by the Cauchy–Schwarz inequality and the mild assumptions
given in the previous sections, we have |E[gH

𝑘
t𝑘] |2 < ∞

∀t𝑘 ∈ T , ∀𝑘 ∈ K, hence 𝜕Rhard is finite.
The long-term sum power constraint is chosen because

it allows for strong analytical results and simplifies system
design. This constraint may be directly relevant for systems
such as the radio stripes, treated in Section IV-B, where all
the TXs share the same power supply [17]. However, note
that many simple heuristic methods (such as power scaling
factors) can be applied to adapt systems designed under a long-
term sum power constraint to more restrictive cases such as
per-TX power constraints. Further analyses on different power
constraints are left for future work.

III. TEAM MMSE PRECODING

In this work, we study the following novel team MMSE
precoding design criterion: given a vector of nonnegative
weights w := [𝑤1, . . . , 𝑤𝐾 ]T belonging to the simplex W :=
{w ∈ R𝐾+ | ∑𝐾

𝑘=1 𝑤𝑘 = 𝐾}, we consider the functional
optimization problem

minimize
t𝑘 ∈T

MSE𝑘 (t𝑘) := E
[


W 1

2Ht𝑘 − e𝑘
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+ ∥t𝑘 ∥2

𝑃

]
, (4)

where W := diag(𝑤1, . . . , 𝑤𝐾 ), e𝑘 is the 𝑘-th column of
I𝐾 , and 𝑃 := 𝑃sum/𝐾 . A solution to the above problem
can be recognized as a distributed version of the classical
centralized MMSE precoding design [22]. For 𝑃 → ∞, it can
be interpreted as the ‘closest’ distributed approximation of the
ZF solution. By means of team theoretical arguments [24],
[25], this section provides rigorous yet practical guidelines
for optimally solving Problem (4). Before providing the main
results of this section, we also revisit the effectiveness of the
MSE criterion in terms of network performance, which is well-
known for centralized precoding.

Remark 1. Hereafter, with the exception of Section III-A, we
consider w.l.o.g. W = I. The general case will readily follow
by replacing H𝑙 with W 1

2H𝑙 everywhere.

A. Achievable rates via uplink-downlink duality

This section discusses the formal connection between the
objective of Problem (4) and Rhard by revisiting UL-DL duality
under a general distributed CSIT assumption.

Theorem 1. Consider an arbitrary set of distributed pre-
coders {t𝑘}𝐾𝑘=1 and weights w ∈ W. Then, any rate tuple
(𝑅1, . . . , 𝑅𝐾 ) ∈ R𝐾 such that

𝑅𝑘 ≤ log(MSE𝑘 (t𝑘))−1 (5)

belongs to Rhard. The power allocation policy {𝑝𝑘}𝐾𝑘=1 achiev-
ing the above inner bound is given in Appendix A, and satisfies∑
𝑙 E[∥x𝑙 ∥2] = 𝑃sum. Furthermore, if t𝑘 solves Problem (4)

∀𝑘 ∈ K, then (𝑅1, . . . , 𝑅𝐾 ) with 𝑅𝑘 = log(MSE𝑘 (t𝑘))−1 is
Pareto optimal, and every rate tuple in 𝜕Rhard is obtained for
some w ∈ W.

Proof. The proof is based on connecting Problem (4) to the
problem of ergodic rate maximization in a dual UL channel,

where w is an UL power allocation vector, t𝑘 is a distributed
UL combiner, and where achievable rates are measured by
using the so-called use-and-then-forget (UatF) bound [22,
Theorem 4.4]. The details are given in Appendix A. □

Theorem 1 states that the Pareto boundary of Rhard can
be parametrized by 𝐾 − 1 nonnegative real parameters, i.e.,
by the weights w ∈ W. A similar parametrization was
already known for deterministic channels (see, e.g., [15]), or,
equivalently, for fading channels with perfect CSIT and CSIR.
This work extends the aforementioned results to imperfect and
possibly distributed CSIT, and no CSIR. In theory, w should be
selected according to some network utility (e.g., the sum-rate
or the max-min rate). In practice, w is often fixed heuristically
(e.g., from the real UL powers), while the network utility is
optimized a posteriori by varying the DL power allocation
policy {𝑝𝑘}𝐾𝑘=1.

From a precoding design point of view, Theorem 1 gen-
eralizes the duality-based argument behind classical MMSE
precoding given by [22]. While [22] motivates the MMSE
solution as the optimal combiner maximizing a dual UL
ergodic rate bound based on coherent decoding, the proof
of Theorem 1 directly relates the MSE criterion to the more
conservative UatF bound. This last point is particularly rel-
evant under distributed CSIT, where an optimal solution to
the coherent ergodic rate maximization problem is not known
in general. We recall that, in turn, [22] generalizes classical
duality-based arguments for deterministic channels to fading
channels. As a concluding remark, we stress that the inner
bound (5) should not be confused with the well-known inner
bound based on the notion of (weighted) MSE on the DL
channel [33], where the precoders for all messages contribute
to each rate bound.

B. Quadratic teams for distributed precoding design

Problem (4) belongs to the known family of team decision
problems [24], [25], which are generally difficult to solve for
general information constraints t𝑘 ∈ T . However, by rewriting
the objective as MSE𝑘 (t𝑘) = E[𝑐𝑘 (H, t1,𝑘 , . . . , t𝐿,𝑘)],

𝑐𝑘 (H, t1,𝑘 , . . . , t𝐿,𝑘) := tH
𝑘Qt𝑘 − 2ℜ

(
gH
𝑘 t𝑘

)
+ 1, (6)

where Q := HHH + 1
𝑃

I, g𝑘 = HHe𝑘 , and by noticing that
Q ≻ 0 a.s., we recognize that Problem (4) belongs to the
class of quadratic teams as defined in [24, Sect. 4]. This class
exhibits strong structural properties, in particular related to the
following solution concept:

Definition 1 (Stationary solution [25]). A solution t★
𝑘
∈ T is

a stationary solution for Problem (4) if MSE𝑘 (t★𝑘 ) < ∞ and
if the following set of equalities hold (∀𝑙 ∈ L)

∇t𝑙,𝑘E
[
𝑐𝑘 (H, t★−𝑙,𝑘 , t𝑙,𝑘)

���𝑆𝑙] ����
t𝑙,𝑘=t★𝑙,𝑘 (𝑆𝑙 )

= 0 a.s., (7)

where (t−𝑙,𝑘 , t𝑙,𝑘) := (t1,𝑘 , . . . , t𝑙−1,𝑘 , t𝑙,𝑘 , t𝑙+1,𝑘 , . . . , t𝐿,𝑘).

By evaluating the stationary conditions (7) using standard
results on differentiation of real-valued quadratic forms over
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a complex domain, we obtain that a stationary solution may
be given by any solution to the following feasibility problem:

find t𝑘 ∈ T s.t. (∀𝑙 ∈ L)
E[Q𝑙,𝑙 |𝑆𝑙]t★𝑙,𝑘 (𝑆𝑙) +

∑︁
𝑗≠𝑙

E[Q𝑙, 𝑗t
★
𝑗,𝑘 |𝑆𝑙] − E[g𝑙,𝑘 |𝑆𝑙] = 0 a.s.,

(8)

where Q𝑙,𝑙 := HH
𝑙
H𝑙 + 1

𝑃
I, Q𝑙, 𝑗 := HH

𝑙
H 𝑗 for 𝑗 ≠ 𝑙, and

g𝑙,𝑘 := HH
𝑙

e𝑘 , provided that all expectations are finite. Since
the considered quadratic cost 𝑐𝑘 is convex and differentiable
a.s. in each of the t𝑙,𝑘 , under some mild technical assumptions
the notion of stationarity can be interpreted as enforcing each
function t★

𝑙,𝑘
(𝑆𝑙) to be optimal while keeping the functions

t★
𝑗,𝑘

(𝑆 𝑗 ) of all the other TXs 𝑗 ≠ 𝑙 fixed. This is reminiscent
of the game theoretical notion of Nash equilibrium, with the
difference that here all the TXs share the same objective,
and hence they act as a team. Similarly to Nash equilibria,
stationary solutions may be in general inefficient, i.e., lead to
a local optimum. However, a stronger result holds for quadratic
teams:

Theorem 2. If Q is uniformly bounded above, i.e., there exists
a positive scalar 𝐵 < ∞ such that Q ≺ 𝐵I a.s., then Problem
(4) admits a unique optimal solution, which is also the unique
stationary solution solving Problem (8).

Proof. Theorem 2.6.6 of [25]. □

Theorem 2 and Problem (8) are of fundamental theoretical
importance since they concisely identify the two key ingredi-
ents for optimal distributed precoding design:

1) Robustness against local channel estimation errors, cap-
tured by E[Q𝑙,𝑙 |𝑆𝑙] and E[g𝑙,𝑘 |𝑆𝑙];

2) Robustness against the effect of the “decisions” taken at
the other TXs, captured by

∑
𝑗≠𝑙 E[Q𝑙, 𝑗t

★
𝑗,𝑘

|𝑆𝑙]. This is
the main new difficulty which is introduced while moving
from centralized to distributed precoding design.

From a practical perspective, the above results also provide a
very powerful tool to solve the difficult distributed precoding
design problem. Specifically, they provide a set of optimality
conditions for Problem (4) in the form of a standard infinite
dimensional linear feasibility problem, for which many ap-
proximate solution methods are available. For instance, the
optimal TMMSE precoders may be approached via one of
the iterative methods surveyed in [25] based on interpreting
the solution to (8) as the unique fixed point of a linear map.
Other promising methods may also include finite dimensional
approximations of (8) obtained, e.g., by sampling the CSI pro-
cess (H, 𝑆1, . . . , 𝑆𝐿) and by interpreting the sampled version
of (8) as a classical function interpolation problem from a
finite set of linear measurements [34]. Further discussions on
approximate solution methods are left for future work, and
most parts of this study will focus on cell-free massive MIMO
networks and in particular on special cases where (8) can be
solved explicitly. However, we remark that the content of this
section can be readily applied to study general networks with
distributed CSIT as described in Section II, not necessarily
restricted to cell-free massive MIMO networks.

Before moving to the aforementioned results, we focus on
a rather technical yet important weakness of Theorem 2. The
assumption of Theorem 2 is essentially used to ensure the
existence of all the expectations in the steps of the proof, and
is satisfied for any fading distribution with bounded support.
However, it is not satisfied for the classical Gaussian fading
model. Despite being unrealistic, since physically consistent
fading distributions cannot have unbounded support, Gaussian
fading is a very common model in the literature due to its
analytical treatability, for example in deriving simple channel
estimation error models [22], [30]. Furthermore, except for
the tails of the distribution, it usually fits measurements well.
Therefore, in the following we derive more general optimality
results covering this case.

Theorem 3. If E[∥Q∥2
F] < ∞, then Problem (4) admits a

unique optimal solution, which is also the unique stationary
solution solving Problem (8).

Proof. The proof is given in Appendix B. □

Finally, we conclude this section by observing that the
optimality conditions (8) are not only useful to characterize the
optimal TMMSE solution, but also to evaluate the suboptimal-
ity of its approximations. This can be done via an appropriate
measure of violation of the optimality conditions. Specifically,
we have the following result:

Lemma 1. Suppose that E[∥Q∥2
F] < ∞ holds, and let t★

𝑘
∈ T

be the unique solution to Problem (4). Furthermore, define
z𝑘 := [zT

1,𝑘 , . . . , z
T
𝐿,𝑘

]T, where z𝑙,𝑘 = z𝑙,𝑘 (𝑆𝑙) is given by
the left-hand side of the stationary conditions in (8) with
t★
𝑘

replaced by an arbitrary t𝑘 ∈ T . If z𝑘 ∈ T , i.e., if
E[∥z𝑙,𝑘 (𝑆𝑙)∥2] < ∞, the following optimality bounds hold:

MSE𝑘 (t𝑘) − MSE𝑘 (t★𝑘 ) ≤ E
[
∥Q− 1

2 z𝑘 ∥2
]

(9)

≤ 𝑃E
[
∥z𝑘 ∥2] , (10)

Proof. The proof is given in Appendix C. □

Clearly, z𝑘 (𝑆1, . . . , 𝑆𝐿) = 0 a.s. gives the optimality con-
ditions in (8), and in fact it corresponds to a zero optimality
gap in (10). Intuitively, the bounds in (10) can be quite tight if
z𝑘 (𝑆1, . . . , 𝑆𝐿) ≈ 0 with high probability. However, if this is
not satisfied, we remark that both bounds can be looser than
other trivial bounds obtained, e.g., by assuming a centralized
information structure, or even output negative estimates of
MSE𝑘 (t★𝑘 ). As already mentioned, we leave further studies
on suboptimal solutions for future work, and we use (10) only
in Section IV-C for getting analytical insights into a particular
setup.

IV. APPLICATIONS TO CELL-FREE MASSIVE MIMO

In this section we specialize the theory of Section III to cell-
free massive MIMO networks, and explicitly derive optimal
TMMSE precoders for two practical examples. In the scope of
this study, the important feature of the cell-free massive MIMO
paradigm is the exploitation of time division duplex operations
and channel reciprocity to efficiently acquire estimates Ĥ𝑙
of the local channel H𝑙 at each TX 𝑙 via over-the-uplink
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training [10]. These estimates may be subsequently shared
through the fronthaul according to some predefined CSIT
sharing mechanism, forming at each TX 𝑙 a side information
about the global channel H of the type 𝑆𝑙 :=

(
Ĥ𝑙 , 𝑆𝑙

)
, where

𝑆𝑙 denotes the side information about the other channels
{H 𝑗 } 𝑗≠𝑙 collected at TX 𝑙. Depending on the CSIT sharing
mechanism, 𝑆𝑙 may be a function of the other local channel
estimates {Ĥ 𝑗 } 𝑗≠𝑙 (e.g., in case of error-free digital signalling),
or include additional noise (e.g., in case of random events such
as protocol delays). Consistently with the above discussion, we
consider the following assumptions:

Assumption 1 (Local channel estimation). For every 𝑙 ∈ L,
let E𝑙 := H𝑙 − Ĥ𝑙 be the local channel estimation error for
the local channel. Assume that Ĥ𝑙 and E𝑙 are independent.
Furthermore, assume E[E𝑙] = 0, and that E[EH

𝑙
E𝑙] =: 𝚺𝑙 has

finite elements. Finally, assume that (Ĥ𝑙 ,E𝑙) and (Ĥ 𝑗 ,E 𝑗 ) are
independent for 𝑙 ≠ 𝑗 .

Assumption 2 (CSIT sharing mechanism). For every (𝑙, 𝑗) ∈
L2 s.t. 𝑙 ≠ 𝑗 , assume the following Markov chain:

H𝑙 → Ĥ𝑙 → 𝑆𝑙 → 𝑆 𝑗 → Ĥ 𝑗 → H 𝑗 .

Assumption 1 is widely used in the wireless communication
literature and it holds, e.g., for pilot-based MMSE estimates of
Gaussian channels [10], [18]. Assumption 2 essentially states
that all the available information about H𝑙 is fully contained in
Ĥ𝑙 at TX 𝑙, and that TX 𝑗 can only obtain a degraded version
of it. We now rewrite the optimality conditions given by (8)
in light of the considered model:

Lemma 2. Suppose that Assumption 1, Assumption 2, and
the assumption of Theorem 3 hold. Then, the unique TMMSE
solution to Problem (4) is given by the unique t★

𝑘
∈ T

satisfying (∀𝑙 ∈ L)

t★𝑙,𝑘 (𝑆𝑙) = F𝑙
©­«e𝑘 −

∑︁
𝑗≠𝑙

E
[
Ĥ 𝑗t

★
𝑗,𝑘

���𝑆𝑙]ª®¬ a.s., (11)

where F𝑙 :=
(
ĤH
𝑙
Ĥ𝑙 + 𝚺𝑙 + 𝑃−1I

)−1
ĤH
𝑙

.

Proof. The first term of the stationarity conditions (8) is
evaluated by letting

E[Q𝑙,𝑙 |𝑆𝑙] = E[HH
𝑙 H𝑙 |𝑆𝑙] + 𝑃

−1I
= E[(Ĥ𝑙 +E𝑙)H (Ĥ𝑙 +E𝑙) |Ĥ𝑙] + 𝑃−1I
= ĤH

𝑙 Ĥ𝑙 + 𝚺𝑙 + 𝑃−1I,

where we used the Markov chain H𝑙 → Ĥ𝑙 → 𝑆𝑙 and
Assumption 1. Then, for 𝑗 ≠ 𝑙:

E[Q𝑙, 𝑗t
★
𝑗 |𝑆𝑙] = E[HH

𝑙 H 𝑗t
★
𝑗,𝑘 |𝑆𝑙]

(𝑎)
= E

[
E[HH

𝑙 H 𝑗 |𝑆𝑙 , 𝑆 𝑗 ]t★𝑗,𝑘
���𝑆𝑙]

(𝑏)
= E

[
E[HH

𝑙 |𝑆𝑙 , 𝑆 𝑗 ]E[H 𝑗 |𝑆𝑙 , 𝑆 𝑗 ]t★𝑗,𝑘
���𝑆𝑙]

(𝑐)
= E

[
E[HH

𝑙 |Ĥ𝑙]E[H 𝑗 |Ĥ 𝑗 ]t★𝑗,𝑘
���𝑆𝑙]

(𝑑)
= ĤH

𝑙 E[Ĥ 𝑗t
★
𝑗,𝑘 |𝑆𝑙],

where (𝑎) follows from the law of total expectation and t 𝑗 ,𝑘 =
t 𝑗 ,𝑘 (𝑆 𝑗 ), (𝑏) from the Markov chain H𝑙 → (𝑆𝑙 , 𝑆 𝑗 ) → H 𝑗 ,
(𝑐) from the Markov chain H𝑙 → Ĥ𝑙 → (𝑆𝑙 , 𝑆 𝑗 ), and (𝑑)
from Assumption 1. Note that all the aforementioned Markov
chains are implied by Assumption 2. The proof is concluded
by using E[g𝑙,𝑘 |𝑆𝑙] = ĤH

𝑙
e𝑘 and by rearranging the terms. □

The above lemma reveals the following structure of the
optimal TMMSE solution: the matrix F𝑙 can be recognized
as a local MMSE precoding stage (studied, e.g., in [18]),
that is, a centralized MMSE solution [22] assuming that there
are no other TXs than TX 𝑙; the remaining part can be then
interpreted as a ‘corrective’ stage which takes into account
the effect of the other TXs based on the available CSIT and
long-term statistical information.

A. No CSIT sharing

As an important example, we assume that no local channel
estimate is shared along the fronthaul. This corresponds to
the original cell-free massive MIMO setup studied in [10].
Specifically, we let Ĥ𝑙 as in Assumption 1 and

(∀𝑙 ∈ L) 𝑆𝑙 = Ĥ𝑙 . (12)

Theorem 4. The TMMSE precoders solving (11) under no
CSIT sharing (12) are given by

t★𝑙,𝑘 (𝑆𝑙) = F𝑙C𝑙e𝑘 , (13)

for some matrices of coefficients C𝑙 ∈ C𝐾×𝐾 . Furthermore,
the optimal C𝑙 are given by the unique solution of the linear
system C𝑙 +

∑
𝑗≠𝑙 𝚷 𝑗C 𝑗 = I, ∀𝑙 ∈ L, where 𝚷𝑙 := E

[
Ĥ𝑙F𝑙

]
.

Proof. Substituting (13) into the optimality conditions (11),
we need to show that

(∀𝑙 ∈ L) ĤH
𝑙

©­«C𝑙 +
∑︁
𝑗≠𝑙

E
[
Ĥ 𝑗F 𝑗C 𝑗

��𝑆𝑙] − Iª®¬ e𝑘 = 0 a.s..

By the independence between Ĥ𝑙 and Ĥ 𝑗 , we can drop the
conditioning on 𝑆𝑙 and obtain ĤH

𝑙

(
C𝑙 +

∑
𝑗≠𝑙 𝚷 𝑗C 𝑗 − I

)
e𝑘 =

0 a.s., ∀𝑙 ∈ L. The proof is concluded by observing that
C𝑙 +

∑
𝑗≠𝑙 𝚷 𝑗C 𝑗 = I, ∀𝑙 ∈ L, always has a unique solution, as

shown in Appendix D. □

The optimal solution (13) corresponds to a two-stage pre-
coding scheme composed by a local MMSE precoding stage
F𝑙 preceded by a statistical precoding stage C𝑙 . By letting
the rows ĝH

𝑙,𝑘
of Ĥ𝑙 to be independent and distributed as

CN(0,K𝑙,𝑘), corresponding for instance to a non-line-of-sight
(NLoS) scenario with no pilot contamination [18], it can be
shown that the matrices 𝚷𝑙 are diagonal. Hence, (13) takes the
simpler form

(∀𝑙 ∈ L) t★𝑙,𝑘 (𝑆𝑙) = 𝑐𝑙,𝑘F𝑙e𝑘 , (14)

which, by mapping the optimal 𝑐𝑙,𝑘 to the optimal large-
scale fading decoding coefficients in a dual UL channel,
was already studied in [28]. However, if the channels have
non-zero mean, such as in line-of-sight (LoS) models, (13)
may provide significantly higher rates than (14). To see this,
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let Ĥ𝑙 ≈ H̄𝑙 for some fixed matrix H̄𝑙 , ∀𝑙 ∈ L. Then,
since H̄𝑙 is statistical information known to all TXs, the
TMMSE precoders should take a form similar to a ‘long-term’
centralized MMSE solution, which cannot be implemented
using (14). Finally, we point out that a suboptimal variation of
(13) called optimal bilinear equalizer (OBE), with F𝑙 replaced
by ĤH

𝑙
, was already proposed in [26] as a low-complexity

alternative to centralized MMSE precoding which maintains
robustness against pilot contamination.

B. Unidirectional CSIT sharing
We now consider a more involved example and let the

local channel measurements be shared unidirectionally along
a serial fronthaul. This setup is relevant, e.g., for the cell-free
massive MIMO network in Figure 1, where CSIT, messages,
and power are distributed along a serial fronthaul from and/or
towards a central processing unit (CPU) located at one edge,
an architecture also known as a radio stripe [17], [27].

TX 1 TX 2 TX 𝐿 CPU

(a) Ĥ1 Ĥ2 Ĥ𝐿

(b) Ĥ1 −→ Ĥ1, Ĥ2 −→ Ĥ1, Ĥ2, . . . , Ĥ𝐿

Fig. 1. Pictorial representation of a radio stripe with (a) no CSIT sharing,
and (b) unidirectional CSIT sharing.

Specifically, ∀𝑙 ∈ L, we let Ĥ𝑙 as in Assumption 1 and

(∀𝑙 ∈ L) 𝑆𝑙 = (Ĥ1, . . . , Ĥ𝑙). (15)

This particular information structure can be interpreted as the
CSIT which is accumulated at every TX during the first phase
of a centralized precoding scheme for radio stripes, where the
CPU collects measurements of the 𝐾 × 𝐿𝑁 channel matrix H
through the serial fronthaul.

Theorem 5. The TMMSE precoders solving (11) under uni-
directional CSIT sharing (15) are given by

(∀𝑙 ∈ L) t★𝑙,𝑘 (𝑆𝑙) = F𝑙V𝑙

[
𝑙−1∏
𝑖=1
V̄𝑖

]
e𝑘 (16)

where we use the following short-hands:
• V𝑙 := (I −𝚷𝑙P𝑙)−1 (I −𝚷𝑙);
• V̄𝑙 := I −P𝑙V𝑙;
• P𝑙 := Ĥ𝑙F𝑙;
• 𝚷𝑙 := E[P𝑙+1V𝑙+1] +𝚷𝑙+1E[V̄𝑙+1], 𝚷𝐿 := 0.

Proof. We first assume that all the matrix inverses involved in
the following steps exist. Substituting (16) into (11), we need
to show that (∀𝑙 ∈ L)

ĤH
𝑙

©­«V𝑙
𝑙−1∏
𝑖=1
V̄𝑖 +

∑︁
𝑗≠𝑙

E

[
P 𝑗V 𝑗

𝑗−1∏
𝑖=1
V̄𝑖

�����𝑆𝑙
]
− Iª®¬ e𝑘 = 0 a.s..

To verify the above statement, we rewrite the first two terms
inside the outer brackets as:©­«V𝑙 +

∑︁
𝑗>𝑙

E

[
P 𝑗V 𝑗

𝑗−1∏
𝑖=𝑙+1

V̄𝑖

]
V̄𝑙

ª®¬
𝑙−1∏
𝑖=1
V̄𝑖 +

∑︁
𝑗<𝑙

P 𝑗V 𝑗

𝑗−1∏
𝑖=1
V̄𝑖 ,

(17)

where we use the fact that P 𝑗 , V 𝑗 , and V̄ 𝑗 are deterministic
functions of Ĥ 𝑗 only, hence they are independent from 𝑆𝑙 for
𝑗 > 𝑙, while they are deterministic functions of 𝑆𝑙 otherwise.
Furthermore, since P 𝑗 , V 𝑗 , and V̄ 𝑗 are independent from P𝑖 ,
V𝑖 , and V̄𝑖 ∀𝑖 ≠ 𝑗 , we have∑︁
𝑗>𝑙

E

[
P 𝑗V 𝑗

𝑗−1∏
𝑖=𝑙+1

V̄𝑖

]
=

∑︁
𝑗>𝑙

E
[
P 𝑗V 𝑗

] 𝑗−1∏
𝑖=𝑙+1

E
[
V̄𝑖

]
= E [P𝑙+1V𝑙+1] +

∑︁
𝑗>𝑙+1

E
[
P 𝑗V 𝑗

] 𝑗−1∏
𝑖=𝑙+1

E
[
V̄𝑖

]
= E [P𝑙+1V𝑙+1] + ©­«

∑︁
𝑗>𝑙+1

E
[
P 𝑗V 𝑗

] 𝑗−1∏
𝑖=𝑙+2

E
[
V̄𝑖

]ª®¬ E
[
V̄𝑙+1

]
.

The second and last term of the above chain
of equalities define a recursion terminating with
E [P𝐿V𝐿] + 0E

[
V̄𝐿

]
= 𝚷𝐿−1. This recursion gives

precisely
∑
𝑗>𝑙 E

[
P 𝑗V 𝑗

∏ 𝑗−1
𝑖=1 V̄𝑖

]
= 𝚷𝑙 . Together with the

property V𝑙 +𝚷𝑙V̄𝑙 = I, (17) simplifies to

𝑙−1∏
𝑖=1
V̄𝑖 +

∑︁
𝑗<𝑙

P 𝑗V 𝑗

𝑗−1∏
𝑖=1
V̄𝑖

=
(
V̄𝑙−1 +P𝑙−1V𝑙−1

) 𝑙−2∏
𝑖=1
V̄𝑖 +

∑︁
𝑗<𝑙−1

P 𝑗V 𝑗

𝑗−1∏
𝑖=1
V̄𝑖

=

𝑙−2∏
𝑖=1
V̄𝑖 +

∑︁
𝑗<𝑙−1

P 𝑗V 𝑗

𝑗−1∏
𝑖=1
V̄𝑖 ,

where the last equation follows from the definition of V̄𝑙 ,
and where we identify another recursive structure among the
remaining terms. By continuing until termination, we finally
obtain

∏𝑙−1
𝑖=1 V̄𝑖 +

∑
𝑗<𝑙 P 𝑗V 𝑗

∏ 𝑗−1
𝑖=1 V̄𝑖 = I, which proves

the main statement under the assumption that all the matrix
inverses involved exist. This assumption is indeed always
satisfied, as shown in Appendix E. □

By locally computing precoders based on 𝑆𝑙 only, and at
the expense of some performance loss, the scheme in (16)
eliminates the additional overhead required by centralized
precoding to share back the computed 𝐾 × 𝐿𝑁 precoding
matrix from the CPU to the TXs. Furthermore, inspired by
the schemes proposed in [17], [27], [28] for UL processing
exploiting the peculiarity of a serial fronthaul, the CSIT
sharing overhead can be further reduced as follows:

Remark 2. The scheme in (16) can be alternatively imple-
mented via a recursive algorithm involving a 𝐾 ×𝐾 aggregate
information matrix

∏𝑙−1
𝑖=1 V̄𝑖 which is sequentially processed

and forwarded in the direction from TX 1 to TX 𝐿. Therefore,
the capacity of the serial fronthaul can be made independent
from 𝐿, which is typically larger than 𝐾 .

Furthermore, if data sharing is implemented through the
sequential forwarding of a vector u := [𝑈1, . . . ,𝑈𝐾 ]T ∈ C𝐾
of coded and modulated I/Q symbols originating from a
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CPU placed next to TX 1, then this can be replaced by the
forwarding of a sequentially precoded 𝐾-dimensional vector∏𝑙−1
𝑖=1 V̄𝑖u, thus eliminating the CSIT sharing overhead.

We conclude this section by providing the following corol-
lary to Theorem 5.

Corollary 1. An alternative expression for centralized MMSE
precoding [18], [22], or equivalently, for the TMMSE solution
under full CSIT sharing 𝑆𝑙 = (Ĥ1, . . . , Ĥ𝐿) ∀𝑙 ∈ L, is given by
(16) with 𝚷𝑙 replaced by P̄𝑙 := P𝑙+1V𝑙+1+P̄𝑙+1V̄𝑙+1, P̄𝐿 := 0.

Proof. Since all random quantities become deterministic after
conditioning on 𝑆𝑙 , the proof of Theorem 5 can be repeated
by removing E[·] everywhere. □

The expression in Corollary 1 can be alternatively derived
by applying recursively known block-matrix inversion lemmas
to the original centralized MMSE precoding expression [22].
The details are omitted due to space limitations. Similarly to
the implementation of (16) described in Remark 2, Corollary 1
provides a novel distributed and recursive implementation of
centralized MMSE precoding. The main difference is that, in
contrast to 𝚷𝑙 which can be computed offline, the computation
of P̄𝑙 entails an additional sequential procedure in the reverse
direction, thus increasing the overhead.

C. Asymptotic results and relation with the SGD scheme [29]
The idea of designing recursive precoding schemes exploit-

ing the opportunities of a serial connection between antenna
elements has been also explored by [29]. Motivated by the
need of reducing hardware complexity of a massive MIMO
cellular base station, and by focusing on 𝑁 = 1 and no channel
estimation error, the authors of [29] propose the following so-
called SGD precoding scheme:

(∀𝑙 ∈ L) 𝑇𝑙,𝑘 (𝑆𝑙) = 𝜇𝑙,𝑘hH
𝑙

(
e𝑘 −

𝑙−1∑︁
𝑗=1
h 𝑗𝑇𝑗 ,𝑘 (𝑆 𝑗 )

)
, (18)

where h𝑙 := Ĥ𝑙 = H𝑙 , 𝑆𝑙 is given by (15) assuming
unidirectional CSIT sharing, and 𝜇𝑙,𝑘 ∈ R are tunable step-
sizes of a stochastic gradient descent algorithm. The choice
𝜇𝑙,𝑘 = ∥h𝑙 ∥−2 is motivated by [29] as a good solution for
i.i.d. Rayleigh fading and high SNR. Furthermore, to cope with
finite SNR, [29] suggests to take 𝜇𝑙,𝑘 = 𝜇𝑘 ∥h𝑙 ∥−2 for a single
deterministic scalar 𝜇𝑘 ∈ R per RX to be optimized, e.g., using
line search. Interestingly, the SGD scheme with 𝜇𝑙,𝑘 = ∥h𝑙 ∥−2

can be also derived from team theoretical arguments, as a
particular case of the following asymptotic result for 𝑁 ≥ 1:

Lemma 3. Assume vec(H) ∼ CN(0, I), Ĥ𝑙 = H𝑙 ∀𝑙 ∈ L,
unidirectional CSIT sharing (15), and let t★

𝑘
be the optimal

TMMSE solution of Problem (4). Then,

𝑅𝑘 = log(MSE𝑘 (t★𝑘 ))
−1 ≤ 𝐿 log

(
𝐾

𝐾 − 𝑁

)
,

with equality attained as 𝑃 → ∞ by (∀𝑙 ∈ L)

t𝑙,𝑘 (𝑆𝑙) = (HH
𝑙 H𝑙)

−1HH
𝑙

(
e𝑘 −

𝑙−1∑︁
𝑗=1
H 𝑗t 𝑗 ,𝑘 (𝑆 𝑗 )

)
. (19)

Proof. The proof is given in Appendix F. □
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Fig. 2. Comparison among different CSIT configuration, empirical CDF of
the optimal per-RX achievable rates. Unidirectional TMMSE is a promising
intermediate solution for supporting network-wide interference management
when centralized precoding becomes too costly.

V. PERFORMANCE EVALUATION

A. Simulation setup

Inspired by the “football arena” [27] or “outdoor piazza”
[17] scenarios, we simulate a network with a radio stripe
of 𝐿 = 30 equally spaced TXs with 𝑁 = 2 antennas each
wrapped around a circular area of radius 𝑟1 = 60 m, and
𝐾 = 7 RXs independently and uniformly drawn within a
concentric circular area of radius 𝑟2 = 50 m. We let the channel
coefficient ℎ𝑙,𝑘,𝑛 between the 𝑛-th antenna of TX 𝑙 and RX 𝑘

be independently distributed as 𝐻𝑙,𝑘,𝑛 ∼ CN(0, 𝜌2
𝑙,𝑘
), where

𝜌2
𝑙,𝑘

denotes the channel gain between TX 𝑙 and RX 𝑘 . We
follow the 3GPP NLoS Urban Microcell path-loss model [35,
Table B.1.2.1-1]

PL𝑙,𝑘 = 36.7 log10

(
𝑑𝑙,𝑘

1 m

)
+ 22.7 + 26 log10

(
𝑓𝑐

1 GHz

)
[dB],

where 𝑓𝑐 = 2 GHz is the carrier frequency, and 𝑑𝑙,𝑘 is the
distance between TX 𝑙 and RX 𝑘 including a difference in
height of 10 m. We let the noise power at all RXs be given by
𝑃noise = −174+10 log10 (𝐵/1 Hz)+𝐹 dBm, where 𝐵 = 20 MHz
is the system bandwidth, and 𝐹 = 7 dB is the noise figure.
Finally, we let 𝜌2

𝑙,𝑘
:= 10− PL𝑙,𝑘+𝑃noise

10 mW−1, and, leveraging
the short distances, we consider a relatively low total radiated
power 𝑃sum = 100 mW.

B. Comparison among different CSIT configurations

We numerically evaluate the Pareto optimal achievable rates
𝑅𝑘 = − log(MSE𝑘 (t★𝑘 )), where t★

𝑘
denotes the optimal solution

of Problem (4), under the following CSIT configurations: (i)
no CSIT sharing (12), (ii) unidrectional CSIT sharing (15),
and (iii) full CSIT sharing as in Corollary 1. The resulting
optimal precoding schemes are respectively denoted by (i)
local TMMSE, (ii) unidirectional TMMSE, and (iii) central-
ized MMSE. We assume for simplicity Ĥ𝑙 = H𝑙 to study
the impact of the different CSIT configurations in absence
of measurement noise, and focus on the Pareto optimal point
parametrized by 𝑤𝑘 = 1 ∀𝑘 ∈ K.
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Figure 2 reports the empirical cumulative distribution func-
tion (CDF) of 𝑅𝑘 for multiple i.i.d. realizations of the RX
locations. As expected, adding information constraints on the
CSIT configuration leads to performance degradation. How-
ever, the degradation is less pronounced from centralized to
unidirectional MMSE precoding, showing that unidirectional
CSIT sharing does not prevent effective forms of network-wide
interference management. Therefore, the unidirectional team
MMSE scheme appears as a promising intermediate solution
whenever centralized MMSE precoding becomes too costly,
e.g., when the CSIT sharing overhead becomes problematic
due to high RXs mobility. Quantifying the savings in terms of
CSIT sharing overhead is an interesting open problem which
depends on many implementation details. For instance, if com-
putational complexity is not an issue and the message sharing
is implemented through the forwarding of high-precision I/Q
symbols, unidirectional TMMSE precoding may have the same
overhead as local TMMSE precoding, owing to the sequential
implementation outlined in Remark 2. If this is not possible,
for instance because operations such as matrix inversions at
each symbol time are not allowed, then the savings may
become less prominent, e.g., down to a factor 2.

C. Comparison among local precoding schemes

In this section, we compare the optimal local TMMSE
solution against classical MRT, the OBE method [26], and
local MMSE precoding (14) with optimal large-scale fading
coefficients 𝑐𝑙,𝑘 computed using the method in [28]. Since
the bound in (5) may be overly pessimistic for suboptimal
schemes, for a fair comparison we compute the DL rates
𝑅𝑘 = 𝑅

hard
𝑘

by means of their dual UL rates 𝑅UatF
𝑘

as defined
in the proof of Theorem 1, using the same dual UL power
allocation 𝑤𝑘 = 1 ∀𝑘 ∈ K. One of the major weaknesses
of MRT and local MMSE precoding is that they do not
exploit channel mean information, typically arising from LoS
components. To study this effect, we modify our simulation
setup by letting 𝑁 = 1 and by considering a simple Ricean
fading model 𝐻𝑙,𝑘,1 ∼ CN

(√︃
𝜅
𝜅+1 𝜌

2
𝑙,𝑘
, 1
𝜅+1 𝜌

2
𝑙,𝑘

)
for some

𝜅 ≥ 0, and consider again no measurement noise Ĥ𝑙 = H𝑙 .
Figure 3 confirms the above observation: while, as expected,
local MMSE precoding is optimal for a NLoS setup (𝜅 = 0),
it may incur significant performance loss w.r.t. local TMMSE
precoding and the OBE method even in case of relatively weak
LoS components (𝜅 = 1).

D. Comparison between unidirectional TMMSE precoding
and the SGD scheme [29]

In this section, we compare the unidirectional TMMSE
solution (15) for 𝑁 = 1 against the suboptimal SGD scheme
(18) proposed in [29] for 𝜇𝑘 = 1 and its robust version
obtained by optimizing 𝜇𝑘 statistically via line search. Figure 4
plots the rate 𝑅1 = 𝑅hard

1 of the first RX (measured via its dual
UL rate as in Section V-C) versus the SNR := 𝑃

∑
𝑙 𝜌

2
𝑙,1 for a

single realization of the simulation setup, and by focusing on
the following aspects:
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Fig. 3. Empirical CDF of the per-RX achievable rates for different local
precoding schemes, under Ricean factor (a) 𝜅 = 0, and (b) 𝜅 = 1. In
contrast to previously known heuristics, the team MMSE approach optimally
exploits statistical information such as the channel mean and always exhibits
superior performance. Furthermore, consistently with our theoretical results,
local MMSE precoding [28] is optimal in case (a). However, as expected, and
in contrast to the team MMSE approach and the OBE method [26], it may
not handle well the interference originating from the channel mean, as shown
by the poor perfomance of the weaker RXs in case (b).

(a) Equal path-loss, i.e., 𝑟2 = 0 (all RXs colocated at
the center of the circular service area), and no channel
estimation errors, i.e., E𝑙 = 0𝐾×1 ∀𝑙 ∈ L;

(b) Equal path-loss, and channel estimation errors, i.e., we let
E𝑙 ∼ CN(0𝐾×1, 𝜖K𝑙) ∀𝑙 ∈ L and Ĥ𝑙 ∼ CN(0𝐾×1, (1 −
𝜖)K𝑙), where K𝑙 = diag(𝜌𝑙,1, . . . , 𝜌𝑙,𝐾 ) and 𝜖 = 0.2;

(c) Realistic path-loss, i.e., 𝑟2 = 50 m (single realization),
and no channel estimation errors.

Although the SGD scheme assumes no channel estimation
errors, in the above experiments we adapt (18) to case (b) by
replacing h𝑙 with Ĥ𝑙 everywhere. As expected, from Figure 4a
we observe that the SGD scheme is asymptotically optimal in
case (a), but its performance degrades for low SNR, or in
the presence of channel estimation error noise and/or realistic
path-loss as shown in Figure 4b and 4c. In contrast, its robust
version seems sufficient to recover most of the loss due to
finite SNR and channel estimation errors. However, Figure 4c
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Fig. 4. Rate vs SNR for RX 1 under: (a) equal path-loss and no channel estimation errors; (b) equal path-loss and channel estimation errors; (c) realistic
path-loss and no channel estimation errors. In contrast to the (robust) SGD scheme [29], the team MMSE approach optimally exploits the path loss information
and hence exhibits superior performance in case (c).

shows that the (robust) SGD scheme may not handle more
realistic path-loss configurations.

The main advantage of the (robust) SGD scheme over
optimal unidirectional TMMSE precoding is that the former
does not perform any 𝐾×𝐾 matrix inversion. Therefore, it may
be considered as a low-complexity alternative to unidirectional
TMMSE precoding. However, further research is needed in
particular regarding the choice of the parameters 𝜇𝑙,𝑘 and the
support for 𝑁 > 1 TX antennas.

VI. CONCLUDING REMARKS

This work provides novel guidelines for distributed precod-
ing design in systems with distributed CSIT such as cell-free
massive MIMO networks. By assuming full data sharing and a
sum-power constraint, the proposed optimal approach outper-
forms previously known heuristic methods in several setups
of interest. Going beyond the two chosen examples where
the optimal precoders can be derived explicitly, the proposed
approach can be potentially applied, exactly or using standard
numerical approximations, to a wide range of practical setups.
Furthermore, since it exploits the UL-DL duality principle,
we remark that the proposed approach also provides optimal
distributed combiners for UL operations. Although not covered
for simplicity, the proposed approach may be also extended
to limited data sharing, for example using network clustering
techniques. Other promising lines of research include the
extension to different power constraints, the revisitation of
cell-free massive MIMO performance analysis involving LoS
models or pilot contamination, and the development of new
efficient algorithms exploiting fronthaul architectures such as
tree or star topologies.
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APPENDIX

A. Proof of Theorem 1

Consider a dual UL network with 𝐾 single-antenna TXs and
𝐿 cooperating RXs equipped with 𝑁 antennas each, governed

by the MIMO channel law yUL =
∑𝐾
𝑘=1

√
𝑃𝑤𝑘g𝑘𝑉𝑘 + nUL,

where yUL ∈ C𝐿𝑁 is the received signal at all RXs,[
g1, . . . ,g𝐾

]
= HH is the dual channel matrix, 𝑉𝑘 ∼ CN(0, 1)

is the independent message of TX 𝑘 , and nUL ∼ CN(0, I).
Then, we consider the processed channel 𝑉̂𝑘 = 1√

𝑃
tH
𝑘
yUL,

where t𝑘 =

[
tT

1,𝑘 . . . tT
𝐿,𝑘

]T
is a distributed linear com-

biner satisfying the information constraint t𝑘 ∈ T . Let
𝑅UL
𝑘

:= 𝐼 (𝑉𝑘 ; 𝑉̂𝑘) be achievable rates on this channel. By
standard information inequalities [36], we obtain

𝐼 (𝑉𝑘 ; 𝑉̂𝑘) = ℎ(𝑉𝑘) − ℎ(𝑉𝑘 |𝑉̂𝑘)
≥ log(𝜋𝑒) − ℎ(𝑉𝑘 − 𝛼𝑉̂𝑘)
≥ log(𝜋𝑒) − log(𝜋𝑒E[|𝑉𝑘 − 𝛼𝑉̂𝑘 |2]).

Optimizing 𝛼 according to channel statistics, i.e., choosing
𝛼 = 𝛼★ with 𝛼★ := E[𝑉𝑘𝑉̂∗

𝑘
]/E[|𝑉̂𝑘 |2] being the solution of

min𝛼∈C E[|𝑉𝑘 − 𝛼𝑉̂𝑘 |2], leads to the well-known UatF bound
[22]

𝑅UL
𝑘 ≥ 𝑅UatF

𝑘 := log(1 + SINR𝑘),

SINR𝑘 :=
𝑤𝑘 |E[tH

𝑘
g𝑘] |2

𝑤𝑘Var[tH
𝑘
g𝑘] +

∑
𝑗≠𝑘 𝑤 𝑗E[|tH

𝑘
g 𝑗 |2] + E[ ∥t𝑘 ∥2 ]

𝑃

.

Alternatively, we can keep 𝛼 ∈ C unoptimized and obtain
the bound 𝑅UL

𝑘
≥ 𝑅UatF

𝑘
≥ log(E[|𝑉𝑘 − 𝛼𝑉̂𝑘 |2])−1, where

after simple manipulations we recognize E[|𝑉𝑘 − 𝛼𝑉̂𝑘 |2] =

E
[


𝛼W 1

2Ht𝑘 − e𝑘



2

]
+ 𝛼2

𝑃
E[∥t𝑘 ∥2] = MSE𝑘 (𝛼t𝑘). The

above steps also shows that solving min𝛼∈C,t𝑘 ∈T MSE𝑘 (𝛼t𝑘)
is equivalent to solving

maximize
t𝑘 ∈T

𝑅UatF
𝑘 . (20)

Furthermore, we observe that min𝛼∈C,t𝑘 ∈T MSE𝑘 (𝛼t𝑘) =

mint𝑘 ∈T MSE𝑘 (t𝑘). This is because 𝛼 is a deterministic scalar,
hence 𝛼t𝑘 ∈ T . Therefore, Problem (20) and Problem (4) have
the same optimal solution t★

𝑘
, and the optima are related by

𝑅UatF
𝑘

= log(MSE𝑘 (t★𝑘 ))
−1.

Let 𝑅★
𝑘
(w) be the optimum of Problem (20) for some dual

UL power allocation policy w := (𝑤1, . . . , 𝑤𝐾 ) ∈ R𝐾+ . Let
then RUatF be the union of all rate tuples (𝑅1, . . . , 𝑅𝐾 ) ∈ R𝐾+
satisfying 𝑅𝑘 ≤ 𝑅★

𝑘
(w) ∀𝑘 ∈ K, where the union is taken over
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all w satisfying
∑𝐾
𝑘=1 𝑃𝑤𝑘 ≤ 𝑃sum. By definition of RUatF, its

Pareto boundary 𝜕RUatF is composed by rate tuples of the type
(𝑅1, . . . , 𝑅𝐾 ), 𝑅𝑘 = 𝑅★

𝑘
(w), achieved by some w satisfying∑

𝑘 𝑤𝑘 ≤ 𝐾 and by the optimal combiners {t𝑘}𝐾𝑘=1 solving
Problem (4) ∀𝑘 ∈ K. It turns out that it is possible to fully
characterize 𝜕RUatF by restricting w ∈ W, i.e., by using all
the available power 𝐾𝑃 = 𝑃sum. This is because 𝑅UatF

𝑘
is a

continuous monotonic increasing functions of 𝑃, and so is its
(finite) supremum over t𝑘 ∈ T . Furthermore, it can be shown
that all w ∈ W induce Pareto optimal rate tuples. This last
statement can be proven by contradiction as follows.

Let w ∈ W and suppose that (𝑅★1 (w), . . . , 𝑅★
𝐾
(w)) ∉

𝜕RUatF, i.e., ∃w′ ∈ W, w′ ≠ w, s.t. 𝑅★
𝑘
(w′) > 𝑅★

𝑘
(w) ∀𝑘 ∈ K.

We now build an iterative procedure which moves from w
to w′ and contradicts the previous supposition. Consider the
following sequence of updates w(𝑖) := (𝑤 (𝑖)

1 , . . . , 𝑤
(𝑖)
𝐾
) for

𝑖 = 0, . . . , 𝐾 − 1, where w(0) := w and

𝑤
(𝑖)
𝑘

:=

𝑤′
𝑘

if 𝑘 ≤ 𝑖∑
𝑗>𝑖 𝑤

′
𝑗∑

𝑗>𝑖 𝑤
(𝑖−1)
𝑗

𝑤
(𝑖−1)
𝑘

if 𝑘 > 𝑖 .

The 𝑖-th step of the above procedure changes 𝑤𝑖 into the target
𝑤′
𝑖

and scales all weights 𝑤𝑘 with 𝑘 > 𝑖 by a common factor
s.t. the constraint w(𝑖) ∈ W is not violated. Note that this
constraint also implies that w(𝐾−1) = w′ without the need of a
𝐾-th update. In the following, we use properties of 𝑅★

𝑘
inferred

by the fact that log2

(
1 + 𝑎𝑥

𝑏𝑥+𝑐𝑦+𝑑

)
is continuous monotonic

increasing in 𝑥 ∈ R+ and continuous monotonic decreasing
in 𝑦 ∈ R+ for any 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0, and 𝑑 > 0, and so
is its supremum over some family of parameters (𝑎, 𝑏, 𝑐, 𝑑).
At step 𝑖 = 1, assume w.l.o.g. that 𝑤 (1)

1 = 𝑤′
1 ≥ 𝑤1, which

also implies 𝑤 (1)
𝑘

=

∑
𝑗>𝑖 𝑤

′
𝑗∑

𝑗>𝑖 𝑤
(0)
𝑗

𝑤𝑘 ≤ 𝑤𝑘 for 𝑘 > 1. In fact,

we can always reindex the RXs such that this assumption
holds. When going from 𝑥 = 1 to 𝑥 =

∑
𝑗>𝑖 𝑤

′
𝑗∑

𝑗>𝑖 𝑤
(0)
𝑗

≤ 1, and

then subsequently from 𝑦 = 1 to 𝑦 =
𝑤′

1
𝑤1

≥ 1, the function

log
(
1 + 𝑤𝑘 |E[tH

𝑘
g𝑘 ] |2𝑥

(∑ 𝑗>1 𝑤 𝑗E[ |tH
𝑘
g 𝑗 |2 ]−𝑤𝑘 |E[tH

𝑘
g𝑘 ] |2 )𝑥+𝑤1E[ |tH

𝑘
g1 |2 ]𝑦+

E[∥t𝑘 ∥2 ]
𝑃

)
for 𝑘 > 1 is continuous monotonically decreasing, and
so is its supremum over t𝑘 ∈ T . Hence, we have
𝑅★
𝑘
(w(1) ) ≤ 𝑅★

𝑘
(w(0) ) ∀𝑘 > 1. At step 𝑖 = 2, we

assume w.l.o.g. that 𝑤′
2 ≥ 𝑤

(1)
2 (otherwise we can just

properly reindex all RXs 𝑘 > 2), and similarly obtain
𝑅★
𝑘
(w(2) ) ≤ 𝑅★

𝑘
(w(1) ) ∀𝑘 > 2. By continuing until step 𝐾 − 1,

we finally obtain 𝑅★
𝐾
(w(𝐾−1) ) ≤ 𝑅★

𝐾
(w(𝐾−2) ), which can

be combined with the previous steps leading to the desired
contradiction 𝑅★

𝐾
(w′) ≤ 𝑅★

𝐾
(w) up to a possible reindexing,

i.e., at least one rate cannot be strictly increased when moving
from w to w′.

The proof is concluded by invoking the duality principle
between the UatF bound and the hardening bound [22, Theo-
rem 4.8], which shows that RUatF = Rhard and that for every
rate tuple (𝑅UatF

1 , . . . , 𝑅UatF
𝐾

) achieved by some {t𝑘}𝐾𝑘=1 and
w, there is a rate tuple (𝑅hard

1 , . . . , 𝑅hard
𝐾

) = (𝑅UatF
1 , . . . , 𝑅UatF

𝐾
)

achievable by using the same functions {t𝑘}𝐾𝑘=1, and by

choosing 𝑝𝑘 =
𝑝𝑘𝑃

E[∥t𝑘 ∥2]
∀𝑘 ∈ K with p̃ := [𝑝1, . . . , 𝑝𝐾 ]T

being the solution of (D−1 − B)p̃ = (D−1 − BT)w, where

D := diag(𝑑1, . . . , 𝑑𝐾 ), 𝑑𝑘 := SINR𝑘
E[∥t𝑘 ∥2]
|E[tH

𝑘
g𝑘] |2

, and where

the (𝑘 ′, 𝑘)-th element of B ∈ C𝐾×𝐾 is given by

[B]𝑘′ ,𝑘 =


E[|tH

𝑘
g𝑘′ |2]

E[∥t𝑘 ∥2]
if 𝑘 ′ ≠ 𝑘

E[|tH
𝑘
g𝑘 |2] − |E[tH

𝑘
g𝑘] |2

E[∥t𝑘 ∥2]
otherwise.

The above linear system is guaranteed to have a unique
solution satisfying

∑𝐾
𝑘=1 𝑝𝑘 =

∑𝐾
𝑘=1 𝑤𝑘 , which implies∑𝐿

𝑙=1 E[∥x𝑙 ∥2] = ∑𝐾
𝑘=1 𝑤𝑘𝑃 = 𝑃sum.

B. Proof of Theorem 3

To avoid cumbersome notation, we omit the subscript 𝑘
everywhere. The proof is split into three separate lemmas. We
start with a minor extension of [24, Theorem 3] obtained by
introducing the constraint E[∥t𝑘 ∥2] < ∞ and specializing to
the considered cost function.

Lemma 4 (Existence and uniqueness). Problem (4) admits a
unique team optimal solution.

Proof. Let H be the space of Σ-measurable functions a :
Ω → C𝐿𝑁 s.t. E

[
aHQa

]
< ∞. We define the inner product

⟨a,b⟩ := E[bHQa], ∀(a,b) ∈ H2, and its induced norm
∥a∥H :=

√︁
⟨a,a⟩, ∀a ∈ H . Then, the tuple (H , ⟨·, ·⟩) is a

Hilbert space3 [24]. Let us further define t0 := Q−1g, which is
the unique minimizer of 𝑐(H, t) for any realization H. Firstly,
we observe that t0 ∈ H , since

∥t0∥2
H = E

[
eHH

(
HHH + 𝑃−1I

)−1
HHe

]
≤ E

[
tr

(
H

(
HHH + 𝑃−1I

)−1
HH

)]
= E

[
tr

(
HHH

(
HHH + 𝑃−1I

)−1
)]

≤ E
[
tr

((
HHH + 𝑃−1I

) (
HHH + 𝑃−1I

)−1
)]

= 𝑁𝐿.

(21)

Secondly, we observe that T is a closed linear subspace of H
[25, Theorem 2.6.6]. Finally, simple algebraic manipulations
show that the objective of Problem (4) can be equivalently
rewritten as MSE(t) = ∥t − t0∥2

H − ∥t0∥2
H + 1. Therefore,

by following [24], [25], we consider the infinite dimensional
orthogonal projection problem:

minimize
t∈T

∥t − t0∥2
H . (22)

The solution to Problem (4) corresponds to the projection of
t0 ∈ H onto the closed linear subspace T ⊆ H . By the Hilbert
projection theorem, this projection is unique and always exists
[37]. □

3In fact, the positive matrix square root Q
1
2 induces an isometry between

(H, ⟨·, ·⟩ ) and the perhaps more familiar Hilbert space of measurable
functions such that E

[
∥a∥2] < ∞, equipped with the standard inner product

⟨a,b⟩ := E[bHa].
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The following result extends Lemma 4 by following similar
lines as [25, Theorem 2.6.6].

Lemma 5 (Sufficiency of stationarity). Suppose that
E[∥Q∥2

F] < ∞. Then, if t★ ∈ T is stationary, it is also the
unique optimal solution to Problem (4).

Proof. Let us consider again the equivalent problem (22).
Since T is a closed linear subspace, the Hilbert projection
theorem also states that a solution t★ ∈ T is the unique
optimal solution if and only if the following orthogonality
conditions [37] hold: (∀t ∈ T )

⟨t★ − t0, t⟩ = 0 ⇐⇒

E
[
tHQ

(
t★ −Q−1g

)]
= 0 ⇐⇒

E

𝐿∑︁
𝑙=1
tH
𝑙

©­«E[Q𝑙,𝑙 |𝑆𝑙]t★𝑙 +
∑︁
𝑗≠𝑙

E[Q𝑙, 𝑗t
★
𝑗 |𝑆𝑙] − E[g𝑙 |𝑆𝑙]

ª®¬
 = 0,

(23)

where the last equality follows by the law of total expecta-
tion, provided that the inner expectations are finite. Finite-
ness of E[g𝑙 |𝑆𝑙] and E[Q𝑙,𝑙 |𝑆𝑙] follows by the assumption
E[∥H∥2

F] < ∞. Finiteness of E[Q𝑙, 𝑗t
★
𝑗
|𝑆𝑙] follows by apply-

ing the Cauchy-Schwarz inequality elementwise, and by using
E[∥t 𝑗 ∥2] < ∞ and E[∥Q∥2

F] < ∞. The proof is concluded by
observing that if the stationary conditions in (8) are satisfied
for some t★, then the orthogonality conditions are satisfied
and t★ is the unique optimal solution. □

To conclude the proof, it remains to show the converse
statement of Lemma 5. In the following, we depart from [25,
Theorem 2.6.6] and use a different argument tailored to the
cost function considered in here.

Lemma 6 (Necessity of stationarity). Suppose that
E[∥Q∥2

F] < ∞. Then, if t★ ∈ T is the unique optimal
solution to Problem (4), it is also stationary.

Proof. We start by using the so-called notion of person-by-
person optimality [24], [25]. Similarly to the notion of Nash
equilibrium, it states that a necessary condition for a tuple t★

to be globally optimal is that it must satisfy

(∀𝑙 ∈ L) MSE(t★) = min
t𝑙∈T𝑙

MSE(t★−𝑙 , t𝑙).

We relax the the above conditions by letting T𝑙,unc be the un-
constrained version of T𝑙 , i.e., where we remove the constraint
E[∥t𝑙 ∥2] < ∞. We then have (∀𝑙 ∈ L)

∞ > MSE(t★) = min
t𝑙∈T𝑙

MSE(t★−𝑙 , t𝑙)

≥ min
t𝑙∈T𝑙,unc

MSE(t★−𝑙 , t𝑙)

= min
t𝑙∈T𝑙,unc

E
[
E

[
𝑐
(
H, t★−𝑙 , t𝑙

) ��𝑆𝑙] ]
≥ E

[
min

t𝑙∈T𝑙,unc
E

[
𝑐
(
H, t★−𝑙 , t𝑙

) ��𝑆𝑙] ]
= E

[
E

[
𝑐
(
H, t★−𝑙 , t

★★
𝑙

) ��𝑆𝑙] ]
= MSE(t★−𝑙 , t

★★
𝑙 )

(24)

where t★★
𝑙

is given by the first-order optimality condi-
tion ∇t𝑙𝜙𝑙 (𝑆𝑙 , t𝑙) = 0 a.s. applied to the convex function
𝜙𝑙 (𝑠𝑙 , t𝑙) := E

[
𝑐(H, t★−𝑙 , t𝑙)

��𝑆𝑙 = 𝑠𝑙] . Note that

t★★𝑙 (𝑆𝑙) := (E[Q𝑙,𝑙 |𝑆𝑙])−1

(
E[g𝑙 |𝑆𝑙] −

∑︁
𝑗≠𝑙

E[Q𝑙, 𝑗t
★
𝑗 |𝑆𝑙]

)
satisfies t★★

𝑙
∈ T𝑙,unc, because it is given by sums and

products of measurable functions (we recall that Q𝑙,𝑙 ≻ 0),
and that all the expectations are finite as discussed in the
proof of Lemma 5. Finally, we observe that t★★

𝑙
∈ T𝑙 , i.e.,

E[∥t★★
𝑙

∥2] < ∞, because from the original problem formula-
tion (4) we notice that MSE(t★−𝑙 , t

★★
𝑙
) is given by a sum of

non-negative terms, one of which is precisely 1
𝑃

E[∥t★★
𝑙

∥2],
and MSE(t★−𝑙 , t

★★
𝑙
) ≤ MSE(t★) < ∞. Therefore, the inequali-

ties in (24) are equalities, and the optimal solution must satisfy
MSE(t★) = MSE(t★−𝑙 , t

★★
𝑙
), ∀𝑙 ∈ L. This proves that an

optimal solution must satisfy the stationarity conditions given
by (8). □

C. Proof of Lemma 1

We use the same notation and definitions as in the proof of
Theorem 3 given in Appendix B. The optimality gap can be
expressed as follows:

MSE(t) − MSE(t★) = ∥t − t0∥2
H − ∥t★ − t0∥2

H
(𝑎)
= ∥t − t★∥2

H
(𝑏)
= ⟨t − t★, t − t★⟩ + ⟨t★ − t0, t − t★⟩
= ⟨t − t0, t − t★⟩
(𝑐)
= E[(t − t★)Hz],

where (𝑎) follows from Pythagoras’ theorem, (𝑏) from the
orthogonality condition ⟨t★− t0,a⟩ = 0, ∀a ∈ T and t− t★ ∈
T , and (𝑐) by applying the law of total expectation as in (23).
Then, the proof follows from

∥t − t★∥2
H = E[(t − t★)Hz]

= ⟨Q−1z, t − t★⟩
≤ ∥Q−1z∥H ∥t − t★∥H ,

where the last step is the Cauchy–Schwarz inequality, and
where we use Q−1 ⪯ 𝑃I which ensures ∥Q−1z∥2

H =

E[zHQ−1z] ≤ 𝑃E[zHz] < ∞.

D. Proof of Theorem 4 (additional details)

We rearrange the system at hand as (D + U𝚷T)C = U,
where C :=

[
C1 . . . C𝐿

]T, 𝚷 :=
[
𝚷1 . . . 𝚷𝐿

]T, U :=[
I𝐾 . . . I𝐾

]T, D := diag(I − 𝚷1, . . . , I − 𝚷𝐿). The proof
follows if D+U𝚷T is invertible, giving the optimal coefficients
C = (D + U𝚷T)−1U. By Lemma 7 given in Appendix G, D +
U𝚷T is invertible if both D and D−1 + 𝚷TU = D−1 + ∑

𝑙 𝚷𝑙
are invertible. Standard arguments show that 0 ⪯ 𝚷𝑙 ≺ I.
Therefore, D is Hermitian positive definite (hence invertible),
and so is D−1 + ∑

𝑙 𝚷𝑙 , concluding the proof.
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E. Proof of Theorem 5 (additional details)

Assume 0 ⪯ 𝚷𝑙 ≺ I for a fixed 𝑙 ∈ L. Then, let Q𝑙 :=
ĤH
𝑙
Ĥ𝑙+𝚺𝑙+𝑃−1I and observe that this implies Q𝑙−ĤH

𝑙
𝚷𝑙Ĥ𝑙 =

ĤH
𝑙
(I −𝚷𝑙)Ĥ𝑙 + 𝚺𝑙 + 𝑃−1I ≻ 0. Therefore, we obtain

Ĥ𝑙

(
Q𝑙 − ĤH

𝑙 𝚷𝑙Ĥ𝑙
)−1

ĤH
𝑙 = Ĥ𝑙

[
Q𝑙

(
I −F𝑙𝚷𝑙Ĥ𝑙

)]−1
ĤH
𝑙

(𝑎)
= Ĥ𝑙

(
I −F𝑙𝚷𝑙Ĥ𝑙

)−1
F𝑙

(𝑏)
= P𝑙 (I −𝚷𝑙P𝑙)−1

where (𝑎) and (𝑏) follow from Lemma 8 and Lemma 9
given in Appendix G, respectively. These lemmas ensure that
all the above inverses exist, and in particular (I − 𝚷𝑙P𝑙)−1.
Furthermore, the above chain of equalities also show that

𝚷𝑙−1 = E[P𝑙V𝑙] +𝚷𝑙E[V̄𝑙]
= 𝚷𝑙 + (I −𝚷𝑙)E[P𝑙 (I −𝚷𝑙P𝑙)−1] (I −𝚷𝑙)
= 𝚷𝑙 + (I −𝚷𝑙)

1
2 E[P̃𝑙] (I −𝚷𝑙)

1
2 ,

where P̃𝑙 := H̃𝑙

(
H̃H
𝑙
H̃𝑙 + 𝚺𝑙 + 𝑃−1I

)−1
H̃H
𝑙

, and H̃𝑙 := (I −
𝚷𝑙)

1
2 Ĥ𝑙 . By standard argument, it can be shown that 0 ⪯

P̃𝑙 ≺ I holds, and hence 0 ⪯ 𝚷𝑙−1 ≺ I. Overall, the above
discussion proves that 0 ⪯ 𝚷𝑙 ≺ I implies the existence of
(I−𝚷𝑙P𝑙)−1 and that 0 ⪯ 𝚷𝑙−1 ≺ I. By finally observing that
0 ⪯ P𝐿−1 ≺ I and hence 0 ⪯ 𝚷𝐿−1 = E[P𝐿−1] ≺ I, the proof
is concluded by repeating the previous argument recursively.

F. Proof of Lemma 3

We recall the following results from random ma-
trix theory, provided without proof: for vec(H𝑙) ∼
CN(0, I), we have E[H𝑙 (HH

𝑙
H𝑙)−1HH

𝑙
] = 𝑁

𝐾
I and

E[H𝑙 (HH
𝑙
H𝑙)−2HH

𝑙
] = 𝑁

𝐾 (𝐾−𝑁 ) I. We define the projection
matrix P𝑙 := H𝑙 (HH

𝑙
H𝑙)−1HH

𝑙
onto span(H𝑙), the projection

matrix P⊥
𝑙

:= I −P𝑙 onto its orthogonal complement, and let
t𝑘 = (t1,𝑘 , . . . , t𝐿,𝑘) as in (19). A simple recursive calculation
shows the identity e𝑘 −

∑𝑙
𝑗=1H 𝑗t 𝑗 ,𝑘 = P

⊥
𝑙
P⊥
𝑙−1 . . .P

⊥
1 e𝑘 . The

first part of the objective in (4) is then given by

E
[
∥Ht𝑘 − e𝑘 ∥2]

= eH
𝑘E

[
P⊥

1 , . . . ,P
⊥
𝐿−1P

⊥
𝐿P

⊥
𝐿P

⊥
𝐿−1 . . .P

⊥
1
]

e𝑘

=

(
1 − 𝑁

𝐾

)
eH
𝑘E

[
P⊥

1 , . . . ,P
⊥
𝐿−1P

⊥
𝐿−1 . . .P

⊥
1
]

e𝑘

=

(
1 − 𝑁

𝐾

)𝐿
,

where we used the Hermitian symmetry and idempotency
of projection matrices, and the independence between H𝑙
and {H 𝑗 } 𝑗≠𝑙 . We now measure the suboptimality of t𝑘 by

using Lemma 1, specialized to the current setting similarly to
Lemma 2. We have:

z𝑙,𝑘 (𝑆𝑙)

=

(
HH
𝑙 H𝑙 + 𝑃

−1I
)
t𝑙,𝑘 (𝑆𝑙) +HH

𝑙

©­«
∑︁
𝑗≠𝑙

E
[
H 𝑗t 𝑗 ,𝑘

���𝑆𝑙] − e𝑘
ª®¬

= 𝑃−1t𝑙,𝑘 (𝑆𝑙) −HH
𝑙 E

[
P⊥
𝐿P

⊥
𝐿−1 . . .P

⊥
1 e𝑘

���𝑆𝑙]
= 𝑃−1t𝑙,𝑘 (𝑆𝑙) −

(
1 − 𝑁

𝐾

)𝐿−𝑙+1
HH
𝑙 P

⊥
𝑙 . . .P

⊥
1 e𝑘

= 𝑃−1t𝑙,𝑘 (𝑆𝑙),

where the last step follows from the definition of projection
matrices, which gives HH

𝑙
P⊥
𝑙

b = 0 for any b ∈ C𝐾 . Further-
more, we have

E
[

t𝑙,𝑘

2

]
= E

©­«e𝑘 −
𝑙−1∑︁
𝑗=1
H 𝑗t 𝑗 ,𝑘

ª®¬
H

H𝑙 (HH
𝑙 H𝑙)

−2HH
𝑙

©­«e𝑘 −
𝑙−1∑︁
𝑗=1
H 𝑗t 𝑗 ,𝑘

ª®¬


=
𝑁

𝐾 (𝑁 − 𝐾)

(
1 − 𝑁

𝐾

) 𝑙−1
< ∞.

Therefore, Lemma 1 applies and, by using the looser
bound in (10), we readily obtain MSE𝑘 (t𝑘) − MSE𝑘 (t★𝑘 ) ≤
1
𝑃

∑𝐿
𝑙=1 E

[

t𝑙,𝑘

2
]
−→
𝑃→∞

0, and MSE𝑘 (t★𝑘 ) ≥
(
1 − 𝑁

𝐾

)𝐿 .

G. Linear algebra background

Lemma 7 (Woodbury matrix identity). Let A ∈ C𝑛×𝑛, B ∈
C𝑛×𝑚, C ∈ C𝑚×𝑛, and D ∈ C𝑚×𝑚. If A, C, and D−1 +CA−1B
are invertible, then A+BDC is invertible and (A + BDC)−1 =

A−1 − A−1B
(
D−1 + CA−1B

)−1 CA−1.

Lemma 8 (Inverse of product). Let A and B be two square
matrices of the same dimension. If AB is invertible, then A
and B are also invertible, and (AB)−1 = B−1A−1.

Lemma 9 (Push-through identity). Let A ∈ C𝑛×𝑚 and B ∈
C𝑚×𝑛 be two matrices such that I + AB is invertible. Then,
I + BA is also invertible, and B (I + AB)−1 = (I + BA)−1 B.
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