~IEEE

IEEE Open Journal of the

(.omSoc Communications Society

Received 14 March 2021; revised 24 April 2021; accepted 17 May 2021. Date of publication 20 May 2021; date of current version 1 June 2021.

Digital Object Identifier 10.1109/0JCOMS.2021.3081996

Multi-UAV Path Planning for Wireless Data
Harvesting With Deep Reinforcement
Learning

HARALD BAYERLEIN" ' (Student Member, IEEE), MIRCO THEILE " 2 (Student Member, IEEE),
MARCO CACCAMO? (Fellow, IEEE), AND DAVID GESBERT' (Fellow, IEEE)

1 Communication Systems Department, EURECOM, 06904 Sophia Antipolis, France
2TUM Department of Mechanical Engineering, Technical University of Munich, 80333 Munich, Germany
CORRESPONDING AUTHOR: H. BAYERLEIN (e-mail: harald.bayerlein @ eurecom.fr)

The work of Harald Bayerlein and David Gesbert was supported in part by the French government, through the 3IA Cote d’Azur Project
under Grant ANR-19-P3IA-0002, and in part by the TSN CARNOT Institute under Project Robots4loT. The work of
Marco Caccamo was supported by an Alexander von Humboldt Professorship endowed by the German Federal
Ministry of Education and Research. This article was presented in part at IEEE GLOBECOM 2020 [1]. The code for this work is available under
https://github.com/hbayerlein/uav_data_harvesting.

ABSTRACT Harvesting data from distributed Internet of Things (IoT) devices with multiple autonomous
unmanned aerial vehicles (UAVs) is a challenging problem requiring flexible path planning methods. We
propose a multi-agent reinforcement learning (MARL) approach that, in contrast to previous work, can
adapt to profound changes in the scenario parameters defining the data harvesting mission, such as the
number of deployed UAVs, number, position and data amount of IoT devices, or the maximum flying
time, without the need to perform expensive recomputations or relearn control policies. We formulate the
path planning problem for a cooperative, non-communicating, and homogeneous team of UAVs tasked
with maximizing collected data from distributed IoT sensor nodes subject to flying time and collision
avoidance constraints. The path planning problem is translated into a decentralized partially observable
Markov decision process (Dec-POMDP), which we solve through a deep reinforcement learning (DRL)
approach, approximating the optimal UAV control policy without prior knowledge of the challenging
wireless channel characteristics in dense urban environments. By exploiting a combination of centered
global and local map representations of the environment that are fed into convolutional layers of the
agents, we show that our proposed network architecture enables the agents to cooperate effectively by
carefully dividing the data collection task among themselves, adapt to large complex environments and
state spaces, and make movement decisions that balance data collection goals, flight-time efficiency, and
navigation constraints. Finally, learning a control policy that generalizes over the scenario parameter space
enables us to analyze the influence of individual parameters on collection performance and provide some
intuition about system-level benefits.

INDEX TERMS Internet of Things (IoT), map-based planning, multi-agent reinforcement learning
(MARL), trajectory planning, unmanned aerial vehicle (UAV).

I. INTRODUCTION
UTONOMOUS unmanned aerial vehicles (UAVs) are
not only envisioned as passive cellular-connected users
of telecommunication networks but also as active con-
nectivity enablers [2]. Their fast and flexible deployment
makes them especially useful in situations where terrestrial

infrastructure is overwhelmed or destroyed, e.g., in disaster
and search-and-rescue situations [3], or where fixed cov-
erage is in any way lacking. UAVs have shown particular
promise in collecting data from distributed Internet of Things
(IoT) sensor nodes. For instance, IoT operators can deploy
UAV data harvesters in the absence of otherwise expensive
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cellular infrastructure nearby. Another reason is the through-
put efficiency benefits related to having UAVs that describe
a flight pattern that brings them close to the IoT devices. As
an example in the context of infrastructure maintenance and
preserving structural integrity, Hitachi is already commer-
cially deploying partially autonomous UAVs that collect data
from IoT sensors embedded in large structures, such as the
San Juanico and Agas-Agas Bridges in the Philippines [4].
Research into UAV-aided data collection from IoT devices
or wireless sensors include the works [5]-[9], with [10]-[13]
concentrating on minimizing the age of information of the
collected data. Additional coverage of past related work is
offered in the next section.

In this work, we focus on controlling a team of UAVs,
consisting of a variable number of identical drones tasked
with collecting varying amounts of data from a variable num-
ber of stationary IoT sensor devices at variable locations in
an urban environment. This imposes challenging constraints
on the trajectory design for autonomous UAVs. In addition,
the limited on-board battery energy density restricts mission
duration for quadcopter drones severely. At the same time,
the complex urban environment poses challenges in obstacle
avoidance and adherence to regulatory no-fly zones (NFZs).
Additionally, the wireless communication channel is charac-
terized by random signal blocking events due to alternating
between line-of-sight (LoS) and non-line-of-sight (NLoS)
links. We believe this work is the first to address multi-UAV
path planning where learned control policies are generalized
over a wide scenario parameter space and can be directly
applied when scenario parameters change without the need
for retraining.

While some challenges to real-world deep reinforcement
learning (DRL) such as limited training samples, safety and
lack of explainable actions remain, DRL offers the opportunity
to balance challenges and data collection goals for complex
environments in a straightforward way by combining them in
the reward function. Another reason for the popularity of the
DRL paradigm in this context is the computational efficiency
of DRL inference. DRL is also one of the few methods
that allows us to tackle the complex task directly, given that
UAV control and deployment in communication scenarios are
generally non-convex optimization problems [2], [14]-[18],
and proven to be NP-hard in many instances [2], [16], [17].
These advantages of DRL also hold for other UAV path
planning instances, such as coverage path planning [19], a
classical robotics problem where the UAV’s goal is to cover
all points inside an area of interest. The equivalence of these
path planning problems and the connection between the often
disjoint research areas is highlighted in [20].

A. RELATED WORK

A survey that spans the various application areas for
multi-UAV systems from a cyber-physical perspective is pro-
vided in [17]. The general challenges and opportunities of
UAV communications are summarized in publications by
Zeng et al. [2] and Saad et al. [18], which both include data
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collection from IoT devices. This specific scenario is also
included in [21] and [22], surveys that comprise information
on the classification of UAV communication applications
with a focus on DRL methods.

Path planning for UAVs providing some form of com-
munication services or collecting data has been studied
extensively, including numerous approaches based on rein-
forcement learning (RL). However, it is crucial to note that
the majority of previous works concentrates on only find-
ing the optimal trajectory solution for one set of scenario
parameters at a time, requiring full or partial retraining if
the scenario changes. In contrast, our approach aims to
train and generalize over a large scenario parameter space
directly, finding efficient solutions without the need for
lengthy retraining, but also increasing the complexity of the
path planning problem significantly.

Many existing RL approaches also only focus on single-
UAV scenarios. An early proposal given in [23] to use (deep)
RL in a related scenario where a single UAV base station
serves ground users shows the advantages of using a deep
Q-network (DQN) over table-based Q-learning, while not
making any explicit assumptions about the environment at
the price of long training time. The authors in [5] only
investigate table-based Q-learning for UAV data collection.
A particular variety of IoT data collection is the one tackled
in [10], where the authors propose a DQN-based solution to
minimize the age of information of data collected from sen-
sors. In contrast to our approach, the mentioned approaches
are set in much simpler environments and agents have to
undergo computationally expensive retraining when scenario
parameters change.

Multi-UAV  path planning for serving ground users
employing table-based Q-learning is investigated in [16],
based on a relatively complex 3-step algorithm consisting of
grouping the users with a genetic algorithm, then deploy-
ment and movement design in two separated instances of
Q-learning. The investigated optimization problem is proven
to be NP-hard, with Q-learning being confirmed as a use-
ful tool to solve it. Pan er al. [6] investigate an instance
of multi-UAV data collection from sensor nodes formulated
as a classical traveling salesman problem without modeling
the communication phase between UAV and node. The
UAVs’ trajectories are designed with a genetic algorithm that
uses some aspects of DRL, namely training a deep neural
network and experience replay. In contrast to the multi-stage
optimization algorithms in [6] and [16], our approach con-
sists of a more straightforward end-to-end DRL approach
that scales to large and complex environments, generalizing
over varying scenario parameters.

The combination of DRL and multi-UAV control has
been studied previously in various scenarios. The authors
in [11] focus on trajectory design for minimizing the age of
information of sensing data generated by multiple UAVs
themselves where the data can be either transmitted to
terrestrial base stations or mobile cellular devices. Their
focus lies on balancing the UAV sensing and transmission
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protocol in an unobstructed environment for one set of sce-
nario parameters at a time. Other MARL path planning
approaches to minimize the age of information of collected
data include [12] and [13]. In [24], a swarm of UAVs on a
target detection and tracking mission in an unknown envi-
ronment is controlled through a distributed DQN approach.
While the authors also use convolutional processing to feed
map information to the agents, the map is initially unknown
and has to be explored to detect the targets. The agents’
goal is to learn transferable knowledge that enables adap-
tation to new scenarios with fast relearning, compared to
our approach to learn a control policy that generalizes over
scenario parameters and requires no relearning.

Hu et al. [14] proposed a distributed multi-UAV meta-
learning approach to control a group of drone base stations
serving ground users with random uplink access demands.
While meta-learning allows them to reduce the number
of training episodes needed to adapt to a new unseen
uplink demand scenario, several hundred are still required.
Our approach focuses on training directly on random but
observable scenario parameters within a given value range,
therefore not requiring retraining to adapt. Due to the small
and obstruction-less environment, no maps are required
in [14] and navigation constraints are omitted by keeping
the UAVs at dedicated altitudes. In [7], multi-agent deep
Q-learning is used to optimize trajectories and resource
assignment of UAVs that collect data from pre-defined clus-
ters of IoT devices and provide power wirelessly to them.
The focus here is on maximizing minimum throughput in
a wirelessly powered network without a complex environ-
ment and navigation constraints, only for a single scenario
at a time. Similarly, in [8] there is also a strong focus on
the energy supply of IoT devices through backscatter com-
munications when a team of UAVs collects their data. The
authors propose a multi-agent approach that relies on the def-
inition of ambiguous boundaries between clusters of sensors.
The scenario is set in a simple, unobstructed environment,
not requiring maps or adherence to multiple navigation con-
straints, but requiring retraining when scenario parameters
change.

In [25], a group of interconnected UAVs is tasked with
providing long-term communication coverage to ground
users cooperatively. While the authors also formulate a
POMDP that they solve by a DRL variant, there is no need
for map information or processing. The scenario is set in
a simple environment without obstacles or other navigation
constraints. This work was extended under the paradigm of
mobile crowdsensing, where mobile devices are leveraged to
collect data of common interest in [9]. The authors proposed
a heterogeneous multi-agent DRL algorithm collecting data
simultaneously with ground and aerial vehicles in an envi-
ronment with obstacles and charging stations. While in this
work, the authors also suggest a convolutional neural network
to exploit a map of the environment, the small grid world
does not necessitate extensive map processing. Furthermore,
they do not center the map on the agent’s position, which
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is highly beneficial [1]. In contrast to our method, control
policies have to be relearned entirely in a lengthy training
process for both mentioned approaches when scenario and
environmental parameters change.

B. CONTRIBUTIONS

If DRL methods are to be applied in any real-world mis-
sion, the prohibitively high training data demand poses one
of the most severe challenges [26]. This is exacerbated by
the fact that even minor changes in the scenario, such as
in the number or location of sensor devices in data collec-
tion missions, typically requires repeating the full training
procedure of the DRL agent. This is the case for exist-
ing approaches such as [7]-[9], [11]-[13], [23], [25]. Other
approaches to reduce the training data demand include meta-
learning [14] and transfer learning [26]. To the best of our
knowledge, this is the first work that addresses this problem
in path planning for multi-UAV data harvesting by propos-
ing a DRL method that is able to generalize over a large
space of scenario parameters in complex urban environments
without prior knowledge of wireless channel characteristics
based on centered global-local map processing.

The main contributions of this paper are the following.

« We formulate a flying time constrained multi-UAV path
planning problem to maximize harvested data from
IoT sensors. We consider its translation to a decen-
tralized partially observable Markov decision process
(Dec-POMDP) with full reward function description in
large, complex, and realistic environments that include
no-fly zones, buildings that block wireless links (some
possible to be flown over, some not), and dedicated
start/landing zones.

« To solve the Dec-POMDP under navigation constraints
without any prior knowledge of the urban environ-
ment’s challenging wireless propagation conditions, we
employ deep multi-agent reinforcement learning with
centralized learning and decentralized execution.

« We show the advantage in learning and adaptation effi-
ciency to large maps and state spaces through a dual
global-local map approach with map centering over
more conventional scalar neural network input in a
multi-UAV setting.

o As perhaps our most salient feature, our algorithm
offers parameter generalization, which means that the
learned control policy can be reused over a wide
array of scenario parameters, including the number of
deployed UAVs, variable start positions, maximum fly-
ing times, and number, location and data amount of IoT
sensor devices, without the need to restart the train-
ing procedure as typically required by existing DRL
approaches.

o Learning a generalized control policy enables us to
compare performance over a large scenario parameter
space directly. We analyze the influence of individual
parameters on collection performance and provide some
intuition about system-level benefits.
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FIGURE 1. Example of a single UAV collecting data from two loT devices in an urban
environment of size M x M with NFZs, a single start/landing zone, and buildings
causing shadowing. Small buildings can be flown over and tall buildings act as
navigation obstacles.

C. ORGANIZATION

The paper is organized as follows: Section II introduces
the multi-UAV mobility and communication channel model,
which is translated to an MDP in Section III and fol-
lowed by a description of the proposed map preprocessing
in Section IV and multi-agent DRL learning approach in
Section V. Simulation results and their discussion follow in
Section VI, and we conclude the paper with a summary and
outlook to future work in Section VIIL.

Il. SYSTEM MODEL

In the following, we present the key models for the multi-
UAV path planning problem. Note that some level of
simplification is needed when modeling the robots’ dynamics
in order to enable the implementation of the RL approach.
Our assumptions are explicit whenever suitable.

We consider a square grid world of size M x M € N?
with cell size ¢ and the set of all possible positions M.
Discretization of the environment is a necessary condition for
our map-processing approach, however note that our method
can be applied to any rectangular grid world. The envi-
ronment contains L designated start/landing positions given
by the set

l lT l ZT
L:{[xi,yi] ,i=1,...,L, :[xi,yi] GM}

and the combination of the Z positions the UAVs cannot
occupy is given by the set

Z={Eil i= 1z ] e M)

This includes tall buildings which the UAVs can not fly
over and regulatory no-fly zones (NFZ). The number of B
obstacles blocking wireless links are given by the set

T T
B:{[xf?,yf-’] ,i=1,...,B, :[xib,yib] EM},

representing all buildings, also smaller ones that can be flown
over. The lowercase letters [, z, b indicate the coordinates of
the respective set of environmental features £, Z,B. An
example of a grid world is depicted in Fig. 1, where obsta-
cles, NFZs, start/landing zone, and an example of a single
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TABLE 1. Legend for scenario plots.

Symbol  Description

Start and landing zone

Regulatory no-fly zone (NFZ)

Tall buildings* (UAVs cannot fly over)
Small buildings* (UAVs can fly over)
IoT device

Other agents

DQN Input

*all buildings obstruct wireless links

Summation of building shadows

Starting and landing positions during an episode
UAV movement while comm. with green device
Hovering while comm. with green device
Actions without comm. (all data collected)

gxigH +enmmm

Visualization

UAV trajectory are marked as described in the attached
legend in Tab. 1.

A. UAV MODEL

The set 7 of I deployed UAVs moves within the limits of
the grid world M. The state of the i-th UAV is described
through its:

o position p;(1) = [x;(1), yi(1), zz()]T € R with altitude
zi(t) € {0, h}, either at ground level or in constant
altitude h;

« operational status ¢;(¥) € {0, 1}, either inactive or active;

« battery energy level b;(r) € N.

Note that the assumption of all UAVs sharing the same
flying altitude is not too restrictive and that our method
allows each UAV to fly at a different altitude as long as it
remains constant throughout the mission. The UAV agent’s
altitude can be made observable by simply adding it to the
observation space along the flying time. This work only
tackles 2D trajectory optimization, as the environment is
dominated by high-rise buildings that would require long
climbing phases to be overflown. The mission time limited
by the UAVs’ on-board batteries restricts the effectiveness
of 3D control for the data collection performance given that
climbing flight consumes more energy [27] and that the
UAVs needs to land at ground level at the end of the mission.
The data collection mission is over after 7 € N mission time
steps for all UAVs, where the time horizon is discretized into
equal mission time slots 7 € [0, T] of length §; seconds.
The action space of each UAV is defined as

0 c 0 —c 0 0
A= 01,10(,[c|,1 O], —c]|,| O . (D
0 0 0 0 0 —h
—— S N N e
hover east north west south land

Each UAV’s movement actions a;(f) € ﬁl(pi(t)) are
limited to

- A pi() € L
Api(1) = {ﬂ\ [0,0, —h]T, otherwise, @
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where A defines the set of feasible actions depending on
the respective UAV’s position, specifically that the landing
action is only allowed if the UAV is in the landing zone.
The distance the UAV travels within one time slot is
equivalent to the cell size ¢. Mission time slots are chosen
sufficiently small so that each UAV’s velocity v;(f) can be
considered to remain constant in one time slot. The UAVs are
limited to moving with horizontal velocity V = ¢/§; or stand-
ing still, i.e., v;(r) € {0, V} for all ¢ € [0, T]. Each UAV’s
position evolves according to the motion model given by

pi(?) +a;(®), ¢i(n) =1
pi(®), otherwise,

keeping the UAV stationary if inactive. The evolution of the
operational status ¢;(f) of each UAV is given by

0, a;6)=1I0,0,—hT
vV i) =0 4)

1, otherwise,

pit+1) = { 3)

it +1) =

where the operational status becomes inactive when the UAV
has safely landed. The end of the data harvesting mission
T is defined as the time slot when all UAVs have reached
their terminal state and are not actively operating anymore,
i.e., the operational state is ¢;(r) = 0 for all UAVs.

The i-th UAV’s battery content evolves according to

bi(t) — 1, ¢i() =1

bi(1), otherwise,

assuming a constant energy consumption while the UAV is
operating and zero energy consumption when operation has
terminated. This is a simplification justified by the fact that
power consumption for small quadcopter UAVs is dominated
by the hovering component. Using the model from [27], the
ratio between the additional power necessary for horizontal
flight at 10m/s and just hovering could be roughly estimated
as 30W/310W = 10%, which is negligible. Considering
power consumption of on-board computation and commu-
nication hardware which does not differ between flight and
hovering, the overall difference becomes even smaller. In the
following, we will refer to the battery content as remaining
flying time, as it is directly equivalent.

The overall multi-UAV mobility model is restricted by the
following constraints:

bi(r+1) = { &)

pi(t) #pi() Vv (1) =0, Vi,jel, i#j Vi (6a)
pi(t) ¢ Z, Viel, Vvt (6b)

bi(t) >0, Viel,Vt (6¢)

pi(0) € LAzi(0)=h, Viel (6d)
$:(0)=1, Viel (6e)

The constraint (6a) describes collision avoidance among
active UAVs with the exception that UAVs can land at the
same location. Equation (6b) forces the UAVs to avoid col-
lisions with tall obstacles and prevents them from entering
NFZs. The constraint (6¢) limits operation time of the drones,
forcing UAVs to end their mission before their battery has run
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out. Since operation can only be concluded with the landing
action as described in (4) and the landing action is only avail-
able in the landing zone as defined in (2), the constraint (6¢)
ensures that each UAV safely lands in the landing zone before
their batteries are empty. The starting constraint (6d) defines
that the UAV start positions are in the start/landing zones
and that their starting altitude is s, while (6e) ensures that
the UAVs start in the active operational state.

B. COMMUNICATION CHANNEL MODEL

1) LINK PERFORMANCE MODEL

As communication systems typically operate on a smaller
timescale than the UAVs’ mission planning system, we intro-
duce the notion of communication time slots in addition
to mission time slots. We partition each mission time slot
t € [0,T] into a number of A € N communication time
slots. The communication time index is then n € [0, N]
with N = AT. One communication time slot n is of length
8n = &8;/ 1 seconds. The number of communication time slots
per mission time slot A is chosen sufficiently large so that the
i-th UAV’s position, which is interpolated linearly between
pi(t) and p;(t + 1), and the channel gain can be considered
to stay constant within one communication time slot.

The k-th IoT device is located on ground level at u; =
[xk, vi, 017 € R? with k € K where |K] = K. Each IoT
sensor has a finite amount of data Di(f) € RT that needs
to be picked up over the whole mission time ¢t € [0, T].
The device data volume is set to an initial value at the
start of the mission Dy(t = 0) = Dy jni;. The data volume
of each IoT node evolves depending on the communication
time index n over the whole mission time, given by Dy (n)
with n € [0, N], N = AT.

We follow the same UAV-to-ground channel model as
used in [1]. The communication links between UAVs and
the K IoT devices are modeled as LoS/NLoS point-to-point
channels with log-distance path loss and shadow fading. The
maximum achievable information rate at time n for the k-th
device is given by

T (n) = logy (1 + SNR; k(n)). (7

Considering the amount of data available at the k-th device
Dy (n), the effective information rate is given as

RN (), Di(n) = 8,R"™(n)

Di(n)/6,, otherwise. ®)

Ri(n) = {
The SNR with transmit power P;j, white Gaussian noise
power at the receiver o2, UAV-device distance di k, path
loss exponent &, and n, ~ N(O, 03) modeled as a Gaussian
random variable, is defined as

P.
SNR;k(n) = —3° - d; (m) % - 107/, ©)
o

Note that the urban environment with the set of obstacles B
hindering free propagation causes a strong dependence of the
propagation parameters on the e € {LoS, NLoS} condition
and that (9) is the SNR averaged over small scale fading. We

1175



BAYERLEIN et al.: MULTI-UAV PATH PLANNING FOR WIRELESS DATA HARVESTING WITH DRL

would also like to point out that our DQN-based trajectory
planning approach is model-free and does therefore not rely
on any specific channel model. While a more accurate and
complex model could be directly used with our approach,
the most important features for data collection missions of
the urban channel, the dependence of SNR on d;; and the
e € {LoS, NLoS} condition, are already captured in (9).

2) MULTIPLE ACCESS PROTOCOL

The multiple access protocol is assumed to follow the stan-
dard time-division multiple access (TDMA) model when it
comes to the communication between one single UAV and
the various ground nodes. We further assume that the com-
munication channel between the ground nodes and a given
UAV operates on resource blocks (time-frequency slots) that
are orthogonal to the channels linking the ground nodes
and other UAVs, so that no inter-UAV interference exists
in our model and inter-UAV synchronization is not nec-
essary. Hence, the UAVs are similar to base stations that
would be assigned orthogonal spectral resources. We also
assume that IoT devices are operating in multi-band mode,
hence are capable of simultaneously communicating with all
UAVs on the set of all orthogonal frequencies. As a conse-
quence, scheduling decisions are not part of the action space.
The number of available orthogonal subchannels for UAV-
to-ground communication is one of the variable scenario
parameters and equivalent to the number of deployed UAVs.

Designing multiple access protocols for UAV networks
is in itself a challenging research problem [28] due to high
mobility of the nodes and fast changing link performance and
is out of scope for this work. However, our proposed algo-
rithm can in principle be integrated with existing solutions
and does not rely on any specific channel model or multiple
access protocol. While our model avoids and does not con-
sider inter-UAV interference, we would like to point out that
the behavior of the UAV agents that emerges naturally dur-
ing the learning process of dividing the data collection task
geographically, as illustrated in Section VI-D, would miti-
gate the influence of interference on the trajectory planning
decisions to some extent.

Our scheduling protocol is assumed to follow the max-
rate rule: in each communication time slot n € [0, N], the
sensor node k € [1, K] with the highest SNR;(n) with
remaining data to be uploaded is picked by the scheduling
algorithm. The TDMA constraint for the scheduling variable
qik(n) € {0, 1} is given by

K
> gix(m) <1, ne[0,N].VieT.
k=1

(10)

It follows that the k-th device’s data volume evolves within
one communication time slot according to

I

Di(n+1) = Di(m) = Y _ qix(MRi k(n)5y.
i=1

Y
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The achievable throughput for the i-th UAV for one mis-
sion time slot ¢ € [0, T], comprised of A communication time
slots, is the sum of rates achieved in the communication time
slots n € [At, A(t + 1) — 1] over K sensor nodes. It depends
on the UAV’s operational status ¢;(#) and is given by

At+D)—1 K
GOy =¢i) Y Y qixMRix(ms,.  (12)
n=At k=1

C. OPTIMIZATION PROBLEM

Using the described UAV model in II-A and communica-
tion model in II-B, the central goal of the multi-UAV path
planning problem is the maximization of throughput over
the whole mission time and over all I deployed UAVs while
adhering to mobility constraints (6a)-(6e) and the scheduling
constraint (10). The maximization problem is given by

T 1
Y G
t=0 i=1
s.t. (6a), (6b), (6¢), (6d), (6¢), (10)

max
xa;(1)

(13)

optimizing over joint actions X;a;(f).

lll. MARKOV DECISION PROCESS (DEC-POMDP)

To address the aforementioned optimization problem, we
translate it to a decentralized partially observable Markov
decision process (Dec-POMDP) [29], which is defined
through the tuple (S, Ax, P, R, Qx,0,y). In the Dec-
POMDP, S describes the state space, Ay = Al the joint
action space, and P : S x Ax x S — R the transition prob-
ability function. R : S x A x S +— R is the reward function
mapping state, individual action, and next state to a real val-
ued reward. The joint observation space is defined through
Q=0 and O : S x T > Q is the observation function
mapping state and agents to one agent’s individual observa-
tion. The discount factor y € [0, 1] controls the importance
of long vs. short term rewards.

A. STATE SPACE

The state space of the multi-agent data collection problem
consists of the environment information, the state of the
agents, and the state of the devices. It is given as

S= £ x Z x 8 Environment

N—— —— ——"

Landing NFZs  Obstacles

Zones

x R x N x B Agents
~—— —— —~—
UAV Flying  Operational

Positions  Times Status

x REX3 » RK Y Devices (14)
—— ——
Device Device
Positions Data
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in which the elements s(t) € S are

s() = M, {pi()}, (bi(D)}, {#i(D}, (e}, {Dr(D}),

Vi € T and Vk € K, in which M € BM*Mx3 ig the tensor
representation of the set of start/landing zones L, obstacles
and NFZs Z, and obstacles only B. The other elements
of the tuple define positions, remaining flying times, and
operational status of all agents, as well as positions and
available data volume of all IoT devices.

5)

B. SAFETY CONTROLLER

To enforce the collision avoidance constraint (6a) and the
NFZ and obstacle avoidance constraint (6b), a safety con-
troller is introduced into the system. Additionally, the safety
controller enforces the limited action space excluding the
landing action when the respective agent is not in the land-
ing zone as defined in (2). The safety controller evaluates
the action a;(f) of agent i and determines if it should be
accepted or rejected. If rejected, the resulting safe action is
the hovering action. The safe action a, ;(¢) is thus defined as

[0,0,01", pi® +ai()eZ
Vv pi(0) +a;(t) = pj(t) A @i(1) =1,
a,;(f) = Vjj#i
va(f) =1[0,0,—-h"T A pi(t) ¢ £
a;(1), otherwise.

(16)

Without path planning capabilities, the safety controller can-
not enforce the flying time and safe landing constraint
in (6¢). Therefore, we relax the hard constraint on flight time
by adding a high penalty on not landing in time instead. In
the simulation, a crashed agent, i.e., an agent with b;(t) < 0,
is defined as not operational.

C. REWARD FUNCTION
The reward function R : Sx Ax S +— R of the Dec-POMDP
is comprised of the following elements:

ri(t) = a ) (Dt + 1) = De(®) + Bit) + vi() + €. (17)
ke

The first term of the sum is a collective reward for the
collected data from all devices by all agents within mission
time slot ¢. It is parameterized through the data collection
multiplier «. This is the only part of the reward function
that is shared among all agents. The second addend is an
individual penalty when the safety controller rejects an action
and given through

B, a;(t) #a;s1)

pi(t) = {0, otherwise. (18)

It is parameterized through the safety penalty 8. The third
term is the individual penalty for not landing in time given by
Vi 0, otherwise.
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TABLE 2. Million floating point operations (MFLOPs) needed for inference of the
networks based on map-processing.

Map No Processing  Centering  Centering + Global-Local
Manhattan32 15 80 7.7
Urban50 45 217 6.5

and parameterized through the crashing penalty y. The last
term is a constant movement penalty parameterized through
€, which is supposed to incentivize the agents to reduce their
flying time and prioritize efficient trajectories.

IV. MAP-PROCESSING AND OBSERVATION SPACE

To aid the agents in interpreting the large state space given
in (14), we implement two map processing steps. The first is
centering the map around the agent’s position, shown in [1]
to significantly improve the agent’s learning performance.
This benefit is a consequence of neurons in the layer after
the convolutional layers (compare Fig. 3) corresponding to
features relative to the agent’s position, rather than to abso-
lute positions if the map is not centered. This is advantageous
as one agent’s actions are solely based on its relative position
to features, e.g., its distance to sensor devices. The downside
of this approach is that it increases the size of the maps and
the observation space even further, therefore requiring larger
networks with more trainable parameters.

The second map processing step is to present the centered
map as a compressed global and uncompressed but cropped
local map as previously evaluated in [20]. In path planning,
as distant features lead to general direction decisions while
close features lead to immediate actions such as collision
avoidance, the level of detail passed to the agent for distant
objects can be less than for close objects. The advantage is
that the compression of the global map reduces the necessary
neural network size considerably.

This reduction in network size directly translates to a
reduction in computational load. Table 2 shows the num-
ber of floating point operations needed for each of the two
maps under different map processing regimes as given by
the TensorFlow graph profiler. Only centering increases the
computational load considerably, as explained in [1], while
global-local map processing offsets the increase and reduces
floating point operations considerably. Considering that mod-
ern embedded processors operate in the region of giga
floating point operations, it seems realistic that the required
processing can be carried out even on small and energy-
limited UAVs. The mathematical descriptions of the map
processing functions and the observation space are detailed
in the following.

A. MAP-PROCESSING
For ease of exposition, we introduce the 2D projections of
the UAV and IoT device positions on the ground, iy € N?

and Py € N? respectively, given by
0
0) Pi—‘ (20)

1 1
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rounded to integer grid coordinates.

1) MAPPING

The centering and global-local mapping algorithms are based
on map-layer representations of the state space. To represent
any state with a spatial aspect given by a position and a
corresponding value as a map-layer, we define a general
mapping function

fmapping : N&2 « RO > RM*M, 201
In this function, a map layer A € RY>*M is defined as
A =fmapping({f’q}’ {"q})’ (22)

with a set of grid coordinates {p,} and a set of corresponding
values {v,}. The elements of A are given through
(23)

=vy Vgqel0,...,0-1]

Apg.0.Pg.1

or 0 if the index is not in the grid coordinates. With this
general function, we define the map-layers

D() :fmapping({ﬁkh {Dr(®}) (24a)
B(7) = fmapping ({Pi (1)}, {bi(1)}) (24b)
o (1) :fmapping({f)i(t)}a {¢)l(t)}) (24¢)

for device data, UAV flying times, and UAV operational
status respectively. If the map-layers are of same type they
can be stacked to form a tensor of RM*MXn for ease of
representation.

2) MAP CENTERING

Given a tensor A € RM*MX" describing the map-layers,

a centered tensor B € RMcxXMexn with M. = 2M — 1 is
defined through
B = feenter (A, P, Xpad) (25)
with the centering function defined as
Foonter @ RMXMX1 5 N2 o Ry RMeXMoxn, (26)

The elements of B with respect to the elements of A are
defined as

M<i+po+1<2M
ANM<j+pi+1<2M
otherwise,

Qi po—M+1,j4+p —M+1>
bij =
Xpad>
(27)

effectively padding the map layers of A with the padding
value Xp,d4. Note that a; j, b;j, and Xpaq are vector valued of
dimension R”. An illustration of the centering on a 16 x 16
map (M = 16, M, = 31) can be seen in Figure 2 with the
legend in Table 1.
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(a) Non-centered input map (b) Centered input map

FIGURE 2. Comparison of non-centered and centered input maps, with UAV
position represented by the green star and the intersection of the dashed lines.

3) GLOBAL-LOCAL MAP

The tensor B € RMc*Mexn regulting from the map centering
function is processed in two ways. The first is creating a
local map according to

X = fiocal (B, 1) (28)
with the local map function defined by
ﬁoca] : RMCXMCXVI X N — Rlxlxn. (29)

The elements of X with respect to the elements of B are
defined as

Xij =b [4] j+m-[4] (30)

This operation is effectively a central crop of size [ x [.
The second processing creates a global map according to

Y :fglobal(B»g) (3D
with the global map function
M, M
fuoar : R¥Mon sy UL )

The elements of Y with respect to the elements of B are
defined as

L&
Yii = 5 55 bt

u=0 v=

(33)

This operation is equal to an average pooling operation with
pooling cell size g.

The functions fiocal and fglobal are parameterized through
[ and g, respectively. Increasing [ increases the size of the
local map, whereas increasing g increases the size of the
average pooling cells, therefore decreasing the size of the
global map.
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B. OBSERVATION SPACE

Using the map processing functions, the observation space
can be defined. The observation space €2, which is the input
space to the agent, is given as

Q= Q x Q; x N
g S~~~ f
Local Global Flying

Map Map Time

containing the local map
Ql — BIXZX3 X Rlxl X lel X lel
and the global map
Qg = REXEX3 5 REXE 5 REXE x REXE,

with g = L%J. Note that the compression of the global map
through average pooling transforms all map layers into R.
Observations 0;(f) € Q are defined through the tuple

0i(t) = (My,i(1), Dy,i(1), Byi(1), ®1,i(0),
My (1), Dy i(1), Bg,i(1), g i(1), bi(2)).

In one observation tuple, M ;(¢) is the local observation of
agent i of the environment, D;;(¢) is the local observation
of the data to be collected, B, ;(¢) is the local observation
of the remaining flying time of all agents, and &;;(¢) is
the local observation of the operational status of the agents.
M, (1), Dy (1), Bg i(1), and g ;(?) are the respective global
observations. b;(f) is the remaining flying time of agent
i, which is equal to the one in the state space. Note that
the environment map’s local and global observations are
dependent on time, as they are centered around the UAV’s
time-dependent position. Additionally, it should be noted that
the remaining flying time of agent i is given in the center
of B, ;(¢) and additionally as a scalar b;(f). This redundancy
in representation helps the agent to interpret the remaining
flying time.

Consequently, the complete mapping from state to obser-
vation space is given by

(34)

O:SxIT—Q (335)
in which the elements of 0;(#) are defined as follows:

Ml,i(t) :flocal(fcenter(Ma pi(0), [0, 1, 1]T)’ l) (362)

Dy,i (1) = fiocal (feenter (D(2), Pi(1), 0), 1) (36b)

Byi(1) = fiocal (feenter (B(2), Pi(2), 0), 1) (36¢)

D (D) = fiocal (feenter (P (£), Pi (1), 0), 1) (36d)

Myi(1) = fotobal (feenter (ML, pi(9), [0, 1, 117), g) ~ (36¢)

Dy i(1) = fatobal (feenter (D(7), Pi(), 0), g) (361)

Bg.i(t) = falobal (feenter B(2), Pi(?), 0), &) (36g)

q)g,i(t) :fglobal(fcenter((b(t)s pi(?),0), 2) (36h)

By passing the observation space €2 into the agent
instead of the state space S as done in the previous
approaches [1] and [19], the presented path planning
problem is artificially converted into a partially observable
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MDP. Partial observability is a consequence of the restricted
size of the local map and the compression of the global
map. However, as shown in [20], partial observability does
not render the problem infeasible, even for a memory-less
agent. Instead, the compression greatly reduces the neural
network’s size, leading to a significant reduction in training
time.

V. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
A. Q-LEARNING
Q-learning is a model-free RL method [30] where a cycle of
interaction between one or multiple agents and the environ-
ment enables the agents to learn and optimize a behavior, i.e.,
the agents observe state s; € S and each performs an action
a; € A at time t and the environment subsequently assigns
a reward r(sy, a;) € R to the agents. The cycle restarts with
the propagation of the agents to the next state s;yi. The
agents’ goal is to learn a behavior rule, referred to as a
policy that maximizes their reward. A probabilistic policy
m(als) is a distribution over actions given the state such that
7 : S xA — R. In the deterministic case, it reduces to
7 (s) such that ¥ : S — A.

Q-learning is based on iteratively improving the state-
action value function or Q-function to guide and evaluate
the process of learning a policy m. It is given as

0" (s,a) = Ex[Gyls; = s, ar = a] (37)

and represents an expectation of the discounted cumulative
return G, from the current state s; up to a terminal state at
time T given by

T
Gr=Y vk, a) (38)

k=t
with y € [0, 1] being the discount factor, balancing the
importance of immediate and future rewards. For the ease
of exposition, s; and a, are abbreviated to s and a, while
si+1 and ayy) are abbreviated to s’ and o’ in the following.

B. DOUBLE DEEP Q-LEARNING AND COMBINED
EXPERIENCE REPLAY

As demonstrated in [23], representing the Q-function (37)
as a table of values is not efficient in the large state and
action spaces of UAV trajectory planning. Instead, a deep
Q-network (DQN) parameterizing the Q-function with the
parameter vector 6 can be trained to minimize the expected
temporal difference (TD) error. While a neural network is
significantly more data efficient compared to a Q-table due
to its ability to generalize, the deadly triad [30] of func-
tion approximation, bootstrapping and off-policy training can
make its training unstable and cause divergence.

Mnih et al. [31] applied stabilizing techniques to the DQN
training process, such as experience replay, reducing correla-
tions in the sequence of training data. New experiences made
by the agent, represented by quadruples of (s, a, r,s’), are
stored in the replay memory O. During training, a minibatch
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of size m is sampled uniformly from 9 and used to compute
the loss. The size of the replay memory |D| was shown
to be an essential hyperparameter for the agent’s learning
performance and typically must be carefully tuned for dif-
ferent tasks or scenarios. Zhang and Sutton [32] proposed
combined experience replay as a remedy for this sensitiv-
ity with very low computational complexity O(1). In this
extension to the replay memory method, only m — 1 sam-
ples of the minibatch are sampled from memory, and the
latest experience the agent made is always added. This cor-
rected minibatch is then used to train the agent. Therefore,
all new transitions influence the agent immediately, making
the agent less sensitive to the selection of the replay buffer
size in our approach.

In addition to experience replay, Mnih et al. used a sepa-
rate target network for the estimation of the next maximum
Q-value, giving the loss as

LPN @) = Es,a,sw@[(Qe (s,@) = YPWN(s. a, s’))z} (39)

with target value

YDQN(S, a, s’) = r(s,a) + y max Q; (s/, a/). (40)
a/

6 represents the parameters of the target network. The param-
eters of the target network 6 can either be updated as a
periodic hard copy of 6 or as in our approach with a soft

update

0« (1—1)0+16 41)

after each update of 6. v € [0, 1] is the update factor
determining the adaptation pace.

Further improvements to the training process were sug-
gested in [33], resulting in the inception of double deep
Q-networks (DDQNs). With the application of this exten-
sion, we avoid the overestimation of action values under
certain conditions in standard DQN and arrive at the loss
function for our network given by

LPPON(9) = By - (Q0(s. ) = ¥(5,a.5))] @42)

where the target value is given by

yPDON (s, a, s’) =r(s,a) +yQ; (s’, argmax Qg (s’, a’)).
a/

(43)

C. MULTI-AGENT Q-LEARNING

The original table-based Q-learning algorithm was extended
to the cooperative multi-agent setting by Claus and Boutilier
in 1998 [34]. Without changing the underlying principle, it
can also be applied to DDQN-based multi-agent cooperation.
With the taxonomy from [35], our agents can be classified
as homogeneous and non-communicating. Homogeneity is
a consequence of deploying a team of identical UAVs with
the same internal structure, domain knowledge, and identical
action spaces. Non-communication is to be interpreted in a
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multi-agent system sense, i.e., that the agents can not coordi-
nate their actions or choose what to communicate. However,
as they all perceive state information that includes other
UAVs’ positions, in a practical sense, position information
would most likely be communicated via the command
and control links of the UAVs, that especially autonomous
UAVs would have to maintain for regulatory purposes in
any case.

The best way to describe our learning approach is by
decentralized deployment or execution with centralized train-
ing. As DDQN learning requires an extensive experience
database to train the neural networks on, it is reasonable
to assume that the experiences made by independently act-
ing agents can be centrally pooled throughout the training
phase. After training has concluded, the control systems are
individually deployed to the distributed drone agents. The
rationale behind this concept is that we investigate a team
of homogeneous UAVs with identical capabilities and tasks,
therefore all experiences are useful for the training of all
agents. In a real-world deployment of a team of quadcopter
UAVs, all UAVs would be required to regularly return to
a charging station, as flying time remains strongly lim-
ited by available on-board battery capacity. While being
recharged, the UAVs would upload their experience data
to a central server with larger memory and computation
resources.

Our setting can not be characterized as fully coopera-
tive as our agents do not share a common reward [36].
Instead, each agent has an individual but identical reward
function. As the main component of the reward function
is based on the jointly collected data from the IoT devices
described in Section III-C, they do share a common goal,
leading to the classification of our setting as a simple
cooperative one.

D. NEURAL NETWORK MODEL

We use a neural network model very similar to the one
presented in [20]. Fig. 3 shows the DQN structure and
the map centering and global-local map processing. The
map information of the environment, NFZs, obstacles, and
start/landing area is stacked with the IoT device map and
the map with the other UAVs’ flying times and operational
status. According to Section IV-A, the map is centered on
the UAV’s position and split into a global and local map.
The global and local maps are fed through convolutional
layers with ReLU activation and then flattened and con-
catenated with the scalar input indicating battery content
or remaining flight time. After passing through fully con-
nected layers with ReLU activation, the data reaches the last
fully-connected layer of size |A| without activation function,
directly representing the Q-values for each action given the
input observation. The argmax of the Q-values, the greedy
policy is given by

7 (s) = argmax Qy (s, a). 44)

aeA
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FIGURE 3. DQN architecture with map centering and global and local map processing. Layer sizes are shown in in blue for the smaller ‘Manhattan32’ scenario and orange for

the larger ‘Urban50’ scenario.

TABLE 3. DDQN hyperparameters for 32 x 32 and 50 x 50 maps.

Parameter 32x32 50 x 50 Description

16] 1,175,302 978,694 trainable parameters

Nmax 3,000,000 4,000,000 maximum training steps
l 17 17 local map scaling
g 3 5 global map scaling

|D| 50,000 replay memory buffer size
m 128 minibatch size
T 0.005 soft update factor in (41)
y 0.95 discount factor in (43)
B 0.1 temperature parameter (45)

It is deterministic and used when evaluating the agent.
During training, the soft-max policy

eQo(s.a)/B

7 (ails) = (45)

Svyen e )/?

is used. The temperature parameter 8 € R scales the balance
of exploration versus exploitation. Hyperparameters are listed
in Tab. 3.

VI. SIMULATIONS
A. SIMULATION SETUP
In this work, we aim to provide an algorithm' that is able
to generalize the learned UAV control policy over a large
parameter space that defines the specific data collection sce-
nario. That means that at the start of a new training episode, a
set of scenario parameters is sampled randomly from a given
range of possible values defining the mission. Then the mis-
sion starts and the agents are deployed to collect as much
data as possible in the given circumstances. Specifically,
we define a new mission through the following randomly
varying scenario parameters:

o Number of UAVs deployed;

o Number and position of IoT sensor nodes;

1

1. The Python code for this work is available under

https://github.com/hbayerlein/uav_data_harvesting.
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« Amount of data to be collected from IoT nodes;

« Flying time available for UAVs at mission start;

o UAV start positions.
The exact value ranges from which these parameters are
sampled are given in the following Sections VI-C and VI-D
depending on the map. We deploy our system on two dif-
ferent maps. In ‘Manhattan32’, the UAVs fly inside ‘urban
canyons’ through a dense city environment discretized into
32 x 32 cells, whereas ‘Urban50’ is an example of a less
dense but larger 50 x 50 urban area. Note that we only
trained a single agent on each of these maps, meaning that
all results discussed in the following are a result of only
two trained agents. Generalization over this large parameter
space is possible in part due to the learning efficiency ben-
efits from feeding map information centered on the agents’
respective positions into the network, as we have described
previously in [1].

We use the following metrics to evaluate the agents’
performance on different maps and under different scenario
instances.

o Successful landing: records whether all agents have
landed in time at the end of an episode;

o Collection ratio: the ratio of total collected data
at the end of the mission to the total device
data that was available at the beginning of the
mission,;

o Collection ratio and landed: the product of successful
landing and collection ratio per episode.

Evaluation is challenging as we train a single con-
trol policy to generalize over a large scenario parameter
space. During training, we evaluate the agents’ train-
ing progress in a randomly selected scenario every five
episodes and form an average over multiple evalua-
tions. A single evaluation could be tainted by unusu-
ally easy conditions, e.g., when all devices are placed
very close to each other by chance. Therefore, only an
average over multiple evaluations can be indicative of
the agents’ learning progress. As it is computationally
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infeasible to evaluate the trained system on all possible
scenario variations, we perform Monte Carlo analysis on
a large number of randomly selected scenario parameter
combinations.

Irrespective of the map, the grid cell size is ¢ = 10m and
the UAVs fly at a constant altitude of 2 = 10m over city
streets. The UAVs are not allowed to fly over tall build-
ings, enter NFZs, or leave the respective grid worlds. Each
mission time slot ¢ € [0, T] contains A = 4 scheduled com-
munication time slots n € [0, N]. Propagation parameters
(see Section II-B) are chosen in-line with [37] according to
the urban micro scenario with ago.s = 2.27, anrLos = 3.64,
aﬁos =2 and GI%LOs =5.

Due to the drones flying below or slightly above build-
ing height, the wireless channel is characterized by strong
LoS/NLoS dependency and shadowing. The shadowing maps
used for simulation of the environment were computed using
ray tracing from and to the center points of cells based
on a variation of Bresenham’s line algorithm. Transmission
and noise powers are normalized by defining a cell-edge
SNR for each map, which describes the SNR between
one drone on ground level at the center of the map and
an unobstructed IoT device maximally far apart at one
of the grid corners. The agents have absolutely no prior
knowledge of the shadowing maps or wireless channel
characteristics.

B. TRAINING WITH MAP-BASED VS. SCALAR INPUTS

In this section, we show that our map-based approach
has a good complexity-performance trade-off in compar-
ison to classical scalar input neural network approaches
from the literature despite the added complexity through
map-processing. To illustrate that it is in fact imperative
for training success to feed map information instead of
concatenated scalar values as state input to the agent, we
extend our previous analysis from [1] and [20] by comparing
our proposed centered global-local map approach to agents
trained only on scalar inputs. This is not an entirely fair com-
parison as the location of NFZs, buildings, and start/landing
zones can not be efficiently represented by scalar inputs and
must be therefore learned by the scalar agents through trial
and error. However, the comparison illustrates the need for
state space representations that are different from the tradi-
tional scalar inputs and confirms that scalar agents are not
able to solve the multi-UAV path planning problem over
the large scenario parameter space presented. Conversely,
the alternative comparison of map-based and scalar agents
trained on a single data harvesting scenario would not yield
meaningful results as our method is specifically designed to
generalize over a large variety of scenarios and would require
tweaking in exploration behavior and reward balance to find
the optimal solution to a single scenario. Note that most
of the previous work discussed in Section I-A is precisely
focused on finding optimal DRL solutions to single scenario
instances.

1182

The observation space of the agents trained with concate-
nated scalar inputs is described by

(@) = N’ x N Ego agent
scalar g g
Ego Ego Flying
Position Time

x N2 x N x B Other agents
—— —— ——

UAV Flying  Operational
Positions  Times Status
x NEx2 o RE L Devices (46)
~—— ——
Device Device
Positions Data

forming the input of the neural network as concatenated
scalar values. Since the number of agents and devices is
variable, the scalar input size is fixed to the maximum num-
ber of agents and devices. The agent and device positions
are either represented as absolute values in the grid coordi-
nate frame or relative as distances from the ego agent. The
neural network is either small, containing the same number
of hidden layers as in Fig. 3, or large, for which the number
and size of hidden layers is adapted such that the network
has as many trainable parameters as the map-based 32 x 32
agent in Tab. 3.

Fig. 4 shows the cumulative reward and the collection
ratio with successful landing metric over training time on
the ‘Manhattan32’ map for the five different network archi-
tectures. It is clear that the scalar agents are not able to
effectively adapt to the changing scenario conditions. The
small neural network agents seem to have a slight edge over
the large agents, but representing the positions as absolute
or relative does not influence the results.

Referring further to Fig. 4, the map-based agent converges
to final performance metric levels after the first 20% of the
training steps. However we observed that additional training
is needed after that to optimize the trajectories in a more
subtle way for flight time efficiency and multi-UAV coordi-
nation. The overall training time for the full 3 million training
steps was around 40 hours on a 2017 Nvidia Titan Xp GPU.

C. “MANHATTAN32” SCENARIO

The scenario, as shown in Fig. 5 is defined by a Manhattan-
like city structure containing mostly regularly distributed
city blocks with streets in between, as well as two NFZ
districts and an open space in the upper left corner, divided
into M = 32 cells in each grid direction. This is double
the size of the otherwise similarly designed single UAV
scenario in [1]. We are able to solve the larger scenario with-
out increasing network size, thanks to the global-local map
approach. The value ranges from which the randomized sce-
nario parameters are chosen as follows: number of deployed
UAVs I € {1,2,3}, number of IoT sensors K € [3, 10],
data volume to be collected Dy iy € [5.0,20.0] data units
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FIGURE 4. Training process comparison between map-based DRL path planning
and scalar input DRL path planning. Scalar inputs to the neural networks (NNs) are
either encoded as absolute coordinate values or relative distances from the
respective agent. We compare two different scalar input network architectures with
large and small numbers of trainable parameters. The average and 99% quantiles are
shown with metrics per training episode grouped in bins of 2e 5 step width. Note that
the metrics are plotted over training steps as training episode length is variable.

TABLE 4. Performance metrics averaged over 1000 random scenario Monte Carlo
iterations.

Metric Manhattan32  Urban50
Successful Landing 99.4% 98.8%
Collection Ratio 88.0% 82.1%
Collection Ratio and Landed 87.5% 81.1%

per device, maximum flying time by € [50, 150] steps, and
18 possible starting positions. The IoT device positions are
randomized throughout the unoccupied map space.

The performance on both maps is evaluated using Monte
Carlo simulations on their respective full range of scenario
parameters with overall average performance metrics shown
in Table 4. Both agents show a similarly high successful
landing performance. It is expected that the collection ratio
cannot reach 100% in some scenario instances depending
on the randomly assigned maximum flying time, number of
deployed UAVs, and IoT device parameters.

In Fig. 5, three scenario instances chosen from the random
Monte Carlo evaluation for number of deployed UAVs [ €
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{1, 2, 3} for 5(a) through 5(c) illustrate how the path planning
adapts to the increasing number of deployed UAVs. All other
scenario parameters are kept fixed. It is a fairly complicated
scenario with a large number of IoT devices spread out over
the whole map, including the brown and purple device inside
an NFZ. The agents have no access to the shadowing map
and have to deduce shadowing effects from building and
device positions.

In Fig. 5(a), only one UAV starting in the upper left
corner is deployed. Due to its flight time constraint, the
agent ignores the blue, red, purple, and brown IoT devices
while collecting all data from the other devices on an efficient
trajectory to the landing zone in the lower right corner. When
a second UAV is deployed in Fig. 5(b), the data collection
ratio increases to 76.5%. While the first UAV’s behavior is
almost unchanged compared to the single UAV deployment,
the second UAV flies to the landing zone in the lower right
corner via an alternative trajectory collecting data from the
devices the first UAV ignores. With the number of deployed
UAVs increased to three (two starting from the upper left
and one from the lower right zone) in Fig. 5(c), all data can
be collected. The second UAV modifies its behavior slightly,
accounting for the fact that the third UAV can collect the
cyan device’s data now. The three UAVs divide the data
harvesting task fairly among themselves, leading to full data
collection with in-time landing on efficient trajectories while
avoiding the NFZs.

D. “URBAN50” SCENARIO

Fig. 6 shows three example trajectories for UAV counts of
I € {1, 2, 3} for 6(a) through 6(c) in the large 50 x 50 urban
map. The scenario is defined by an urban structure con-
taining irregularly shaped large buildings, city blocks and
an NFZ, with the start/landing zone surrounding a build-
ing in the center, divided into M = 50 cells in each grid
direction. The map has an order of magnitude more cells
than the scenarios in [1]. The ranges for randomized sce-
nario parameters are chosen as follows: number of deployed
UAVs I € {1, 2, 3}, number of IoT sensors K € [5, 10], data
volume to be collected Dy inir € [5.0, 20.0] data units, max-
imum flying time bg € [100, 200] steps, and 40 possible
starting positions. The IoT device positions are randomized
throughout the unoccupied map space.

Fig. 6(a) shows a single agent trying to collect as much
data as possible during the allocated maximum flying time.
The agent focuses on collecting the data from the relatively
easily reachable device clusters on the right and lower half
before safely landing. With a second UAV assigned to the
mission as shown in Fig. 6(b), one UAV services the devices
on the lower left of the map, while the other one collects
data from the devices on the lower right, ignoring the more
isolated blue and orange device in the top half of the map.
A third UAV makes it possible to divide the map into three
sectors and collect all IoT device data, as shown in Fig. 6(c).

This map’s primary purpose is to showcase the signifi-
cant advantages in terms of training time efficiency and the
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FIGURE 5. Example trajectories for ‘Manhattan32’ map with K = 10 loT devices, all with Dy injt = 15 data units to be picked up and a maximum flying time of by = 60 steps.
The color of the UAV movement arrows shows with which device the drone is communicating at the time (see legend in Table 1).
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(a) I =1 agent, data collection ratio 41.8%
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(b) I =2 agents, data collection ratio 80.2%
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(c) I =3 agents, data collection ratio 100.0%

FIGURE 6. Example trajectories for ‘Urban50’ map with K = 10 loT devices, all with Dy, injt = 15 data units to be picked up and a maximum flying time of by = 100 steps for all

UAVs (legend in Table 1).

required network size from the global-local map approach.
Thanks to a higher global map scaling or compression fac-
tor g (see Table 3), the number of trainable parameters of
the network employed in this scenario is even smaller com-
pared to the network used for ‘Manhattan32’. A network
without a map scaling approach would need to be of size
34,061,446, hence a size that is infeasible to train using
reasonable resources.

E. INFLUENCE OF SCENARIO PARAMETERS ON

PERFORMANCE AND SYSTEM-LEVEL BENEFITS

An advantage of our approach to learn a generalized path
planning policy over various scenario parameters is the pos-
sibility to analyze how performance indicators change over a
variable parameter space. This makes it possible for an oper-
ator to decide on system-level trade-offs, e.g., how many
drones to deploy vs. collected data volume. An excellent
example that we found for the ‘Manhattan32’ map was that
deploying multiple coordinating drones can trade-off the cost
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of extra equipment (i.e., the extra drones) for substantially
reduced mission time. For instance, it takes twice the fly-
ing time (bg = 150) for a single UAV to complete the data
collection mission that two coordinating UAVs will require
(bo = 75) to conclude successfully. Specifically, that means
that for both scenarios the average data collection ratio with
in-time successful landing stays at the same performance
level of around 88%.

We first analyze the performance of the agent in Fig. 7
within the training range of the scenario parameters (solid
lines), then extend the analysis to out-of-distribution sce-
narios (dashed lines) in the last paragraph of this section.
Fig. 7 shows the influence of single scenario parameters on
the average data collection ratio with successful landing of
all agents. As already evident from the example trajectories
shown previously, Fig. 7(a) indicates the increase in collec-
tion performance when more UAVs are deployed. At the
same time, more UAVs lead to increased collision avoid-
ance requirements, as we observed through more safety
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controller activations in the early training phases. As IoT
devices are positioned randomly throughout the unoccupied
map space, an increase in devices leads to more complex tra-
jectory requirements and a drop in performance, as depicted
in Fig. 7(b).

Fig. 7(c) shows the influence of increasing initial data
volume per device on the overall collection performance.
It appears that higher initial data volumes per device are
beneficial roughly up to the point of Dy jn; € [10, 12.5]
data units, after which flying time constraints force the
UAVs to abandon some of the data, and the collection
ratio shows a slightly negative trend. An increase in avail-
able flying time is clearly beneficial to the collection
performance, as indicated in Fig. 7(d). However, the effect
becomes smaller when most of the data is collected, and
the UAVs start to prioritize minimizing overall flight time
and safe landing over the collection of the last bits of
data.

It is further shown in Fig. 7 how the agents react to sce-
nario parameters which were not encountered during training.
The corresponding values are highlighted with dashed lines.
It can be seen that the performance of the agents follows
the same trend as in the rest of the data, when increas-
ing the number of devices (Fig. 7(b)) or initial data per
device (Fig. 7(c)) out of the trained region. When increasing
the maximum flying time (Fig. 7(d)) for the Manhattan32
agents, or decreasing it for Urban50 agents, the collec-
tion ratio with successful landing performance, increases or
decreases accordingly. Incrementing the number of agents to
four (Fig. 7(a)) reduces the performance slightly. The reason
is the decrease in landing performance. However, this is to be
expected since the probability of all agents landing decreases
with the number of agents. Since the collection ratio is nearly
saturated for the scenarios with three agents, the drop in
overall landing performance decreases the collection ratio
and landed performance. In general, it is evident that the
proposed approach cannot only generalize over the whole
range of scenario parameters encountered during training
but can also extrapolate successfully to out-of-distribution
parameters.
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The parameters within the training range are rendered in solid lines and the

VIl. CONCLUSION

We have introduced a multi-agent reinforcement learning
approach that allows us to control a team of cooperative
UAVs on a data harvesting mission in a large variety of
scenarios without the need for recomputation or retrain-
ing when the scenario changes. By leveraging a DDQN
with combined experience replay and convolutionally pro-
cessing dual global-local map information centered on the
agents’ respective positions, the UAVs are able to find effi-
cient trajectories that balance data collection with safety
and navigation constraints without any prior knowledge of
the challenging wireless channel characteristics in the urban
environments. We have also presented a detailed description
of the underlying path planning problem and its translation
to a decentralized partially observable Markov decision pro-
cess. In future work, we will extend the UAVs’ action space
to altitude and continuous control, requiring an RL algorithm
different from Q-learning with a continuous action space and
adding height information to the agents’ observations space.
Moreover, we will investigate if attention-based mechanisms
can be used for map processing, assessing their viability
with respect to performance and computational requirements
in this context. Further improvements in learning efficiency
could be achieved when combining our approach with multi-
task reinforcement learning or transfer learning [26], a step
that would bring RL-based autonomous UAV control in the
real-world even closer to realization.
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