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Abstract—Zero conf protocols date from 1999. They
provide plug and play mechanisms to set up networks
without having to configure DNS or DHCP servers.
Almost every device (PCs, printers, scanners, etc.)
nowadays ”speaks” one of these protocols, sometimes
without its owner being even aware of it. The booming
IoT ecosystem, in particular, relies heavily on them.
Unfortunately, these protocols offer a number of differ-
ent ways to run, so called, man in the middle attacks
(MITM). Some previous publications have mentioned
and have taken advantage of one or another of these
design flaws. In this paper, we provide a deep dive
into the various issues at hand and show the extent
of the problem. We consider that the growing reliance
of networks on these protocols represent an underesti-
mated and ill covered threat. We have run a number of
experiments (300) to test various implementations and
discuss our results. We also propose means to detect
these attacks thanks to Zeek (aka Bro). We make the
attack code as well as the Zeek scripts available to the
research community in a format that makes replication
of our results possible by researchers while not easy to
use by script kiddies.

Index Terms—; MITM; LLMNR; zeroconf protocols

I. Introduction
In 1999,the IETF chartered the Zeroconf working group

to enable networking in the absence of configuration and
administration. ”[. . . ] The long-term goal of Zero Config-
uration Networking is to enable the creation of entirely
new kinds of networked products, products that today would
simply not be commercially viable because of the inconve-
nience and support costs involved in setting up, configuring,
and maintaining a network to allow them to operate [. . . ]”
[1]. In fact, the genesis of this work starts in 1986 with
Appletalk [2]. Indeed, it is worth noting, as explained by
Cheshire and Krochmal in [3], that one of the goals of
this group was to provide an IP-based replacement for
AppleTalk and the AppleTalk Name Binding Protocol
(NBP) [4], [5]. That vision is now achieved with the
explosion of the so called Internet of Things, with a myriad
of devices that rely on these protocols to communicate
together.

Several protocols fall under the umbrella of ”zero-
conf protocols”. The most common ones are IPv4LL [6],
LLMNR [7], multicast DNS (mDNS ]) [8], DNS-based Service
Discovery (DNS-SD) [9]. Apple has implemented these last

two under the name Apple Bonjour [10] and they can be
found under the name Avahi [11] within Linux machines.

These protocols enable devices to, among other things,
obtain an IP address, make the services they offer visible,
search for others, etc., without the need of a DNS or DHCP
server. The key idea is to use multicast addresses to reach
out to all the other devices in the same network and
”negotiate” IP addresses, host or service names, that a
given device would like to use or to offer.

There are security flaws with these protocols and some
previous works have shown how to leverage them to launch
attacks [12]–[14]. In this paper, we propose a deep dive into
the issues related to the most popular of these protocols,
namely mDNS and DNS-SD. In particular, we show the
many different ways to run a man in the middle attack in
such environment. We carry out a number of experiments
against various target devices and discuss the outcomes.
Last but not least, we discuss how to detect them thanks to
Zeek (aka Bro), a freely available network based intrusion
detection system [15]–[17].

It is important to note that, even in networks configured
with a DNS and a DHCP server, these protocols can be run-
ning as well, rendering devices vulnerable to the attacks
mentioned in this paper.

To discuss these topics, the paper is structured as
follows. In section 2, for the sake of completeness, we
rapidly present the mDNS and DNS-SD protocols. In section
3, we cover the related work and position our own contri-
butions. In Section 4, we describe several attack scenarios
and the different components impacting the way attacks
can be carried out. In section 5, we present our various
experiments and their visible consequences in the network.
In Section 6, we discuss how detection can be carried out.
Section 7 covers the ethical dimension of this work and
Section 8 concludes the paper.

II. A brief introduction to mDNS and DNS-SD

A. Overview
This Section aims at making the paper self contained.

We invite the reader already familiar with these protocols
to move directly to Section III.

We start our explanations with the introduction of the
key concepts and some important vocabulary (subsection



II-B). Then, we cover the three key phases of these proto-
cols: the initiation phase (subsection II-C) run when a new
device arrives in a network, the standby phase (subsection
II-D) continuously run by existing devices and the conflict
resolution phase (subsection II-E) run if two devices are
claiming the same resource (e.g., an IP, a name, etc.).

B. Concepts and vocabulary
1) local domain name: In the context of zeroconf pro-

tocols, each device has a so called local domain name.
The Fully Qualified Domain Name (FQDN) of this local
domain name is made of the default host name, usually
hardcoded in the device, concatenated with the suffix
”.local”. This suffix is a special Pseudo-Top-Level-Domain
[18]. According to the RFC 6762 [8] ”. . . Any DNS query
for a name ending with ”.local.” MUST be sent to the [. . . ]
multicast address 224.0.0.251 . . . ” to be resolved by the
mDNS protocol instead of querying any possible DNS server.

Example: If a HP printer has ”HP XXX” as its
hardcoded default name, then its local domain
name will be ”HP XXX.local”.

It is very important to note that each device can have,
and usually has, a general domain name registered in the
DNS server, when there is one, and a local domain name
used by the mDNS protocol. The hostname part of these
two FQDNs are usually the same but they can be different.

2) local service name: Each device can offer multiple
services, such as a printing and a scanning service. Each
service has a unique local service name. The format of this
name is defined in [9] as ”Instance.Service.Domain” where:

Domain: is ”.local”;
Service: follows the convention established in [9] to
define a specific service (e.g., ” ipp. tcp” for a
printing service);

Instance: is hardcoded within the device and is dif-
ferent from the default hostname. To avoid conflicts,
the last digits of the MAC address can, for instance,
be added to it.

Example: If a printer’s name is ”HP [D2A9BE]”,
then is local service name will be:
”HP [D2A9BE] . ipp. tcp.local”.

If the device is offering several services, the same in-
stance field value can be used in each local service instance
but this is not mandatory (e.g., an Apple TV uses distinct
local service instances values for the various local service
names it announces).

C. Initiating phase
1) Obtaining an IP address: When a device joins a net-

work, besides through a manual IP address configuration,
it has two distinct ways to obtain an IP address:

1) DHCP server [19]: the device can search for a DHCP
server, by broadcasting a request. If present, such
server could offer an IP address to the device.

2) Automatic Private Internet Protocol Addressing: the
device can randomly pick an IP address from the

reserved address block 169.254.0.0/16. Then, it sends
an Address Resolution Protocol (ARP) request [20] for
that chosen IP. The absence of any reply indicates that
no other device uses this IP and it is thus claimed by
the device. In case of a reply, the device picks another
IP and repeats the same process.

2) Binding Process: Once a device has obtained an IP
address, it needs to verify that its local domain name as
well as its local service instance(s) have not already been
chosen by another device. This is achieved by sending
a query message to the multicast address 224.0.0.251
which contains the local domain name and the local service
instance(s). As with the ARP request, if the device receives
no reply, it knows that these names are available and it
then binds its IP to them. On the other hand, if another
device replies, it means that the local domain name or one
of the local service names is already taken and the conflict
resolution process described later in II-E takes place.

Once the binding has taken place, the device sends
to the multicast address several packets containing more
information about the services it provides. Figure 1 offers
a simplified schematic representation of this sequence of
packets, where ”HP 6263” is the printer’s hostname and
”HP Printer 123” the instance value of its local service
name.

Fig. 1. Initiating Phase

D. Standby phase
After the initiating phase, each device keeps listening to

the multicast address. Two types of messages can trigger
a reaction:

1) a device is searching for devices providing a specific
service, or is asking for all available services in the
network. In such case, every concerned device replies
with the requested information, usually (but not
necessarily) to the multicast address instead of the
unicast of the requestor. Such exchange of packets is
represented in Figure 2;

2) another device, in its own initiating phase, is querying
an already used local domain name or local service in-
stance. In such a case, the conflict resolution process,
described here after in II-E takes place.



Fig. 2. Standby phase

E. Conflict resolution
This situation occurs when two devices want to use the

same identical name (local domain name or local service
instance). We can distinguish three different situations:

1) Both devices are in the initiating phase:
The two devices join the network at the same time.
During their initiating phase, they can detect the
conflict, as explained in Section 8.2, page 27, of the
RFC 6762 [8]. In such case, the first two non conflicting
records are compared and the lexicographically later
data wins. For instance, if two devices want to use
the same local domain name (conflicting record) for
two distinct IP addresses (non conflicting record),
the device with the smaller IP address value must
change its conflicting local domain name name. Once
done, the device executes its initiating phase again
and, hopefully, concludes it successfully. This is rep-
resented, in a simplified way, in Figure 3.

Fig. 3. Conflict in initiating phase

2) One device is in its initiating phase and the other in
the standby phase:
In this case the device in the standby phase keeps
its information unchanged while the other modifies
its own to resolve the conflict. One such situation is
represented in Figure 4 where ”HP printer 2” is the
one in standby phase.

Fig. 4. Conflict with devices in distinct phases

3) Both devices are in the standby phase:
This can happen if, for instance, two parts of the
network were initially disconnected and, then, recon-
nected. In such case, it could be that two distinct de-
vices are in standby phase with conflicting attributes.
A conflict will be detected if a third device queries
either the local domain name or the local service
instance(s) since two distinct devices will reply with
the very same information. If this happens, the two
devices MUST execute the initiating process and the
resulting conflict will be treated as in the first case
described here above.

III. State of the art
The so called Man in the Middle (MITM) attacks have

been known for a while and exist in many different forms
and flavours. We refer the interested reader to the survey
by Conti et al. for a general introduction to the topic
[21]. Our paper covers those specifically due to so called
Zeroconf protocols.

These protocols have become popular in the last decade
but had been in the making since 1999 [1]. Siddiqui et al.
[22], in 2012, are the first ones to mention the existence
of security issues related to these protocols. They briefly
mention the possibility of MITM attacks and propose to run
mDNS and DNS-SD on top of IPSEC for security reasons.

H. Raffiee, in 2015 [23], [24], produced an Internet
draft that aimed at exploring the many different Zeroconf
security issues. This is a well written document, quite in-
teresting, but, unfortunately very brief. The explanations
remain at a high level of abstractions. For instance, the
report does not mention the notion of MITM attacks a
single time.

In 2017, at the ”Hack in the Box, HITB” conference,
A. Atlasis made the first detailed presentation of several
Zeroconf security issues [25]. There are no written pro-
ceedings but a video is available on the web which is
quite instructive and covers topics such as the priority and
weight in DNS SRV records, the cache-flush bit, etc.

In parallel, Bai et al., in 2016 and 2017 did publish two
papers describing how to leverage flaws in the Bonjour pro-



tocol to run attacks against some application layer tools
[12], [13]. They propose security countermeasures such as
conflict detection and ”speaking out” certificates. In a
similar vein, one can mention the work published in 2019
by Stute et al. [14] in which the authors demonstrate the
existence of vulnerabilities in the Apple Wireless Direct
Link (AWDL) protocol. That protocol relies on mDNS and
HTTPS [26] on top of Bluetooth Low Energy (BLE) or WiFi.
The design flaws in mDNS are one of the elements that
they leverage in order to carry out their attack.

In 2018, Erickson et al. introduce a tool dubbed Dream-
catcher in [27]. This tool aims at enforcing network access
control. Among other things, it provides mechanisms to
detect the arrival of new devices making mDNS announces.

From the list of past publications, one can draw a couple
of important remarks:

1) It took more than 10 years to see the first publication
on the design flaws of mDNS and 5 more years for a
detailed public presentation.

2) Over the last few years, several applications have been
shown to be vulnerable because they were relying on
mDNS.

3) The mDNS attacks, in past publications, are seen
as a simple mean to reach a more ambitious goal.
Therefore, they are not explained in great details.

There are probably many more attacks that could be
carried out because of the insecure foundation provided
by mDNS. The growing IoT ecosystem is heavily relying on
these protocols. This is why, in this paper, we explain as
precisely as possible the many different ways a man in the
middle attack can be carried out by misusing mDNS and
DNS-SD. We highlight not only known design flaws but also
reveal new problems due to poor implementation choices.

IV. Man in the middle attack
A. General Overview

To illustrate the notion of MITM attack, we will consider
the simple case where a genuine user, Alice, is willing to
print a file to a printer she knows to be available in the
network. The attacker, Bob, tries to force Alice’s machine
to send the file to be printed to Bob’s machine (without
using ARP poisoning, another well known mechanism to
carry out MITM attacks [28]–[30]). Afterwards, Bob sends
the file, modified or not, to the printer in such a way that
Alice does not notice that the file first went through Bob’s
machine before being printed where she wanted it to be.
Throughout the text, we will use the following terminology
to refer to Alice, Bob and the printer:

• Alice’s machine is referred to as the client,
• Bob’s machine is referred to as the attacker,
• The printer is referred to as the target of the attack.
As explained in Section II, the zero conf protocols rely

on the bindings between three pairs of information:
1) A specific service of a device is associated with a local

service instance name.

2) That local service instance is bound with, i.e., known
to be reachable at, a local domain name.

3) That local domain name is bound with a specific IP
address.

To launch a man in the middle attack (MITM), all an
attacker needs to do is to break anyone of these three bind-
ings. More precisely the MITM is possible through three
technical attacks (bullets 1-3) and one social engineering
attack (bullet 4), namely:

1) by ”convincing” the clients that a specific local do-
main name is reachable at the attacker’s IP address;

2) by ”convincing” the clients that the local domain
name associated with a requested local service in-
stance is the one of the attacker;

3) by ”convincing” the target of the MITM to change its
local service instance;

4) by luring the end user to choose the wrong, similarly
”looking”, local service instance that he wants to use.

Furthermore, there are several parameters that one can
play with when implementing any of these 4 attacks,
leading to a large variety of ways to run them. The choices
made by an attacker will enable him, or not, to maximize
his chances of success and/or minimize the noticeable
consequences of his attack.

In the following paragraphs, we present each of these
four main attacks in some more details (Section IV-B)
and, then, in Subsection IV-C we present different ways
to run them. Next, in Subsection IV-D, we present their
possible noticeable consequences and, at last, we present
in Subsection IV-E the conditions that must be satisfied
for some of these attacks to succeed. We have run a large
number of experiments, trying all different forms of attacks
against several targets. These experiments are described in
Section V and all the results are summarized in a table,
made available in [31], taking into account all the elements
that we present here after.

B. Four attack strategies
1) Targeting the IP address associated to a local domain

name: The first time that a client wants to print a file, she
sends multicast DNS queries to find out which printer, if
any, is available. Printers respond by providing in their
replies, among other things, a so called A record that
associates an IP address with their local domain name.
If the attacker could replace the printer’s IP address in
this record with its own IP address, the attack would
succeed. However, in the general case, it is impossible
for an attacker to modify a packet sent by the printer
to a multicast address. Instead, the attacker can send
another packet, identical to that of the target but with a
different IP address in the A record. If the client uses that
information, the attack succeeds. This needs to be done
carefully, by making the packet ”invisible” to the printer to
maximize the chances of success; if not, the printer would
detect the conflict and react accordingly. The details on
how to do that are covered later in Section IV-C. Figure



5 presents a simplified view of such possible exchange of
packets that we can summarize as follows:

• Packet 1: The client looks for the available services.
• Packet 2: The devices announce the offered service(s).
• Packet 3: The client queries the printing services.
• Packet 4: Each printer provides its local service in-

stance name, local domain name and IP address.
• Packet 5: The attacker sends to the unicast1 address

of the client the very same packet as the target but
with a distinct IP address.

Fig. 5. Attack Strategy 1

Whether this attack will succeed or not depends on the
minutiae of its modus operandi, as discussed in Section V.

We can detect this attack by looking for a local domain
name associated to two distinct IP addresses. This could
lead to false positives though, if, e.g., two identical devices
are present in the network and have the same default local
service and domain names.

2) Targeting the local domain name associated to a
local service instance name: Instead of changing the IP
address, the attacker could modify the local domain name
associated to the target’s local service name. This can be
done by modifying the values of the SRV record linking
these two, substituting the target’s local domain name
by the attacker’s machine local domain name. Of course,
the A record must also be changed to inform the client
of the attacker’s machine IP address. Figure 6 offers a
simplified view of the packets exchanged for this attack
to succeed2. The logic is the same as in the previous case,
only the modified fields change. As in the previous case,
the attacker must pay attention to the ways he runs this
attack if he wants to maximize his chances of success (see
Section V for more on this).

To detect this attack, we now have to look for a local ser-
vice name associated to two distinct local domain names.
As in the previous case, we could have false positives if two
devices announce the same local service name but with a
distinct local domain name.

1Replying to the multicast address could also work but with the
risk of triggering a reaction by the printer if it detects the conflict.

2As in the previous case, the attacker replies to the unicast address
to avoid any reaction from the target.

Fig. 6. Attack Strategy 2

3) Forcing the target to change its local service name:
The last technical means to fool the client’s machine is to
force the target to change its local service name, effectively
”stealing” it from it. This can be done by the attacker
by announcing the same local service name as the target,
intentionally triggering the conflict resolution process. Two
possible scenari exist:

1) By carefully chosing the values of the non conflicting
records, the attacker is certain to win the lexicograph-
ical order and the target will change its local service
name, as explained in Section II-E, point 1 (page 3).

2) If, for whatever reason, the attacker cannot win with
respect to the lexicographical order, there is still a way
to force the target to change its local service name by
acting in a non RFC compliant way. More precisely,
if the target is in standby phase and if the attacker
announces the same local service instance name, as
explained in page 3, both machines MUST enter the
conflict resolution phase, effectively moving back to
the initiating state. If the attacker is not compliant
with the RFC and remains in its standby phase, then
it forces the other device, in the initiating phase,
to change its name. In other words, by ”standing
its ground” (in a non RFC compliant behavior), the
attacker forces the target to go back to the initiating
phase while it remains in standby phase and, in that
situation, uses the conflict resolution process to its
advantage since it mandates to the only device in the
initiating phase to resolve the conflict on its own. This
is represented in a simplified way in Figure 7 where
we can see that messages 4 and 5 make the conflict
visible to anyone. We are clearly in the situation (3)
of section II-E where both conflicting devices should
revert to the initiating phase (situation (1) section
II-E). As indicated by message 6, the client indeed
engages into the conflict resolution phase by asking
who, if anyone, is using his local service instance
and,or, local domain name. With message 5, the at-
tacker indicates ownership, in standby mode, of these
values. From the target point of view, we are now,



effectively, in situation (2) (instead of (3)) of section
II-E and the machine in the initiating phase, the
target, must change its names. The problem could be
solved if the RFC did explicitly specify what behavior
to adopt when confronted with a non RFC compliant
participant.

The net result of either of these techniques is that the
attacker now has acquired the original legit local service
name of the target and his local domain name. Any further
use of that local service instance by any client in the
network will lead them to contact the attacker instead of
the target.

To modify the local service name in the packets, the
attacker needs to modify several records, namely the A
record, the SRV record, the PTR record and the TXT record.
The roles of the first two have been mentioned before. The
PTR record binds the local service name to the service and
the TXT record provides additional information about the
service (typically used by the application layer).

From a detection point of view, we will briefly observe
a conflict with the same local service instance appearing
in distinct packets. As explained before though, this could
happen even in the absence of an attack. If the attack
is carried out following the second method explained, the
fact that one of the conflicting devices does not engage into
the conflict resolution process can be seen as an additional
red flag to consider.

A noticeable difference with respect to the two first
attacks is that the target actively takes part to this third
one by changing its attributes. As a result, all clients of the
target are impacted. At the contrary, in the first two cases
(when carried out thanks to unicast replies), the target
was unaware of the ongoing attack and the sole impacted
clients were the ones directly contacted by the attacker
with a unicast reply.

4) Luring the user to choose the wrong service instance:
A last way to proceed is to try to lure the end user instead
of the machine itself, as represented in Figure 8. Instead
of ”stealing” the target’s local service instance, Bob could
advertise a name crafted in such a way that it could fool
the end user. If, for instance, the various targets names
are presented to the end user sorted by US ASCII character
set value (ie alphabetical order, as seen by the user), the
attacker can ensure that his chosen name will be at the top
of the list if it starts with any of the 65 characters that
exist before the first alphabetical letter, ’A’ (hexadecimal
value 41). By choosing, e.g., the hexadecimal value 01, an
invisible character is in the first place and the local service
instance becomes automatically the first in the list. Note
that this is, somehow, user interface dependant because
we have also seen cases where the name of the device, that
appears in the user interface, is taken from the additional
TXT field and, in such cases, the non printable characters
could be stripped out during the parsing of the free form
field.

Fig. 7. Attack Strategy 3

Fig. 8. Attack Strategy 4

C. Modus operandi
As eluded to, when describing the various attack strate-

gies, there are a number of technicalities in the way
they can be implemented that will influence not only the
outcome of the attack but also the ability of a detector
to observe abnormal situations. In this subsection, we
dig deeper into the technical details to let the reader
understand what are these various pecularities that we
refer to. Here below, we describe six of them, namely, i) the
cache flush bit, ii) the SRV record priority and weight, iii)
unicast vs. multicast usage, iv) real vs. spoofed IP origin,
v) sporadic vs. continuous attack, vi) timing of the attack.

1) Cache-flush bit: As explained in Section 10.2 of the
RFC 6762 [8], a host has the possibility to flush the cache
of all listening parties for a specific type of information.
Quoting the RFC: ” When a resource record appears in
a Resource Record Section of the DNS response with the



cache-flush bit set, it means, ”This is an assertion that this
information is the truth and the whole truth, and anything
you may have heard more than a second ago regarding
records of this name/rrtype/rrclass is no longer true”.

To maximise his chances of success, the attacker should
use this bit whenever he sends information, to ensure that
it will supersede the information previously sent by the
target.

2) SRV record priority and weight: As seen before, The
RFC 2872 defines the SRV DNS resource record to specify
the location of services. The SRV RR also contains a weight
and priority that clients must take into account to choose
which of the, possibly, numerous servers to talk to when
in need of a given service. More precisely, the RFC defines
the priority and weight as follows:

Priority: A client MUST attempt to contact the
target host with the lowest-numbered priority it can
reach; target hosts with the same priority SHOULD
be tried in an order defined by the weight field.

Weight: Larger weights SHOULD be given a propor-
tionately higher probability of being selected.

The attacker, to maximise his chances to be chosen when
several choices are possible for the recipient, should thus
put a value of 0 for the priority and the highest possible
value for the weight.

3) Unicast vs. Multicast: By default, all mDNS and DNS-
SD communications are taking place using a multicast
channel by sending all packets to the very same IP address
224.0.0.251. However, the authors of the RFC 6762 [8] have
wisely identified a number of cases where it does make
sense for a response to be sent to the unicast address of
the querier. The RFC specifies that a ” . . . Multicast DNS
querier MUST only accept unicast responses if they answer
a recently sent query (e.g., sent within the last two seconds)
that explicitly requested unicast responses. A Multicast DNS
querier MUST silently ignore all other unicast responses
[. . . ] These questions requesting unicast responses are re-
ferred to as ”QU ” questions, to distinguish them from the
more usual questions requesting multicast responses (”QM ”
questions) ”. Unfortunately, we have noticed during our
experiments that some implementations are not compliant
with that RFC and, therefore, make MITM easier to carry
in a stealthy way. Indeed, we have found cases where a
querier does accept unicast responses even if it has
sent a ”QM ” query. Even worse, we have found cases
where a machine does accept a unicast response even
if it has sent no query at all.

From an attacker’s point of view, the advantages of
providing responses to the unicast address of the querier
are obvious. Unicast replies will not be seen by the other
devices and, in particular, not by the target, as eluded to
in Figures 5 and 6.

4) IP Spoofing: Another convenient way to remain
”invisible” from the target is to spoof its IP address
when responding to the querier. Indeed, by default, a
sender of datagrams to a multicast address will ignore

its own packets. This is usually referred to as disabling
the ICMP Multicast Loopback. Therefore, spoofing the
target’s IP achieves the same goal for the attacker than
replying to the client’s unicast address.

5) Sporadic vs. continuous: Once an attacker has suc-
ceeded in corrupting the information kept by a client, he
needs to decide if this sporadic victory is enough or if he
wants to ensure that the client’s cache remains corrupted
for the long run.

In the first case, the attacker has nothing to do. Each
record is associated with a ”Time to Live” value. Once
that period expires the record is removed and the client
obtains fresher, correct values, leaving no trace of the past
attack.

At the contrary, to make his attack permanent, the at-
tacker needs to periodically send fresh information, before
the expiration period. If the attacker does that by using
unicast or IP spoofing, he can remain undetected for a long
time.

6) Timing of the attack: When running our experi-
ments, we have noticed that the very same attack can lead
to a very different outcome depending on the state the
client is in. We have identified three distinct situations,
explained here below:

1) Idle The client is connected to the network and has
not issued any query. It stays idle. In that situa-
tion, if an attacker sends uninvited response packets,
some client machines will happily accept them and
update their local information with the content of
the received packets. In that situation, we have also
noticed that some target machines will not notice that
a malicious user is trying to impersonate them even if
the attacker does nothing to hide his packets. This is
probably because they pay no attention to responses
that do not correspond to any pending query.

2) Refreshing The information kept by a client has a
certain ’time to live’ (TTL). When that information
expires, the client issues a request to refresh it. We
have observed that some attacks can only be carried
out successfully in such situation.

3) Resetting Service discovery and name resolution are
services used by the applications such as, e.g., a print-
ing or scanning application. We have seen that, on
some machines, once these applications have obtained
the information they needed they will store it and
never ask for it again to their local stub resolver.
As a result, our attacks can only have an effect on
these applications if they are carried out before the
application requests that information for the very first
time. It is only if that device is deleted from the
application or if the machine is rebooted that mDNS
information will be fetched again by the applications
and an attack made possible again.



D. Noticeable consequences

1) Multiple Services: As explained before, the result of
some of these attacks will lead the end user to see the
existence of two similarly looking services. For example,
if the user search for a printing service he could end up
discovering the two following services:

1) ”HP [D2A9BE]. ipp. tcp.local”;
2) ”HP [D2A9BE](2). ipp. tcp.local”.

This is a simplified example. We have seen that it is
possible to make things even more confusing for the user by
having hidden characters inserted into one of the names,
making the two services indistinguishable. However, one
of these services is offered by the attacker whereas the
other one is the legit one. If the user picks the wrong
one, the attack succeeds and can be carried out in an
invisible way for the client (i.e., the file is effectively
printed on the expected printer). In the other case, it
fails. With 2 services in the network, the attack has thus
a 50% chance of success. Of course, the attacker could
artificially increase the number of the malicious services
to increase his chances of success. Such a tactic, however,
is likely to catch the attention of the user who could
start investigating why so many similarly looking services
coexist.

2) Packet flooding: We have observed cases where failed
attacks lead the target to generate an endless amount of
messages. Whether the target service is reachable while
this is ongoing is a function of the client and the target.
The worst case scenario is a denial of service against the
target (not a MITM).

The reason is that the attacker can force the target to
repeat indefinitely the conflict resolution protocol. This is
possible when a target, in standby phase, detects a conflict
with the attacker. As per the RFC, it MUST enter conflict
resolution phase. Two possibilities exist:

The attacker participates . . . : . . . to the conflict
resolution phase and ”loses” the lexicographical
order. At that point, the target reenters the standby
phase. If the attacker does not change its name,
a new conflict is detected that triggers the same
sequence of events.

The attacker does not participate . . . : . . . to
the conflict resolution phase and, instead, remains
silent up to the point where the target enters again
the standby phase. At that time, the attacker emits
its conflicting information again, triggering the
same sequence of events.

We draw the attention of the reader to the subtle difference
between these two situations and the one described in
the third attack (case 2, on page 5). For that attack to
succeed, the attacker must be announcing the conflicting
information while the target is running the conflict res-
olution protocol. If the attacker is late, this leads to the
situation exposed here above.

E. Success criteria
Based on our experiments, we have identified a certain

amount of success criteria that must be met by the
attacker for the MITM to succeed, we list the various
situations below and detail them later in the text:

1) Race condition of last cache flush: In some cases,
when the client receives several answers, the attacker wins
only if its answer is the last one, with the cache-flush bit
set to one, received by the client.

2) Race condition of first cache flush: In some cases,
when the client receives several answers, the attacker wins
only if its answer is the very first one, with the cache-
flush bit set to one, received by the client. The reason is
that, after having received the first information, the client
ignores the next ones until resetting the device.

3) Establishing TCP Connection: In some cases, it is
not enough to craft the right mDNS packets to fool a
client. The attack will only succeed if, afterwards, the
client can successfully establish a TCP connection with the
application it is expected to talk to. The attacker must be
able to accept such connection and be able to ”speak” the
correct application layer protocol3.

4) Selecting the right choice: In the social engineering
attacks, since we add a new machine or a new service
instance to the user interface, our attack will only really
succeed if we manage to fool the user to select the fake
entry.

V. EXPERIMENTS
A. Testbed definition

In theory, the possibilities of running a man in the
middle attack can be derived from the analysis of the
protocols specifications. In practice, it is well known that
implementations may drift away from an RFC. Also, there
are often some corner cases that are ill specified or not
specified at all. This is the reason why we have built a
small testbed made of two distinct clients and two distinct
targets. This is definitely not enough to enable us to gener-
alize our results but it is sufficient to already demonstrate
the diversity of the observed behaviours. More precisely,
the testbed is defined as follows:

• The attacking code runs on a Kali Linux 5.8.0 ma-
chine.

• The first client machine runs on a Ubuntu 18.04 LTS
machine. The second one runs on Windows 10.

• The first target was a HP OfficeJet Pro 6230 printer. The
second one was an Apple TV (3rd gen model A1469)
running Apple TV software 7.2.2.

• All these devices were connected thanks to a Cisco
Linksys router E900. The attacker is connected using
the WiFi while the others are connected with Ethernet
Cables.

• On the Ubuntu client, we have used

3In our case, we forward these TCP connections to the target
thanks to iptables SNAT forwarding rules [32].



– the default built in user interface to manage print-
ers;

– Avahi [11] to discover existing services in our net-
work;

– Airstream [33], a third party software, to stream a
video to the Apple TV.

• On the windows client, we have used
– the built-in User interface to manage printers;
– Apple Bonjour for Windows [34] to discover exist-

ing services in our network;
– Soda player [35], a third party software to stream

a video to the Apple TV.
• We are making all the attack scripts available on

github. [31]
• The same github repository contains a pdf file con-

taining the results of the attacking scripts we have
used during the experiments.

B. Methodology
We have carried out the four attack strategies described

in Section IV-B using the various modus operandi de-
scribed in Section IV-C. For the first three technical
attacks, this led to a grand total of 288 attacks while the
fourth one did only generate 12 distinct attacks because
several variations were irrelevant in that case.

All the technical attacks have been carried out with the
cache-flush bit set to 1, the SRV priority value set to 0 and
the weight value to 100 (we have never observed a legit
device using such a high value).

The table in pdf format available in the github repos-
itory details the results obtained for all the 300 cases.
In the Appendix, we offer a summarized version of it in
which we have grouped together all attacks that led to the
same output, keeping the technical and social engineering
separated. The meaning of each column is defined as
follows:

A: Index value of the attack;
B: Client machine type, 2 possible values: Linux (1)
or Windows (2);

C: Target device, 2 possibles values: HP printer (1)
or Apple TV (2);

D: Attack type, 4 possible values corresponding to
the four cases from Section IV-B (page 4): IP (1),
domain name (2), service instance (3), social engi-
neering (4);

E: destination IP used by the attacker, 2 possible
values: multicast IP (1) or client’s unicast IP (2);

F: Source IP used by the attacker, two possible
values: the real attacker’s IP (1) or the target’s
spoofed IP (2);

G: value 1 indicates that the attacker runs its attack
only once; value 2 indicates that the attacker keeps
sending reminders regularly (to ensure persistence
of the attack by refreshing the poisoned informa-
tion);

H: The timing of the attack, with respect to the
state of the client, as defined in point 6 of Section
IV-C (page 6); three possible values: idle (1), re-
freshing (2), resetting (3);

I: the required criteria for the attack to succeed,
as defined in Section IV-E (page 8); five possible
values: winning the race condition for the last cache
flush (1), winning the race condition for the first
cache flush (2), being able to establish a TCP con-
nection (3), having the user select the ”right” choice
(4), none (0);

J: The outcome of the attack is encoded with 8
different values and several of these codes can ap-
pear together for a given attack; success without
noticeable consequence (1); a possible continuous
flood of packets (2); numerous unwanted responses
sent at regular intervals (3); the OS acknowledges
the existence of 2 devices for a given service (4);
user interface shows two similarly looking service
instances (5); refresh requests from the user for the
erroneous records (6); failure (7); possible success
conditional to a success criterion (typically winning
a race condition) (8).

Due to the lack of space, we cannot go through all the
various cases but, instead, we prefer to offer a synthetic
discussion of the results obtained for the 288 technical
attacks and to share some lessons learned. The interested
reader is referred to [31] for the detailed observations.

Among the 288 technical attacks:

184 attacks did succeed.
104 attacks did fail systematically.
104 of the successful attacks were only so when a
success criterion was met, which was not systematic
(race condition problem).

30 attacks, even when successfull, led to a flood of
packets easily noticeable.

16 attacks, to remain successful, needed the attacker
to send frequent reminders.

56 attacks left a noticeable fingerprint for the user,
typically at the application user interface.

Among other things, these experiments highlighted the
following noticeable elements, mentioned earlier:

• Linux machines accept unicast responses when they
should not, even without having sent a request. This
makes them very vulnerable to a number of attack
scenarios.

• On windows machines, as soon as an application has
used the information at his disposal to establish a
TCP connection to the device, it can not be attacked
anymore, until a reset.

• Target devices do not detect that they are imperson-
ated if they have not first replied to a query.

• Target devices do accept to abort the conflict resolu-
tion process when the other conflicting party stands



its ground (i.e., they are RFC compliant but do not
notice that the other device is not).

• Even in networks configured thanks to a DHCP and
DNS server, machines rely on mDNS to contact lo-
cal machines, making these attacks possible despite
the administrators having ”properly” configured their
networks.

VI. Detection methods
Due to the severity, simplicity and large applicability

of these attacks, we thought that it was responsible to
provide some detection technique against them. We have
thus written a couple of Zeek (aka Bro) scripts (around 450
loc). They are very experimental and by no means opti-
mized. We encourage others to revisit and improve them.
These scripts are grouped into 4 sets. The first one detects
suspicious events, the last three look at specific elements of
a given attack method. We have run these scripts to detect
successfully our various attacks and had them running in
a home office environment for a couple of weeks without
generating false positives others than the ones mentioned
earlier in the text. However, we acknowledge that this
does not constitute a thorough and sound evaluation of
their quality. We are in the process of deploying them
in larger environments to accumulate more data on the
risks of false positives. Regarding false negatives, all the
attacks, as implemented, have been successfully detected
by our scripts. Again, this does not ensure that an astute
attacker could not run them in a way that could defeat
our detection.

A. Detecting unexpected elements
Every attack scenario relies on fake mDNS responses.

This is thus what we try to detect. In particular, our
scripts look for the following things:

• a new unknown device in the network; this will gen-
erate a false positive when introducing a new legit
device.

• Two mDNS responses having the same Domain name
or the same service name; this will generate a false
positive, in particular, for devices that do not intro-
duce some amount of randomness in their names.

• Two services with similar services names: for
example: ”HP [D2A9BE]. ipp. tcp.local.” and
”HP [D2A9BE](2). ipp. tcp.local.”

• Periodic mDNS responses without queries.
• Unicast addresses used in mDNS replies.

B. Detecting floods of packets
The packet flooding is easy to perceive. Two devices

keep sending queries and responses continuously which
Zeek can easily recognize.

C. Detecting the race condition for the first cache flush
In order to win the race condition, the attacker has two

possibilities:

• Listen to the query and send a response. This is the
normal behaviour of the devices. But, it has 50%
chance of success depending on which answer arrives
first. If the target’s answer reaches the client first,
the attack fails. In this case we detect the attack by
checking if there are 2 responses for the same service.

• Packet flooding: when a new client joins the network,
the attacker proactively starts sending replies with
very short delays to impersonate a target. That could
give him a better, yet small, chance to win the race
when the client will send a query. This situation
is similar to the packet flooding and detecting the
attacker presence is easy in this case.

D. Detecting the race condition for the last cache flush
To achieve the attack in this case, the attacker will

modify every answer sent by the legitimate device and
sends it to the client after a short delay. We can detect
it by observing the traffic.

VII. Ethical Discussion
Some of our attacks originate from the fact that the RFC

6762 [8] does not specify what behavior genuine partici-
pants to the protocol should adopt when confronted with
non compliant ones. Whether this is a vulnerability of that
RFC or an issue orthogonal to it, is open for debate. In
any case, we have exchanged with S. Cheshire, one of the
authors of the RFC, who has suggested to request agenda
time to present this at the DNSSD working group session
at the upcoming IETF meeting. He also points out that
application layer end to end encryption is available for a
certain amount of devices, such as Airprint printers, which
could, if well configured, mitigate these problems.

Regarding Avahi not being compliant with respect to
unicast replies, we have had several fruitful and con-
structive exchanges with Trent Lloyd, the person leading
this open source project. He acknowledged the problem
and is working on a fix. He also pointed out that Avahi
implements all the checks preconised (SHOULD not MUST)
in the RFC 6762 on the TTL value and source IP address.
This severly limits the impact of the problem to the sole
machines located within the same LAN.

We make our code available to facilitate the reproduc-
tion of results by researchers but its design and coding
style make it ill suited and fragile for someone to run real
attacks with it in a non controlled environment.

VIII. Conclusions
Our 300 experiments have enabled us to demonstrate

the feasibility and the severity of MITM attacks enabled by
the zeroconf protocols. They have not only revealed how
non RFC compliant participants could run attacks but also
that non compliant implementation render these attacks
easier and stealthier. It is our hope that this work will be
an eye opener for those who only see the usability benefits
of these protocols and miss the threats they represent.



References
[1] Zero configuration networking (zeroconf) working group

homepage. [Online]. Available: www.zeroconf.org
[2] S. Cheshire, “private communication,” 2021.
[3] S. Cheshire and M. Krochmal, “Requirements for a protocol to

replace the appletalk name binding protocol (nbp),” RFC 6760,
February, Tech. Rep., 2013.

[4] P. Black and J. Melanson, Inside Macintosh: Networking.
Addison-Wesley Publishing Company, 1994.

[5] S. Cheshire. (1997) Nbp/ip (name bind-
ing protocol over ip). [Online]. Available:
http://www.stuartcheshire.org/rants/NBPIP.html

[6] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic configura-
tion of ipv4 link-local addresses,” Internet Requests for Com-
ments, RFC Editor, RFC 3927, May 2005.

[7] B. Aboba, D. Thaler, and L. Esibov, “Link-local multicast name
resolution (llmnr),” Internet Requests for Comments, RFC Ed-
itor, RFC 4795, January 2007.

[8] S. Cheshire and M. Krochmal, “Multicast dns,” Internet
Requests for Comments, RFC Editor, RFC 6762, February 2013,
http://www.rfc-editor.org/rfc/rfc6762.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6762.txt

[9] ——, “Dns-based service discovery,” Internet Requests
for Comments, RFC Editor, RFC 6763, February 2013,
http://www.rfc-editor.org/rfc/rfc6763.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6763.txt

[10] Apple bonjour. [Online]. Available:
https://developer.apple.com/bonjour/

[11] Avahi. [Online]. Available: https://avahi.org/
[12] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-

M. Hu, “Staying secure and unprepared: Understanding and
mitigating the security risks of apple zeroconf,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp.
655–674.

[13] ——, “Apple zeroconf holes: How hackers can steal iphone
photos,” IEEE Security & Privacy, vol. 15, no. 2, pp. 42–49,
2017.

[14] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann,
G. Noubir, and M. Hollick, “A billion open interfaces for eve
and mallory: Mitm, dos, and tracking attacks on ios and macos
through apple wireless direct link,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 37–54.

[15] V. Paxson, “Bro: A system for detecting network intruders in
real-time,” Computer networks, vol. 31, no. 23-24, pp. 2435–
2463, 1999.

[16] S. Haas, R. Sommer, and M. Fischer, “Zeek-osquery: Host-
network correlation for advanced monitoring and intrusion de-
tection,” in IFIP International Conference on ICT Systems
Security and Privacy Protection. Springer, 2020, pp. 248–262.

[17] Corelight company home page. [Online]. Available:
https://www.corelight.com/

[18] D. E. 3rd and A. Panitz, “Reserved Top Level DNS Names,”
Internet Requests for Comments, RFC Editor, BCP 32, June
1999.

[19] R. Droms, “Dynamic host configuration protocol,” Internet
Requests for Comments, RFC Editor, RFC 2131, March 1997,
http://www.rfc-editor.org/rfc/rfc2131.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2131.txt

[20] D. C. Plummer, “Ethernet address resolution protocol: Or
converting network protocol addresses to 48.bit ethernet
address for transmission on ethernet hardware,” Internet
Requests for Comments, RFC Editor, STD 37, November 1982,
http://www.rfc-editor.org/rfc/rfc826.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc826.txt

[21] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in
the middle attacks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 3, pp. 2027–2051, 2016.

[22] F. Siddiqui, S. Zeadally, T. Kacem, and S. Fowler, “Zero configu-
ration networking: Implementation, performance, and security,”
Computers & electrical engineering, vol. 38, no. 5, pp. 1129–
1145, 2012.

[23] H. Rafiee, “Multicast dns (mdns) threat model and security
consideration,” Internet Eng. Task Force, vol. 102014, 2015.

[24] ——, “Multicast dns (mdns) threat model and
security consideration,” Working Draft, IETF Secre-
tariat, Internet-Draft draft-rafiee-dnssd-mdns-threatmodel-
03, May 2015, http://www.ietf.org/internet-drafts/draft-
rafiee-dnssd-mdns-threatmodel-03.txt. [Online]. Avail-
able: http://www.ietf.org/internet-drafts/draft-rafiee-dnssd-
mdns-threatmodel-03.txt

[25] A. Atlasis, “An Attack-in-Depth Analysis of
multicast DNS and DNS Service Discovery,” slides
presented in 2017, Tech. Rep. [Online]. Available:
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T2-
Antonios Atlasis-An-Attack-in-Depth Analysis of Multicast
DNS and DNS Service Discovery.pdf

[26] E. Rescorla, “HTTP Over TLS,” Internet Requests for
Comments, RFC Editor, RFC 2818, May 2000, http://www.rfc-
editor.org/rfc/rfc2818.txt. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2818.txt

[27] J. Erickson, Q. A. Chen, X. Yu, E. Lin, R. Levy, and Z. M.
Mao, “No one in the middle: Enabling network access control
via transparent attribution,” in Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018,
pp. 651–658.

[28] C. L. Abad and R. I. Bonilla, “An analysis on the schemes for
detecting and preventing arp cache poisoning attacks,” in 27th
International Conference on Distributed Computing Systems
Workshops (ICDCSW’07). IEEE, 2007, pp. 60–60.

[29] D. Bruschi, A. Ornaghi, and E. Rosti, “S-arp: a secure address
resolution protocol,” in 19th Annual Computer Security Appli-
cations Conference, 2003. Proceedings. IEEE, 2003, pp. 66–74.

[30] S. Y. Nam, D. Kim, and J. Kim, “Enhanced arp: preventing arp
poisoning-based man-in-the-middle attacks,” IEEE communica-
tions letters, vol. 14, no. 2, pp. 187–189, 2010.

[31] Github repository for attack code
and zeek scripts. [Online]. Available:
https://github.com/dh001996/MITM MDNS/tree/main

[32] O. Andreasson et al., “Iptables tutorial 1.2. 2,” Copyright©
2001–2006 Oskar Andreasson, GNU Free Documentation Li-
cense, 2001.

[33] Airstream. [Online]. Available:
https://linux.softpedia.com/get/Multimedia/Video/AirStream-
102979.shtml

[34] Apple bonjour for windows. [Online]. Available:
https://support.apple.com/kb/DL999?locale=en US

[35] Soda player. [Online]. Available: https://www.sodaplayer.com/

Appendix
Synthetic presentation of the experimental

results
The complete table with the detailed results for each

experiment is available in [31]. We have included in the
next page a synthetic version of the results in which we
have merged together all lines that were having the same
outcome. When different values were present in a given
column for a set of merged lines, we have indicated the
distinct values separated by ”or”. The reader is invited to
look at the full table to see which exact combination of
columns values leads to the outcome indicated in the J
column.



A B C D E F G H I J
Attack Index Client Type Target Attack type Source IP Destination IP Duration Timing Success Criteria Outcome 

success=1
IP address = 1 RC last=1 flood=2

Linux = 1 HP printer=1 domain name =2 attacker IP=1 Multicast = 1 sporadic=1 Idle = 1 RC first=2 unwanted responses=3
Windows=2 Apple TV=2 service instance=3 Spoofed IP =2 Unicast =2 continuous=2 Refresh=2 TCP = 3 2 devices=4

social eng.=4 Reset=3 select=4 2 services=5
nothing=0 erroneous refresh=6

failure=7
success if criteria met=8

1 - 32 1 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 1 0 1
33-48 1 1 or 2 1 or 2 1 or 2 1 or 2 2 2 0 3
49-72 1 or 2 2 3 1 or 2 1 or 2 1 or 2 1 or 2 4 5
73-80 1 2 3 1 or 2 1 or 2 1 or 2 2 4 6

81-184 1 or 2 1 or 2 1 or 2 or 3 1 or 2 1 or 2 1 or 2 1 or 2 or 3 0 or 1 or (2 and 3) 7
185-227 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 1 or (2 and 3) 8
228-256 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 1 or 2 2 or 3 1 or (2 and 3) 2 and 8
257-263 1 1 2 1 or 2 1 or 2 1 or 2 3 1 4 and 8
264-287 1 or 2 1 or 2 3 1 or 2 1 or 2 1 or 2 3 (1 and 4) or 4 5 and 8

288 1 1 2 1 1 1 3 1 2 and 4 and 8
289, 292 1 1 or 2 4 - - - 1 0 5
290, 293 1 1 or 2 4 - - - 2 0 or 3 6
295-297 2 1 4 - - - 1 or 2 or 3 0 7
298-299 2 2 4 - - - 1 or 2 0 5 and 7

291,294,300 1 or 2 1 or 2 4 - - - 3 4 5 and 8


