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Abstract

This paper reports the first successful application of a differ-
entiable architecture search (DARTS) approach to the deepfake
and spoofing detection problems. An example of neural archi-
tecture search, DARTS operates upon a continuous, differen-
tiable search space which enables both the architecture and pa-
rameters to be optimised via gradient descent. Solutions based
on partially-connected DARTS use random channel masking in
the search space to reduce GPU time and automatically learn
and optimise complex neural architectures composed of convo-
lutional operations and residual blocks. Despite being learned
quickly with little human effort, the resulting networks are com-
petitive with the best performing systems reported in the liter-
ature. Some are also far less complex, containing 85% fewer
parameters than a Res2Net competitor.

Index Terms: neural architecture search, differentiable archi-
tecture search, deepfakes, anti-spoofing, automatic speaker ver-
ification

1. Introduction
Compared to automatic speaker verification for which the re-
search history is decades long, research in deepfake or spoof-
ing detection is relatively embryonic. While recent years have
seen rapid progress, front-end feature extraction as well as back-
end classification approaches are still evolving [1]. Early work
is characterised by a focus on front-end feature engineering,
namely the design of parameters or representations which cap-
ture the tell-tale signs of manipulated or synthesized speech
signals and which help to distinguish these from bona fide
speech [2, 3]. More recently, greater attention has been paid
to the back-end classifier design. Like all fields of speech pro-
cessing, deep neural network architectures are the classifier of
choice [4, 5].

The use of end-to-end (E2E) processing, whereby hand-
crafted and manually optimised components are replaced with
automatically designed and optimised substitutes, has attracted
growing attention. Thus far, E2E developments extend mostly
to the front-end components [6,7]. While back-end components
can be similarly optimised, this usually extends only to the net-
work parameters; the network architecture itself is almost al-
ways still hand-crafted. Inspired by original work in [8, 9],
our first attempt to harness the potential of fully E2E process-
ing [10] explored the use of neuro-evolution for augmenting
topologies (NEAT). While NEAT is successful in learning net-
work architectures automatically, performance was found to be
far from the state of the art, while computational complexity
was found to be prohibitive. Whereas more efficient NEAT im-
plementations are reported in the literature [11,12], we have in-
stead turned to powerful and efficient alternatives with proven
potential in speech-related tasks.

We have explored the use of neural architecture search
(NAS), originally proposed in [13]. NAS solutions are based
upon an architecture search space, a search strategy and an
evaluation strategy [14]. A search space contains a set of can-
didate operations. Using some performance criteria, an archi-
tecture is selected from this space and further optimised. The
particular variant of NAS known as differentiable architecture
search (DARTS) [15], enables the selection of candidate op-
erations, and hence the architecture, from a search space with
continuous and learnable weights. DARTS models can be op-
timised with backpropagation in the usual manner with hard-
ware acceleration. The network is designed automatically by
optimising the operations contained within architecture building
blocks referred to as cells. Candidate operations, including con-
volutional operations, pooling layers, and residual connections
among others, are selected during an initial search phase, before
the resulting cells are stacked together to build a deeper archi-
tecture which is then further optimised. The resulting networks
resemble the current state of the art in anti-spoofing, hence our
adoption of DARTS in this work.

This paper reports our use of a particular variant of DARTS
known as partial channel connections (PC-DARTS) [16] for
anti-spoofing. We show how partial channel connections, which
deliver substantial savings in both computational complexity
and memory, enable the automatic learning of a neural network
based solution to anti-spoofing. Both the network architecture
and parameters are learned automatically with only minimal hu-
man input. To the best of our knowledge, our work is both
the first reported application of DARTS to anti-spoofing and the
first reported application of PC-DARTS in any field of speech
processing. The remainder of the paper is organised as follows.
Section 2 introduces the related work and objectives. The pro-
posed system is reported in Section 3. Experiments and results
are reported in Sections 4 and 5. Our findings and conclusions
are reported in Section 6.

2. Related work and objectives
DARTS has already been applied successfully to speech and
language tasks [17–19]. Its use for architecture search in a
keyword spotting task is reported in [17]. Competitive results
were obtained with a search space containing the regular op-
erations used in ResNet. A successful application to auto-
matic speech recognition reported in [18] showed promising
results even when architecture search and training stages are
performed using different language datasets. The first applica-
tion of DARTS to speaker verification is reported in [19] which
shows that smaller, automatically learned solutions compare
favourably to hand-crafted architectures. While results com-
parable to the state of the art are reported in both [17] and [19],
both also report the necessary use of small batch sizes so that
architecture search can be performed upon a single GPU.
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Figure 1: An illustration of architecture search and train from
scratch. Architecture search optimises a stack of 2 normal cells
(dashed blue) and reduction cells (dashed yellow). The train
from scratch stage optimises a deeper network of stacked cells
(solid blue and yellow). Only network parameters are optimised
in the second stage; the cell architectures are those fixed during
architecture search.

The first objective of our work is hence to determine
whether neural architectures learned automatically with PC-
DARTS can compete with hand-crafted networks. Second, we
seek to determine the longer term scope for such networks to
even outperform the current state of the art. Third, we are in-
terested to learn whether automatically learned and optimised
solutions are more efficient. While not an objective of the cur-
rent work, our hypothesis is also that PC-DARTS may yield
less complex networks whose behaviour may be more easily
explained.

3. PC-DARTS
As illustrated in Figure 1, DARTS encompasses a pair of learn-
ing stages referred to as architecture search (top half) and train
from scratch (bottom half). A key idea is to construct a complex
network architecture from a pair of building blocks, referred to
as cells (blue and yellow blocks in Figure 1), whose internal ar-
chitecture and parameters are learned automatically. In contrast
to other NAS approaches which search over a discrete set of
candidate network operations, DARTS operates upon a relaxed,
continuous search space. This makes the architecture repre-
sentation itself differentiable, meaning that it can be optimised
in the usual manner via gradient descent and backpropagation
with hardware acceleration. In the architecture search stage,
the cell architecture parameters are learned and fixed. The train
from scratch stage operates upon a deeper network formed from
the stacking of a greater number of cells, thereby forming a
deeper residual network. The network parameters are then re-
optimised. The initial architecture search stage is computation-
ally demanding. The use of partial connections (PC-DARTS)
provides a more efficient solution. Since neither DARTS, much
less PC-DARTS are mainstream within the speech community,
a brief overview of both is provided in the following.

3.1. Searching for the Optimal Architecture

DARTS networks are constructed from the concatenation of
multiple cells. An example is illustrated in Figure 2. Their
internal architectures are learned automatically and dictate the
sequence of operations performed upon input data in generating
their output.

Each cell contains N nodes, where each node x(i) repre-
sents a feature map in tensor form. The first pair of nodes, x(1)

and x(2), are the cell inputs and are connected to the outputs
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Figure 2: An illustration of architecture search: (a) a neural
cell with N = 5 nodes; (b) an illustration of the candidate
operations performed on each edge that are optimised during
architecture search; (c) resulting optimised cell with K = 2
inputs to each intermediate node.

of the previous two cells. Nodes x(3) to x(N−1), referred to
as intermediate nodes, are computed from previous nodes with
operation o selected from the search space O according to:

x(j) =
∑
i<j

o(i,j)
(
x(i)
)

(1)

where o(i,j) is the operation performed on edge (i, j) that con-
nects x(i) and x(j). Node x(N) is the cell output: its feature
map is constructed from the concatenation of the feature maps
corresponding to the full set of intermediate nodes.

In the architecture search stage, a linear combination of op-
erations, denoted as ō, is performed on edge (i, j) according
to some weight α(i,j)

o . The weights form a continuous search
space through a softmax function:

ō(i,j)
(
x(i)
)

=
∑
o∈O

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)

o′

) o(x(i)
)

(2)

Architecture search is hence reduced to the learning of a set
of continuous variables α = {α(i,j)}, where α(i,j) is a vec-
tor of dimension |O|. Both the architecture parameters α and
the network parametersω (e.g. the convolutional filter weights)
can be jointly optimised through backpropagation. The goal is
to determine the α which minimises the validation loss Lval,
where the optimal ω is determined by minimising the training
loss Ltrain(ω,α):

min
α
Lval(ω

∗,α)

s.t. ω∗ = argmin
ω

Ltrain(ω,α)
(3)

When the search stage is complete, ō(i,j) is replaced with the
single operation with the highest α(i,j)

o . The final cell architec-
ture is obtained by retaining the set of K edges entering each
intermediate node which have the highest weights α(i,j)

o , where
K is a hyperparameter. The remainder are discarded.

The search space O proposed in [19] comprises: a 3 × 3
separable convolution; a 5 × 5 separable convolution; a 3 × 3
dilated convolution; a 5 × 5 dilated convolution; a skip con-
nection; a 3 × 3 average pooling; a 3 × 3 max pooling; none
(no connection). The set of operations are used in defining two
types of neural cells, namely normal cells and reduction cells.
As illustrated to the base of Figure 1, cells are stacked together



to form the full, deeper residual network, with reduction cells
being placed at the 1

3
and 2

3
depth positions of the total network

depth (number of stacked cells). Feature map dimensions are
fixed for the input and output of each normal cell. Reduction
cells act to reduce the feature map dimensions by 50% while
doubling the number of channels.

3.2. Partial Channel Connections and Edge Normalisation

DARTS remains computationally demanding, especially in the
architecture search stage. To improve efficiency, we used par-
tial channel connections and edge normalisation [16]. Partially-
connected DARTS (PC-DARTS) delivers substantial savings in
computation and memory. For a given edge (i, j), partial chan-
nel connections are formed from the element-wise multiplica-
tion of x(i) by a masking operator S(i,j) of the same dimen-
sion. The masking operator either selects (multiplication by 1)
or masks (multiplication by 0) each channel in x(i):

ō(i,j)
(
x(i)
)

=
∑
o∈O

exp
(
α
(i,j)
o

)
∑

o′∈O exp
(
α
(i,j)

o′

) o(S(i,j) � x(i)
)

+
(

1− S(i,j)
)
� x(i) (4)

where � indicates element wise multiplication. A hyperparam-
eterKC is set to conserve a random fraction 1/KC of the avail-
able channels. Partial connections hence reduce the computa-
tional load by a factor KC while acting to regularise the choice
of weight-free candidate operations (e.g., max pooling) inO for
a given edge [16]. There is hence a trade off between perfor-
mance (smaller KC ) and efficiency (larger KC ). As a result of
random channel sampling, the linear combination of operations
ō(i,j) for each node can become unstable under training. This
issue is addressed by introducing a set of edge normalisation
parameters β which smooth node inputs according to:

x(j) =
∑
i<j

exp
(
β(i,j)

)
∑

i′<j exp (β(i′,j))
ō(i,j)

(
x(i)
)

(5)

where β(i,j) is a learnable smoothing factor. The set of architec-
ture parameters optimised by minimizing Lval now comprises
both α and β.

4. Experiments
In this section we describe the experimental setup, the choice of
front-end and our specific PC-DARTS configuration.

4.1. Database, protocols and metrics

All work reported in this paper was performed using the
ASVspoof 2019 Logical Access (LA) database [20] which com-
prises the usual train, development and evaluation partitions.
In the architecture search stage, a random selection of half the
number of utterances for each class in the training partition, in-
cluding bona fide and spoofed (A01-A06), is used to learn net-
work parameters. The other half is used to learn architectures,
namely one normal cell and one reduction cell. The cell archi-
tectures which produce the highest classification accuracy are
then used in the train from scratch stage.

After the train from scratch stage, the performance of the
resulting model is assessed using the full evaluation partition.
Performance is reported in terms of the pooled minimum nor-
malised tandem detection cost function (min-tDCF) [21] in ad-
dition to the pooled equal error rate (EER).

4.2. Front-end

Initial experiments showed that the application of neural ar-
chitecture search to raw audio waveforms places excessive de-
mands upon GPU memory, implying lower batch sizes and
greater training time [22]. We hence used linear frequency
cepstral coefficients (LFCCs) of 60 dimensions encompassing
static, delta and delta-delta coefficients. Features are extracted
using 64 ms Hamming windows with a 16 ms shift and a 1024-
point FFT. In order to improve generalisation, frequency mask-
ing is applied according to the procedure described in [23] with
a maximum of 12 masked frequency channels per mini-batch.

4.3. PC-DARTS

As is customary [16], we applied three convolutional layers of
stride 2 to the input features in order to reduce resolution. Ar-
chitecture search is performed using 4 neural cells (2 normal
cells and 2 reduction cells) with 16 initial channels. Each cell
has N = 7 nodes, and each intermediate node retains K = 2
inputs after search.

Training for the architecture search stage is performed for
50 epochs with a batch size of 64 using an Adam optimiser
to learn both architecture and network parameters. Both are
optimised by minimising the weighted cross-entropy loss be-
tween spoofed and bona fide data with a ratio 1 : 9. According
to [16, 24], architecture parameters are not updated in the first
10 epochs. For the learning of architecture parameters we used
a learning rate of 6e-4 and a weight decay of 0.001. For network
parameters, we used an initial learning rate of 0.01 which is an-
nealed down to 0.001 according to a cosine schedule. Partial
channel connections use a value of KC = 2. When the ar-
chitecture search stage is complete, network parameters ω are
forgotten. Only the normal and reduction cell architectures are
then retained.

During the train from scratch stage, models are trained for
100 epochs with a batch size of 128 and an initial learning rate
of 0.001. The drop-path rate [16] is set to 0.2. We experimented
with different numbers of stacked layers (L) and initial chan-
nels (C). The models are optimized with the same loss function
as in the architecture search stage. The final scores are taken
from the output for the bona fide class.

All experiments reported in this paper were performed on a
single NVIDIA GeForce RTX 2080 Ti GPU. Using the imple-
mentation available online1, all results are reproducible with the
same random seed and GPU environment.

5. Results
5.1. Architecture Search

The architecture search stage is the most computationally ex-
pensive. We are hence interested in both the search time and
performance, both of which are illustrated in Table 1 for exper-
iments with DARTS and PC-DARTS for models with 4 layers
and 16 channels (L = 4, C = 16). In DARTS case, the batch
size is set to the largest possible given GPU memory constraints.
The use of partial connections improves on search time by ap-
proximately 50% while regularisation results in improved accu-
racy. Performance also translates well from the training parti-
tion to the development partition. Illustrations of the resulting
normal and reduction cell operations are shown in Figure 3.

1https://github.com/eurecom-asp/pc-darts-anti-spoofing

https://github.com/eurecom-asp/pc-darts-anti-spoofing
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Figure 3: An illustration of the (a) normal and (b) reduction cells resulting from architecture search. As illustrated in Figure 1, they
form the basic building blocks used to construct the architecture used in the train from scratch stage.

Table 1: A comparison of DARTS and PC-DARTS models with
L = 4 layers and C = 16 channels. Results in terms of pro-
cessing efficiency (GPU-days) and accuracy for ASVspoof 2019
LA training and development partitions.

Search Cost Best Architecture
Model size Systems GPU-days Train Acc Dev Acc

(L = 4, DARTS 0.29 98.80 97.21
C = 16) PC-DARTS 0.15 99.97 100

Table 2: Number of parameters and results for a selection of
different PC-DARTS models. Results for the ASVspoof 2019 LA
database.

Dev Eval
Model size Params min-tDCF EER min-tDCF EER

(L = 2, C = 4) 0.007M 0.0004 0.04 0.1244 5.80
(L = 4, C = 16) 0.14M 0 0 0.0992 5.53
(L = 8, C = 32) 0.97M 0.00004 0.002 0.1177 4.87
(L = 16, C = 64) 7.51M 0 0 0.0914 4.96
(L = 24, C = 64) 10.57M 0.0001 0.039 0.1045 5.51

5.2. Train from Scratch

Table 2 shows results for a set of different PC-DARTS con-
figurations (column 1) and number of parameters (column 2).
min-tDCF and EER results are shown for both the development
partition (columns 3 and 4) and evaluation partition (columns 5
and 6). According to the primary min-tDCF metric, the best
performing model has 16 layers and 64 initial channels. For
the evaluation partition, it delivers a min-tDCF of 0.0914 and
an EER of 4.96%. The second best model with 4 layers and
16 initial channels delivers a min-tDCF of 0.0992 and an EER
of 5.53%. This is achieved with 7.37M fewer parameters. Per-
formance for the smallest model is substantially degraded in
terms of min-tDCF, albeit if the EER is still respectable. The
largest tested model size offers no benefit in terms of perfor-
mance which is likely the result of over-fitting to training data.

5.3. Comparison to competing systems

Table 3 shows a comparison of results to top-performing sys-
tems reported in the literature and the two ASVspoof base-
lines [25]. The best (16,64) model achieves substantially better
performance than the two ASVspoof baselines and also outper-
forms all but two others, both Res2Net models. Even then, the
differences in terms of min-tDCF are modest (even if greater in
terms of EER). Our second best model, with 85% fewer param-
eters than the best Res2Net model, remains competitive. These
are satisfying results and are the first to show that anti-spoofing
models whose architecture and parameters are learned auto-
matically can compete with models designed with models de-
signed with far greater human effort.

Table 3: A performance comparison between PC-DARTS mod-
els and competing state-of-the-art systems reported in the liter-
ature. Results for the ASVspoof LA evaluation partition.

Systems Features min-tDCF EER Params

Res2Net [26] CQT 0.0743 2.50 0.96M
Res2Net [26] LFCC 0.0786 2.87 0.96M

PC-DARTS (16, 64) LFCC 0.0914 4.96 7.51M
PC-DARTS (4, 16) LFCC 0.0992 5.53 0.14M

LCNN [27] [28] LFCC 0.1000 5.06 10M
LCNN [27] [28] LPS 0.1028 4.53 10M

LFCC-GMM [25] LFCC 0.2116 8.09 -
Res2Net [26] LPS 0.2237 8.78 0.96M

CQCC-GMM [25] CQCC 0.2366 9.57 -
Deep Res-Net [29] LPS 0.2741 9.68 0.31M

6. Conclusions
This paper reports what is, to the best of our knowledge, the
first successful application of neural architecture search (NAS)
to the spoofing detection problem. We show that partially con-
nected differentiable architecture search (PC-DARTS) is able to
learn complex neural architectures from a fixed set of candidate
operations. Architectures learned with PC-DARTS can be op-
timised using backpropagation and with hardware acceleration,
meaning that even complex convolutional and residual networks
can be learned automatically.

The performance of the resulting models is competitive
with the state of the art. Our best performing model achieves
a min-tDCF of 0.09 for the ASVspoof 2019 Logical Access
database, a result outdone only by a Res2Net system, and even
then only by a modest margin. Given that our result was gen-
erated by a network whose architecture and parameters are all
learned automatically, instead of from many hours of manual
optimisation, this is a satisfying result. Our second-best system
which achieves a min-tDCF of 0.1 has 85% fewer parameters
than the best performing Res2Net system. With these results,
we are encouraged to pursue PC-DARTS further. The obvious
next step is to apply PC-DARTS directly to raw signal inputs.
Other directions include the use of PC-DARTS as a full end-to-
end solution to both spoofing detection and automatic speaker
verification.
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