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Abstract—In-band Full-Duplex (FD) is a promising wireless
transmission technology allowing to increase data rates by up
to a factor of two, via simultaneous transmission and reception,
but with a potential to increase system throughput even much
more in cognitive radio and random access systems thanks to
simultaneous transmission and sensing. In this work, we consider
a practical hybrid beamforming design for a bidirectional massive
MIMO FD system under the joint per-antenna and sum-power
constraints. Moreover, we consider non-ideal circuitry in the
transmit and receive chains, which is modelled with the limited
dynamic range (LDR) noise model. The per-antenna power
constraints take into account the actual physical limits of the
power amplifiers and the sum-power constraints are imposed to
limit the total transmit power. The precoders are optimized with
alternating optimization by using the minorization-maximization
approach. Simulation results show significant performance im-
provement compared to a traditional bidirectional half-duplex
system.

Keywords— Massive MIMO, Full Duplex, Hybrid Beam-
forming, per antenna power constraints, limited dynamic
range

I. INTRODUCTION

Full-duplex (FD) has to potential to double the performance
of a wireless communication system as it allows simultane-
ous transmission and reception in the same frequency band.
It avoids using two independent channels for bi-directional
communication, by allowing more flexibility in spectrum uti-
lization, improving data security, and reducing the air interface
latency and delay issues [1]. To achieve FD, Self-Interference
(SI) is a major challenge to deal with to achieve FD operation,
which could be around 110 dB compared to the received signal
of interest.

However, continuous advancement in the SI cancellation
(SIC) techniques has made the FD operation feasible. SIC
schemes split the workload into the passive, analog and digital
domain. The most challenging SIC stage is the analog SIC
stage, for which extra hardware is required [2]. The analog-
to-digital-converters (ADCs) have only limited dynamic range
(LDR), and if analog SIC stage fails to mitigate the SI
sufficiently, it leads to saturation of the converters. Saturation
noise is well-known to be the most challenging noise, which
can significantly limit the performance of a FD system [3], [4].
Also, the non-ideal circuity in the transmit and receive chains
limit ideal SIC. Therefore, for correct performance analysis
of a FD system, the effect of RF circuitry and ADCs by
using the LDR model must be considered [5]–[7]. The LDR
noise model models the noise with variance equal to the total

signal power multiplying a very small scalar and considers all
the possible noise contributions, e.g. phase noise, quantization
noise, and non-linear distortions of the power amplifiers, etc.
Therefore, the FD transceiver with highly non-ideal circuitry
is modelled with a large scalar, and the quasi ideal transceiver
can be modelled with an extremely small scalar.

Hybrid beamforming for a bidirectional MIMO FD (BD-
FD) communication has been widely studied in the literature
[7], [8]. In [7], achievable rates under the LDR model are
studied. In [9], a novel hardware impairment aware linear
precoder and decoder design under the sum power constraints
is proposed. In [10], a hybrid beamforming design for FD
millimeter wave (mmWave) point-to-point communication is
proposed. In [11], a hybrid beamforming design for a FD
MIMO relay system is studied. In [12], a learning-based hybrid
beamformer optimization for a one-way FD mmWave relay
system is proposed. In [6], hybrid beamforming optimization
for a FD OFDM backhaul system is studied.

This paper considers the digital and analog beamformer
design for the weighted sum rate (WSR) maximization under
the joint sum-power and per-antenna power constraints. The
LDR noise model is also assumed, reflecting the non-ideal
circuitry in the transmit and receive chains. This is the first-
ever FD communication design for Massive MIMO bidirec-
tional full-duplex system under the joint constraints to the
authors’ best knowledge. The sum-power constraints at each
terminal are imposed by the regulations, which limit the total
transmit power. In practice, each transmit antenna is equipped
with its PA [13] and the per-antenna power constraints arise
due to the power consumption limits imposed on the phys-
ical PAs. Traditionally, the joint sum-power and per-antenna
power constraints take into account both the regulations and
the physical limits to optimize the systems’ performance.
However, for FD communication the joint constraints have
much more to offer. If there is no saturation noise, the most
dominant noise contribution comes for the PAs [3], which
introduce additional non-linearities when operating in the non-
linear region. Consequently, the residual SI power increases,
limiting the maximum achievable gain for a FD system. With
the per-antenna power constraints, we can limit PAs’ non-
linear behaviour and improve the SI channel estimation while
complying with the sum-power constraints naturally imposed
by the regulations.

The WSR maximization problem is solved by adopting the
method of minorization-maximization [14], and the beam-



formers and powers are jointly optimized with alternating
optimization. A novel power allocation design is also proposed
to include the optimal powers at each iteration. Simulations
results show significant performance improvement compared
to the traditional bidirectional half-duplex system. However,
the maximum achievable performance is strictly limited by
the LDR noise.1

II. SYSTEM MODEL

We consider a BD-FD communication system consisting
of two MIMO FD node having massive number of transmit
antenna elements and equipped with beamformers at the digital
and at the analog stage. Let F = {1, 2} contain the indices of
the FD nodes. Let Nl and Ml denote the number of transmit
and receive antenna at the FD node l ∈ F , respectively. Let
Nr
l denote the number of radio frequency (RF) chains at the

node l ∈ F . We consider a multi-stream approach and let
sl ∈ Cdl×1 denote the dl white and unitary variance data
streams transmitted from node l ∈ F . Let Vl ∈ CNr

l ×dl and
Gl ∈ CNt×Nr

t denote the digital and analog beamformer at
node l, respectively, and Gl is assumed to be common to all
the antennas (fully connected case). The signal received at the
FD node l can be written as

yl = Hm,l

(
GmVmsm+cm

)
+el+nl+Hl

(
GlVlsl+cl

)
(1)

where l and m ∈ F and l 6= m. The channel between transmit
array of node m ∈ F and receive array at node l ∈ F , with
m 6= l is denoted with Hm,l ∈ CMl×Nm and the SI channel at
the node l is denoted with Hl ∈ CMl×Nl ,∀l ∈ F . The vector
nl,∀l ∈ F denote the thermal noise vectors at the FD node
l with variance σ2

l IMl
. Let Tl = GlVlV

H
l GH

l denote the
transmit covariance matrix of node l ∈ F . The terms cl and
cm are the transmitter and el and em are the receiver noise
distortions due to LDR at the node l and m, respectively, with
l,m ∈ F and l 6= m, and can be modelled as [7]

cl ∼ CN
(

0Nl×1, kl diag
(
Tl
))
, ∀ l ∈ F , (2)

el ∼ CN
(

0Ml×1, βl diag
(
Φl

))
, ∀ l ∈ F , (3)

where kl � 1, βl � 1 and Φl = Cov(xl), where xl denotes
the undistorted received vector at node l, such that xl = yl−
el,∀l ∈ F . Let Xl be the received covariance matrix of the
undistorted received signal at node l, transmitted from node
m

Xl = Hm,lTmHH
m,l + Hm,lkmdiag

(
Tm
)
HH
m,l + σ2

l I+

Hl(Tl + kldiag
(
Tl
))
HH
l , ∀l,m ∈ F and l 6= m,

(4)

1Notation: Boldface lower and upper case characters denote vectors and
matrices, respectively, and E{·}, tr{·}, (·)H , (·)T , (·)∗,I , and D1:d repre-
sent expectation, trace, conjugate transpose, transpose, complex conjugate,
identity matrix and the d dominant vector selection matrix, respectively, and
diag(·) denote a diagonal matrix. The operator vec(X) stacks the column of
X into a vector and ∠X returns the phases of matrix X .

and let Kl , Hm,lTmHH
m,l denote the useful signal part.

The received (signal plus) interference and noise covariance
matrices at the FD node l ∈ F denoted with (Rl) Rl can be
written as

Rl ≈
(
Xl + βldiag(Xl)

)
, Rl ≈ Rl −Kl. (5)

We consider the joint optimization of the digital and the
analog beamformer. The WSR maximization problem for the
bidirectional FD system under the joint sum-power and per-
antenna constraints power for precoder optimization can be
stated as

max
Vl,Gl

∑
l∈F

wlln det
(
R−1

l
Rl

)
(6a)

s.t. diag
(
VlV

H
l

)
� Pl,∀l ∈ F , (6b)

tr

(
GlVlV

H
l GH

l

)
≤ pl,∀l ∈ F , (6c)

which is non-concave due to the (self-)interference terms.

III. HYBRID BEAMFORMING

To find a feasible solution of (6), we use the minorization-
maximization approach [14] for the precoders optimization
Vl and Gl at each iteration of the alternating optimization
process. The optimal powers are also included separately to
meet the imposed constraints

A. Beamformer Design

The WSR can be written as a sum of weighted rate of nodes
l and m ∈ F ,m 6= l, i.e. WSR = WRl + WRm. Note that
WRl is concave in Tm and non-concave in Tl and WRm is
concave in Tl and non-concave in Tm, ∀l,m ∈ F ,m 6= l.
Since a linear function is simultaneously convex and concave,
difference of convex (DC) programming introduces the first
order Taylor series expansion of WRm in Tl and WRl in Tm
around T i.e., all Ti, as

WRl(Tm, T̂ ) = WRl(Tm, T̂ )− tr((Tm − T̂ )Al) (7a)

WRm(Tl, T̂ ) = WRm(Tl, T̂ )− tr((Tl − T̂ )Am) (7b)

where Al and Am are the gradients of WRm and WRl
with respect to T̂l and T̂m, respectively. The gradients can
be computed using the the matrix differentiation properties
defined in [15] and by applying the commutative property of
the Hadamard product for the diagonal terms due to the LDR
noise model. The gradients expression for ∀l ∈ F and l 6= m
are given by

Al =wm
(
HT
m,m

(
R−Tm + βmdiag(R−Tm −R−T

l̄
)
)
H∗m,m

+ kmdiag
(
HT
m,m(R−Tm −R−Tm̄ )H∗m,m

))
.

(8)
Note that, the linearized tangent expression (7a) and (7b)

constitutes a touching lower bound for the weighted sum
rate (6), hence DC programming results to be also a mi-
norization approach, regardless of the reparameterization of
the transmit covariance matrices as a function of beamformers.



Note that the gradients are fixed during the current iteration
and computed using the results from the previous iteration.
Let Sl = HH

l,mR−1
l̄

Hl,m, then (6) at each iteration of the
alternating optimization process can be restated under (6b)-
(6c) as

max
Vl,Gl

∑
l∈F

wllndet
(
I+V H

l GH
l SlGlVl

)
−tr

(
V H
l GH

l AmGlVl
)
.

(9)
Let λl and Ψl = diag(ψl1, ..., ψ

l
Nl

) be the Lagrange multi-
pliers associated with the sum-power and per-antenna power
constraint at node l ∈ F , respectively. Dropping the constant
terms, reparameterizing back Tl as function of precoders,
performing this linearization ∀l ∈ F , augmenting the WSR
cost function with the joint constraints, yields the following
Lagrangian

L =
∑
l∈F

λlpl + tr(ΨlPl) + ln det
(
I + V H

l GH
l SlGlVl

)
− tr

(
V H
l (GH

l (Am + λlI)Gl + Ψl)Vl
)
.

(10)
Note that the powers are left out for now and will be included
later. To optimize the digital and analog beamformer, we take
the derivative of (10) with respect to Vl and Gl,∀l,m ∈ F
and l 6= m, which yields the following Karush–Kuhn–Tucker
(KKT) conditions

GH
l SlGlVl(I + V H

l GH
l SlGlVl)

−1

− (GH
l (Am + λlI)Gl + Ψl)Vl = 0.

(11)

SjG0VjV
H
j

(
I + VjV

H
j GH

l SjG0

)−1

−
(
Am + λlI

)
G0VjV

H
j = 0.

(12)

Theorem 1. The optimal digital beamformers Vl and the
analog beamformer Gl, ∀l ∈ F at each iteration is given
by the dominant generalized eigen vector (GEV) solution of
the pairs

Vl →D1:dl

((
GH
l SmGl,Gl(Am + λlI)Gl + Ψl

))
(13)

vec(Gl)→D1:1

(
(Vl(I+GH

l SlGlVlV
H
l )−1V H

l )T ⊗ Sl,

(VlV
H
l )T ⊗ (Am + Ψl + λlI))

)
(14)

Proof. We first consider the analog beamformer fixed and
prove the result for the digital beamformers. The proof relies
on simplifying (9) with fixed analog beamformer until the
Hadamard’s inequality applies. The Cholesky decomposition
of the matrix (GH

l (Am + λlI)Gl + Ψl) is written as LlL
H
l

where Ll is a lower-triangular Cholesky factor. Upon defining
Ṽl = LHl Vl and by using the result provided in Proposition
1 [16], it follows immediately that the solution is the GEV.
We now consider the digital beamformer fixed and prove for
the analog beamformer. Similar proof follows also for the
analog beamformers. However, the KKT conditions do not
satisfy the GEV equation (AX = DBX , where D is a
digonal matrix). Therefore, to shape it in a correct form, the
following property vec(AXB) = (BT⊗A)X , with X as the

analog beamformer. Having the KKT conditions in the correct
form (with diagonal on the left), the proof for the analog
beamformer follows directly as for the digital beamformers
based on the result provided in Proposition 1 [16].

As Gl is an unconstrainted vector, we need to reshape into
a matrix and get ∠Gl to meet the unit modulus constraint.

B. Optimal Power Allocation

The solution (13), being a GEV diagonalize the matrices

V H
l GH

l SmGlVl = Σ
(1)
l (15)

V H
l (GH

l (Am + λlI)Gl + Ψl)Vl = Σ
(2)
l (16)

at each iteration. After computing the beamformers and nor-
malizing its columns, the optimal powers can be included
while searching for the multipliers, satisfying the constraints.
Formally, power optimization problem can be stated as

max
Pl

wl lndet
(
I + Σ

(1)
l Pl

)
− tr

(
Σ

(2)
l Pl

)
,∀l ∈ F . (17)

with fixed multipliers and Vl. Note that as the beamformers
are given by the dominat GEV solution of (9), by multiplying
it by a diagonal matrix it still yields a generalized dominant
GEV solution and Theorem 1 is still valid. The optimal power
allocation at each FD node is obtained by solving (17), which
yields

Pl = (wl
(
Σ

(2)
l ))−1 −

(
Σ

(2)
l )

)−1
)+. (18)

where (x)+ = max{0, x}.
Now, in order to satisfy the per-antenna and sum power

constraints we consider the following Lagrange dual function

min
λl,Ψl

L
(
λl,Ψl

)
. (19)

The dual function L(λl,Ψl) is the pointwise supremum of a
family of functions of λl,Ψl, it is convex [17] and the globally
optimal value λl,Ψl and can be found by using any of the
numerous convex optimization techniques. In this work, we
adopt the bisection algorithm for the search of multipliers.
Let Ll = {λl, ψl, .., ψNr

l
} contain the multipliers associated

with the joint constraints at the node l ∈ F . Let µi, and µi
denote the upper and lower bounds for searching the Lagrange
multiplier µi ∈ Ll. The complete procedure to solve (6) is
formally stated in Algorithm 1.

1) Convergence proof: To prove the convergence of Al-
gorithm 1, the ingredients required are minorization [14],
Lagrange duality, saddle point and KKT conditions [17]. Let
WSR(T ) denote the cost function (6) as a function of transmit
covariance marices and let WSR(T , T̂ ) minorizer leading to

WSR(T ) ≥WSR(T , T̂ ) =∑
l∈F

wllndet
(
I + V H

l GH
l SlGlVl

)
− tr

(
(Tl − T̂ )Am

)
.

(20)
and the minorizer which is now concave in T has the same
gradient of (6), therefore the KKT conditions are not affected.



Algorithm 1 Practical Hybrid Beamforming Design
Given: The CSI and rate weights.
Initialize:Vl and Gl,∀ ∈ F .
Repeat until convergence
for:∀l ∈ F .

Compute Am with (8).
Compute Gl with (14) and get ∠Gl.
Compute Vl with (13) and normalize it.
Set µi = 0 and µi = µimax

∀i ∈ Ll.
for: ∀µi ∈ Ll
Repeat until convergence

set µi = (µi + µi)/2.
Compute Pl with (17),
If constraint for µi is violated,
set µi = µi, else µi = µi,

Set Tl = GlVlPlV
H
l GH

l

Next l.

Reparametrizing the transmit covariance matrices T as a func-
tion of the variables: powers Pl, digital beamformers Vl and
the analog beamformers Gl and adding the power sum-power
and per-antenna power constraints yield the Lagrangian (10).
During the alternating optimization process, every alternating
update of (10) leads to an increase in the weighted sum rate,
ensuring convergence for all of the 3 parameters. For the KKT
conditions, at the convergence point, the gradients of (10) with
respect to the analog and digital beamformers yield the same
gradients of the original cost function (6). For fixed analog
and digital beamformers, (10) is concave in Pl, therefore we
have strong duality for the saddle point maxPl

minλ,ΨL.
Moreover, at the convergence point the solution to minλ,ΨL
satisfies the complementary slackness condition i.e.,

λl(pl − tr(GlVlV
H
l GH

l )) = 0,∀l ∈ F (21a)

tr(ΨlPl − diag(VlV
H
l )) = 0,∀l ∈ F . (22a)

IV. SIMULATION RESULTS

In this section, we present simulation results for our novel
digital and analog beamformer design under the practical sum-
power and per-antenna power constraints.

We assume that the proposed bidirectional beamforming
design operates in the millimeter-wave band, at which the
channels can be modelled with the path-wise channel model
such that

Hm,l =

√
NlNm
NcNp

Nc∑
nc=1

Np∑
np=1

α
(np,nc)
k al(φ

np,nc

k )aTm(θ
np,nc

k ),

(23)
where Nc and Np denote the number of clusters and number

of rays, respectively, α(np,nc)
k ∼ CN (0, 1) is a complex Gaus-

sian random variable with amplitudes and phases distributed
according to the Rayleigh and uniform distribution, respec-
tively, and ar(φ

np,nc

k ) and aTt (θ
np,nc

k ) denote the receive and

transmit antenna array response with angle of arrival (AoA)
φ
np,nc

k and angle of departure (AoD) θ
np,nc

k , respectively.
We assume uniform linear arrays for both transmission and
reception at the FD nodes. The SI channel can be modelled
as

Hl =

√
κ

κ+ 1
HLoS +

√
1

κ+ 1
Href , (24)

where κ, HLoS and Href denote the Rician factor, the line-
of-sight (LoS) and reflected contributions of the SI signal, re-
spectively. We assume that the SI contribution to be extremely
dominated by its line-of-sight component, and thus the Rician
factor is set to κ = 105 dB. The matrices HLoS is set to be
a matrix of all ones and Href ∼ CN (0, 1). The sum-power
pl,∀ ∈ F is fixed to be 23 dBm and the per-antenna power
constraints at each FD node are fixed to be 23 dBm divided
by the total number of transmit antennas. The rate weights are
fixed to be 1. It is assumed that the FD nodes are equipped with
100 transmit antennas, 32 transmit RF chains, Ml = Mm = 20
receive antenna and 2 data streams are transmitted from both
the nodes. The number of clusters and the number of paths
is set to be Nc = 3 and Np = 6, respectively, the AoA and
AoD are unifomly distributed in U ∼ [0, 30◦]. The antennas
are assumed to be placed at half-wavelength and the array
response for the uniform linear array is simulated.

As we are considering all the possible noise contributions
due to LDR noise and σ2

l , we label our design as a practical
BD-FD hybrid beamforming (P-FD-HYB) design. As this
work is the first one to consider a BD-FD hybrid communica-
tion system design under the joint sum-power and per-antenna
power constraints, we do not compare it with the state-of-
the-art. For comparison, we define the following benchmark
schemes: 1) We define a practical BD-FD digital communi-
cation system for which number of RF chains is equal to the
number of antennas i.e. Nr

l = Nl, ∀l ∈ F . This scheme set an
upper bound for the maximum achievable gain with the hybrid
beamforming design. The optimal beamformers for such a
design can be found by setting the analog beamformer equal
to identity and following the same steps of Algorithm 1 for the
digital beamformers. 2) As a lower bound we define a BD half-
duplex system which splits its resources in time to serve the
uplink and the downlink users which satisfies the joint sum-
power and per-antenna power constraints. The beamformer can
be obtained with the generalized eigen vector method and
results to be a special case of our FD desing. Results are
reported by averaging over 100 channel realizations.

We assume that both the FD node have the same circuitry
in the transmit and receive chains and therefore we set
kl = km = k and βl = βm = β. Figure 1 shows the average
weighted sum-rate as a function of the signal to noise ratio
(SNR) with, k = β = −110dB. It can be seen that the pro-
posed scheme achieves significant performance improvement
compared to the BD half-duplex system. It is also shown that
the rate achieved for both the communicating links results to
be the same. The performance of the Hybrid design is limited,
compared to the fully digital case, due to the unit modulus
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Fig. 2: Average WSR of a BD-FD system as function of SNR with , k = β =
−60 dB, with N1 = N2 = 100, Nr

1 = Nr
2 = 32 and M1 =M2 = 20.

constraint. However, if amplitude manipulation is allowed for
Gl, the unconstrained beamformer has perforamance close to
the fully digital case. Given an extremely small k = β, the
achievable performance is strictly limited by the thermal noise
variance.

Figure 2 shows the average weighted sum-rate when k =
β = −50 dB, which represent moderately noisy circuitry
in the transmit and receive chains. It must be noticed that
the maximum achievable gain, also for the fully digital case,
results to be less compared to the performance shown in
Figure 1. Therefore, we can conclude that in general, in a
practical BD-FD system the maximum achievable performance
is limited by the maximum of the LDR noise, due to non
ideal circuitry, or the thermal noise variance, if ideal-circuitry
is deployed.

V. CONCLUSIONS

In this work, we studied the problem of WSR maximization
for a BD-FD communication system under the joint-sum
power and per-antenna power constraints. These constraints
consider the hardware limitation and the maximum power
transmission limits imposed by the regulations. The optimal
analog and digital beamformers are designed under the prac-
tical LDR model, which considers the effect of non-ideal
circuitry in the transmit and receive chains. Simulation results
show significant performance gain compared to a half-duplex
BD communication system. Moreover, it’s observed that the
achievable performance of a practical BD-FD system is limited
by the maximum of the LDR noise variance or the noise
variance σ2

l .
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