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Abstract—Cloud-native technologies have recently entered the
telecommunication world. These technologies were specially de-
signed for developing and orchestrating container-based appli-
cations. The new cloud-native network functions use container
based virtualization instead of virtual machine-based virtualiza-
tion. These network functions have low resource footprints and
low deployment time, making them suitable for a distributed
environment. To adopt these new network functions and cloud
native approach the network function virtualization vision needs
alterations. In this paper, we use cloud-native approach to provide
resilience to cloud-native network services. We proposed dynamic
resource allocation and placement algorithm for modeling and
placing a simple cloud-native network service. The algorithm
aims to minimize infrastructural resource utilization under the
constraint of abiding service availability mentioned in the service
level agreement.

Index Terms—NFV, VNF, cloud native, placement

I. INTRODUCTION

The initial release of NFV specification [1] was predomi-
nantly dependent on hypervisor-based Virtual Machines (VM)
for virtualization. A recent improvement in container based
virtualization has introduced cloud-native technologies, which
are driving the virtualization in the cloud. The ETSI NFV
group has recently published a report “Enhancements of the
NFV architecture towards cloud-native and PaaS” [2], which
introduces container-based Cloud-native Network Functions
(CNF).

Container-based applications do not require full operating
system like virtual machines. Making them lightweight and
reducing their deployment time. They can be assigned vCPU at
a granularity of 1milli cpu, where 1000m CPU is equivalent to
1vCPU [3]. Whereas in VMs, the minimum vCPU that can be
assigned is 1vCPU. CNFs can use this finer vCPU assignment
to have an improved infrastructural resource utilization in
comparison to traditional VM based VNFs.

Network functions can be used alone or along with other
network functions to provide network services. Latter are
offered by service providers who either owe the infrastructure
or lease it from infrastructure providers. While providing a
service, they have to abide by service availability which is an
important attribute of the Service Level Agreement (SLA). The
ETSI NFV group has published specifications and guidelines
related to the resilience and availability of network functions
and network services [4]. They acknowledge higher availabil-
ity is subjected to higher deployment and management cost.
Making it important to find cost-availability trade-off. This

trade-off has always been a challenge for service providers, in
maximizing their profits.

Cloud-native network services have to reach the telco grade
99.999% availability. To achieve this with one instance of
each CNF required to provide the service can be challeng-
ing. The cloud-native way to achieve this availability is to
have multiple replicas of the CNFs composing a network
service. This might lead to over provisioning of infrastructural
resources, which increases the deployment and management
cost. Hence, a decision problem arise; How many replicas of
each CNF a cloud-native network service needs? Without over-
provisioning computational resources to avoid the high cost
and provide service availability as promised in the SLA.

In this paper, we propose a solution for this decision
problem from the perspective of service providers. Existing
related work in the field of cloud-native network functions
does not address the above problem or consider cost and
availability together as an attribute while placing them on
cloud infrastructure. To fill this gap, we provide an algorithm
to model a simple cloud-native network service.

A simple cloud native network service requires a single
CNF to provide the network service functionality. We make
two assumptions: first, service provider knows in advance the
computational resources, importantly vCPU required by the
service to serve the user demand; second, the nodes on which
CNF replicas will be placed have enough storage and memory
resource. We make the following contribution in this paper,

1) Cost and availability model for simple cloud-native
network service

2) Dynamic Resource Allocation and Placement (DRAP)
algorithm for design and placement of a simple cloud-
native network service. DRAP provides a dictionary
that contains the number of CNF replicas, placement
on infrastructure node, and vCPU allocation for each
replica. It abides by service availability as a constraint.

The rest of the paper is arranged in chronological order,
initial background of cloud-native network functions, related
work, our contributions, results and conclusion.

II. BACKGROUND: CLOUD NATIVE TELCO

Cloud-native [5] is a result of the growing demand for
virtualization in IT industry. Container Orchestration Engine
(COE), like Kubernetes is responsible for its integration within
telco and especially in the NFV vision. In this paper we refer
the terminologies from the ETSI cloud native report [2]. In



this section we provide a brief background of cloud-native
network functions and their orchestration.

A. Cloud native Network Functions

Cloud-native applications are designed on microservices-
based architecture with statelessness in consideration. In con-
trast, the traditional VM-based network functions are mono-
lithic and stateful. Containerizing these monolithic appli-
cations will not receive the complete benefits of an agile
cloud-native application. Re-engineering these traditional VM
based VNFs to adapt cloud-native principles is a possible
solution. Fig. 1 depicts a Kubernetes based cloud-native VNF.

Fig. 1: Cloud native Network Function (CNF) [2] sec.6.2.4

Every VNF can have multiple Virtualized Network Function
Components (VNFC) and each component is mapped to a
Kubernetes pod. These Kubernetes pods can have multiple
containers depending on the design of VNFC. A VNF is a
logical entity whereas VNFCs are the functional blocks, which
should follow cloud-native design principles. In a traditional
VM-based VNF, the VNFC is mapped to a VM. It should be
noted that different design possibilities for a CNF depending
on the COE exist, which are not discussed in this paper.

B. NFV Orchestrator NFVO

A NFV orchestrator is responsible for resource and service
orchestration. In a cloud-native environment, it will perform
the same functions, but with new functional blocks relevant
for cloud-native network functions. The ETSI cloud native
report [2] proposes new functional blocks and their possible
placement in traditional NFV-MANO architecture.

Fig. 2: Position of CISM and CIS in ETSI MANO [2], sec. 7.2.4.5

The cloud-native equivalent of hypervisor is Container
Infrastructure Service (CIS), which provides all the runtime
infrastructural dependencies for one or more container virtu-
alization technologies. Container Infrastructure Service Man-
agement (CISM) is a cloud-native equivalent of Virtualized
Infrastructure Manager (VIM). The functionality of VNFM

can be integrated with CISM, but it has some pros and cons
already discussed in the report. Managed Container Infras-
tructure Object Package (MCIOP) contains the placement,
resource allocation and configuration related information for
a container or VM-based network function. Fig. 2 depicts one
of the six proposed architectures to place CISM and CIS. In
this architecture, NFVO is capable of orchestrating container
and VM-based network functions. However, it should be noted
that NFV Infrastructure (NFVI) is outside the framework of
NFV-MANO.

III. RELATED WORK

Most of the existing related work focuses on the resource
allocation and placement of traditional VM-based virtual net-
work functions. Authors of [6] have proposed a model for
joint vCPU to VM allocation and VM placement considering
a simple CDN network service. They have used this model to
highlight and address the cost and availability trade-off. The
service availability model presented in our paper is inspired
from this work. Authors of [7] provided a queuing theory-
based approach to solve traditional VM-based VNF placement
and resource assignment problem for a 5G network service.
Their presented model considers a service function chain that
can be useful for simple as well as complex network services.

IV. SIMPLE CLOUD NATIVE NETWORK SERVICE

NFVO manages the life-cycle of a network service using
a Network Service Descriptor (NSD), which is received from
northbound entities such as, OSS/BSS or a slice orchestrator
in case of Network slicing [8]. The NSD contains details about
virtualized and physical network functions, virtual and physi-
cal links between them, etc. The NSD is used for modeling,
placing, and scaling the instances of VNFs. Based on this, we
consider along with NSD, NFVO receives the maximum vCPU
required by the service and the required service availability.
The calculation for the maximum vCPU required by a service
is out of the scope.

A. Modeling a Simple Cloud Native Network Service

In a traditional VM-based network service, the network
functions are connected via the Service Function Chain (SFC)
concept [9]. In the previous sections we highlighted that a
network service can have multiple different types of VNFs
and PNFs. These VNFs may have replica instances depending
on the design of the network service. The ETSI specification
for cloud-native VNF implementation [10] acknowledge re-
dundancy as a possible solution to provide resiliency.

Based on this, we propose a model for a cloud-native
network service, which has multiple replicas of the same CNF,
and the maximum vCPU that the service requires is divided
among these replicas. The maximum vCPU consumed by the
replicas will not exceed the maximum vCPU required by the
service. The service load is distributed between replicas, which
provide resilience to the service without over-provisioning the
computational resources. This will be discussed in detail in in
the availability section.



We named this service as Simple Cloud Native Network
Service because there are multiple replicas of the “same kind
of CNF”. This CNF has one VNFC in a Kubernetes pod. This
pod can have single or multiple containers.

Fig. 3: Simple cloud-native network service S with K replicas of
CNF A

B. Deploying a Simple Cloud Native Network Service

In Fig. 4 the NFVO receives a deployment request for a
simple cloud native network service. The request contains
NSD, maximum vCPU required by the service (RvCPU ), and
required service availability (RA). NFVO starts with onboard-
ing CNF images and then Dynamic Resource Allocation and
Placement (DRAP) algorithm will generate Placement And
vCPU Allocation (PACA) dictionary. It sends the dictionary
and RA to CISM.

Fig. 4: Cloud native network service deployment flow diagram

CISM place CNF pod(s) on NFVI and allocate the vCPU
as mentioned in the dictionary. Pod placement on NFVI is
based on the dictionary. It should be noted that generally COE
performs initial placement of pods, here, NFVO is performing
initial placement.

V. DYNAMIC RESOURCE ALLOCATION AND PLACEMENT
MODEL

A. Preliminary

Now onward we use the notations highlighted in TABLE I.
The notations are specific for a simple cloud native network
service S. A pod refers to CNF instance as depicted in Fig. 3.
Besides from the table, X = (xij) is the pod placement
matrix, xij is 1 if pod i is placed on node j otherwise 0.
W = (wij) is the vCPU allocation matrix and wij denotes
the vCPU allocated to pod i placed on node j. All iε[1,K]
and jε[1, N ].

B. Cost Model

Consider an array Y = (yj) and jε[1, N ], where yj denotes
the status of a NFVI node j on which pods can be placed. yj
is 1 when node j is hosting at least one pod. Otherwise, node
is not hosting any pod then 0.

NFVI is a cluster of physical machines providing infras-
tructural resources (computational, storage, and networking
resources). The container infrastructure service instance can
be present on VMs or bare-metal. We consider in this work
bare-metal deployment of CIS in Fig. 2. We consider that each
node of the cluster has a fixed cost L when it is hosting pod(s),
otherwise, the cost is zero. In a Kubernetes node, this fixed cost
can be calculated by computing the computational resources
consumed by operating system processes, container runtime
engine, and Kubernetes fix components. We formulate the cost
model as,

D = L ∗
N∑
j=1

yj +RvCPU (1)

D denotes the deployment cost for a simple cloud native
network service. Generally, in Kubernetes, the CPU is always
requested as an absolute quantity [11]. The unit of D is in
milli vCPU.

TABLE I: Summary of Notations

N Number of nodes available in NFVI (CIS) for pod
placement

RvCPU Maximum vCPU in milli units required by the
service

Pmax, Pmin Maximum and minimum number of pods which
can host the service

K Actual number of pods hosting the service S
minvCPU Minimum vCPU in milli units which can be as-

signed to a pod
maxvCPU Maximum vCPU in milli units which can be as-

signed to a pod
C(j) vCPU capacity of node j in milli units, jε[1, N ]
RA Service availability required by the service
hj Failure probability of node j, jε[1, N ]
gi Failure probability of pod i, iε[1,K]

C. Availability Model
We consider two types of service availability models de-

pending on the Quality of Service (QoS) perceived by each
user of the service. First, relax availability or minimal service
model i.e., at any time at least one pod is accessible. In this
model, the QoS perceived by each user can be degraded and
might not be the same as requested in the SLA. This might
happen due to the unavailability of some instances and their
load being shared among available instances.

Second, strict availability model, which maintains the QoS
perceived by each user as requested in the SLA. To achieve
this, all the pod(s) and the node(s) hosting the respective pod(s)
should be accessible. We made the following assumptions for
both models,
• A pod i can fail with probability gi, independent of the

other pod(s) and node(s), irrespective of the load imposed
on the pod, and resources allocated to the pod.

• A node j can fail with probability hj , independent of the
other node(s) and pod(s) running on it.

The above probabilities are already known to the service
provider as a result of measurement studies or prior expe-
rience. A pod may be inaccessible due to its failure or node



failure which is hosting the pod. Pod failures can be correlated
due to their dependence on the underlying node(s). Based
on this, we define a correlated group of pods as the pods
instantiated on the same node. The availability of a correlated
group is subjected to the below models,

1) Relaxed availability model: Availability of a correlated
group is subjected to the availability of,
• The node on which the group is hosted,
• At least one pod of the correlated group should be

available
Probability that a correlated group j hosted on node j will be
available is,

aj = (1− hj) ∗ (1−
∏

iε[1,K]|xij=1

gi) (2)

For the service to be available, at least one correlated group
should be available. Considering that correlated groups fail
independently, the service availability is defined as,

A(X) = 1− Pr{All correlated group fail}

= (1−
∏

jε[1,N ]|
∑K

i=1 xij=1

(1− aj)) (3)

2) Strict availability model: Availability of a correlated
group is subjected to the availability of,
• The node on which the group is hosted,
• All the pods of the correlated group should be available

The probability that a correlated group j hosted on node j
will be available is,

aj = (1− hj) ∗ [
∏

iε[1,K]|xij=1

(1− gi)] (4)

To deliver per user perceived QoS as mentioned in the SLA,
all the correlated groups should be available. Considering that
correlated groups fail independently the service availability is
defined as,

A(X) = Pr{All correlated group are available}

=
∏

jε[1,N ]|
∑K

i=1 xij=1

aj (5)

D. Constraints

Resource allocation and placement are subjected to con-
straints. We categories these constraints as infrastructural level
or service level.

1) Infrastructural level constraints: Eq. 6 defines the ca-
pacity constraint, where the pod(s) hosted on node j can not
exceed the available vCPU resources,

K∑
i=1

wij 6 C(j) ∗ yj (6)

Eq. 7 defines the pod hosting constraint, where a pod i can
only be hosted on one node,

N∑
j=1

xij = 1 (7)

Eq. 8 defines vCPU limiting constraints,

wij 6 maxvCPU ∗ xij
wij > minvCPU ∗ xij
∀iε[1,K], jε[1, N ]

(8)

2) Service level constraints: Eq. 9 defines the provisioning
constraint to avoid over-provisioning. We are not considering
pod overheads [12].

N∑
j=1

K∑
i=1

wij = RvCPU (9)

Eq. 10 defines the service availability constraint, where the ser-
vice availability achieved by the placement algorithm should
be equal to or higher than the required availability.

A(X) > RA (10)

E. Problem Formulation

Service providers aims to minimize the service deployment
cost as defined in eq. 1 and maintain service availability as
per SLA. The variable component of that cost is the number
of nodes hosting the service pods. We propose an Integer
Linear Programming (ILP) formulation with an objective to
minimize the number of nodes hosting the service pods while
considering service availability constraint eq. 10.

Min

N∑
j=1

Yj (11)

The objective function also considers other constrains men-
tioned in eq. 6, 7, 8, 9. The value of minimum vCPU that
can be allocated to a pod is fixed due to design reasons of the
VNFC application running inside a pod. Maximum vCPU is
fixed to avoid a pod from consuming vCPU resources allocated
to other pods. By fixing these values, the number of maximum
and minimum number of pods hosting the service is fixed.

Pmax = RvCPU/minvCPU

Pmin = RvCPU/maxvCPU

Pmin 6 K 6 Pmax

(12)

VI. HEURISTIC APPROACH

Our problem formulation is similar to the well known bin
packing problem. In a classical bin packing problem [13], the
aim is to minimize the number of bins used to fit items of
variable volume. These bins have a fixed volume. Whereas
in our problem nodes with variable vCPU resemble to bins,
and pods with variable size resemble to items. The classical
bin packing problem is NP-hard [13] and there are heuristic
algorithms to solve it. In our problem bin capacity is variable,
the number of items is variable with variable capacity and
there are additional constraints like service availability. Which
results in a NP-hard problem as well. Considering this, we
propose a heuristic algorithm, namely Dynamic Resource



Allocation and Placement (DRAP) to solve the problem in
polynomial time.

The DRAP algorithm aims to minimize the number of nodes
required to place the pods by adjusting the vCPU allocated to
each pod. Adjustable vCPU allocation allows the algorithm to
increase or decrease the number of pods based on the required
service availability.
Input: r > 0, C(j), N,RvCPU ,maxvCPU ,minvCPU
Output: K,W,X

1: i = 1
2: Sort C(j) in decreasing order
3: while t ≥ minvCPU/maxvCPU do
4: for j in [1,N] do
5: while C(j) ≥ 0 do
6: wij = min(C(j), t ∗maxvCPU )
7: if wij ≤ minvCPU then
8: break
9: end if

10: C(j) = C(j)− wij
11: xij = 1
12: if sum(W ) ≥ RvCPU then
13: break
14: end if
15: if i 6 Pmax then
16: i = i+ 1
17: else
18: break
19: end if
20: end while
21: if A(X) ≥ RA then
22: K = i
23: return W,X,K
24: else
25: break
26: end if
27: end for
28: t = t− r
29: reinitialize,K,W,X
30: end while

DRAP starts with sorting the nodes in decreasing order of
available vCPU capacity. The tuning factor t is used to adjust
the size of the pods. PACA dictionary W stores i pod number
also pod name, vCPU allocation wij and node number j.
The tuning rate r iterates by reducing the vCPU allocation
from maximum to minimum possible. Algorithm iterates over
several possible combinations of K, W and X until it finds the
pod placement matrix X that satisfy the availability constraint,
or it assigns the minimum possible vCPU minvCPU to the
maximum number of pods Pmax that a service can have. If
there is not enough capacity available in the cluster, algorithm
will return no solution.

VII. RESULTS

All the simulations were performed on Intel Core i5-
9400F with 6 CPU@2.90GHz and 32GiB of RAM. Academic
license of Gurobi optimizer was used to resolve our ILP.

We fixed node and pod failure probabilities for all the nodes
and pods constant, where hj = 0.001, gi = 0.001 for all
iε[1,K], jε[1, N ]. The minimum and maximum vCPU which
can be allocated to pods are, 2000m and 4000m vCPU unit
respectively.

(a) Number of nodes required

(b) Number of pods required

Fig. 5: Number of nodes and pods required by a cloud native network
service

Fig. 5 depicts the number of nodes and pods required to host
CNF instances of different cloud native network services. Each
service requires different vCPUs, 50, 100 up to 700vCPUs
respectively and 99.999% service availability. The services
were placed on a cluster of 100 nodes, and each node has
a capacity between 2 and 16vCPUs selected uniformly at
random. The placement of each service was independent of
the other services. The cluster nodes had the same vCPU
distribution for all the services at the time of placement. The
performance of DRAP is close to Gurobi in terms of reducing
the number of nodes. Both of them provide similar availability
for each service.

In Fig. 6 we considered a network service requiring 600vC-
PUs and 99.999% availability. The minimum and maximum
vCPU allocation for pods fixed to 1000m and 3000m vCPU
unit respectively. We placed the service on clusters having 200,
400 upto 2000 nodes. Every node of a cluster has 8vCPUs.
The sharp increase in gurobi’s execution time justifies that the
problem is NP-hard. The heuristic algorithm DRAP provides



Fig. 6: Execution time as a function of cluster size

the solution in a very less amount of time. The time taken by
DRAP to provide PACA dictionary varies between 13ms and
108ms.

(a) Gurobi

(b) DRAP

Fig. 7: Comparing two availability models

Fig. 7 compares the strict and relax availability models
defined previously. We placed five services on a cluster of
50 nodes where each service requires 20, 40 up to 100vCPUs.
Each cluster node has a capacity between 2 and 16vCPUs
selected uniformly at random. The aim is to achieve maximum
service availability, which can be promised by both mod-

els. For example, a service requesting 60vCPU with DRAP
97.823% of time there will no QoS degrade for any user and
99.999% time service will be available but some users might
be affected. Whereas for Gurobi these values are 98.019%
under strict and 99.999% under relax model. Gurobi and
DRAP have nearly similar performance.

VIII. CONCLUSION

Cloud-native has just started to enter in the telecom world.
Hence, there is a need to consider re-engineering the tra-
ditional VM-based network functions to benefit from the
agility of containers. We used the cloud-native approach of
having multiple replicas without over-provisioning resources
to provide resilience. Our proposed algorithm benefits from
allocating vCPU dynamically and at a finer granularity. It can
be considered that by allocating vCPU at a finer granularity
nodes capacity can be efficiently utilized. If a node has a low
computational capacity, then the pod requirements can be ad-
justed. Our approach can be beneficial for service providers in
reducing their infrastructural cost. The service we considered
was simple because it has replicas of the same type of CNF. If
there is a service which has different type of CNFs and each
CNF has replicas, then there can be complications related to
affinity, which are not considered in our algorithm. In our
future work, we will work with a complex network service
which considers a SFC.
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