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ABSTRACT

This paper considers a bidirectional (BD) full-duplex (BD-
FD) communication system design under the joint sum-power
and per-antenna power constraints. The sum-power con-
straints are naturally imposed by regulation to limit the to-
tal transmit power, and the per-antenna power constraints
consider the physical limits of the power amplifiers (PAs).
We propose a novel beamforming design to maximize the
weighted sum-rate (WSR) with alternating optimization un-
der the limited dynamic range (LDR) noise model. At each
iteration, we use minorization-maximization approach to op-
timize the beamformers and power allocation. Simulation
results show significant performance gain compared to a
half-duplex BD system or FD system with only sum-power
constraints. However, the gains are limited by the maximum
of the thermal noise variance or the LDR noise variance.

Index Terms— Full-Duplex, Beamforming, Weighted
Sum Rate, Per-Antenna and Sum-Power constraints, LDR
noise.

1. INTRODUCTION

Full-duplex (FD) has to potential to double the performance
of a wireless communication system as it allows simultane-
ous transmission and reception in the same frequency band.
It avoids using two independent channels for bi-directional
communication, by allowing more flexibility in spectrum uti-
lization, improving data security, and reducing the air inter-
face latency and delay issues [1, 2]. Self-Interference (SI) is
a significant challenge to deal with to achieve FD operation,
which could be around 110 dB compared to the received sig-
nal of interest.

However, continuous advancement in the SI cancellation
(SIC) techniques has made the FD operation feasible. SIC
schemes split the workload into the passive, analog and dig-
ital domain. The most challenging SIC stage is the analog
SIC stage, for which extra hardware is required [3]. The
analogue-to-digital-converters (ADCs) have only limited dy-
namic range (LDR), and if the analog SIC stage fails to mit-
igate the SI sufficiently, it leads to saturation of the convert-
ers. Saturation noise is well-known to be the most challenging
noise, which can significantly limit the performance of a FD
system [4–7]. Also, the non-ideal circuity in the transmit and
receive chains limit ideal SIC. Therefore, for correct perfor-
mance analysis of a FD system, the effect of RF circuitry and

ADCs by using the LDR model must be considered [8–12].

Bidirectional MIMO FD (BD-FD) communication has
been widely studied in the literature [10, 13]. In [10], achiev-
able rates under the LDR model are studied. In [13], the
effect of SI and transmitter noise are analyzed in the asymp-
totic regime. In [14], the authors present a large system
analysis for the rate regions. Weighted sum-rate (WSR) cost
function can accommodate various types of traffic demands
with correct rate weight selection. In particular, it has been
widely studied for BD-FD combined with beamforming to
optimize the performance. In [15], a low complexity beam-
forming design under the sum-power constraint is proposed.
In [16], linear precoder and decoder design under the sum-
power constraint is studied. In [17], the WSR maximization
problem is studied for a MIMO interference channel with in-
dividual or system sum-power constraint. In [18], the authors
propose novel hardware impairment aware linear precoder
and decoder design under the sum power constraints. In [9],
a hybrid beamforming design for BD-FD is presented.

In this paper, we consider digital beamformers’ design
for WSR maximization under the joint sum-power and per-
antenna power constraint. The sum-power constraints at each
terminal are imposed by the regulations, which limit the total
transmit power. In practice, each transmit antenna is equipped
with its power amplifier (PA) [19] and the per-antenna power
constraints arise due to the power consumption limits im-
posed on the physical PAs. Traditionally, the joint sum-power
and per-antenna power constraints take into account both the
regulations and the physical limits to optimize the systems’
performance. However, for FD communication, the joint
constraints have much more to offer. If there is no saturation
noise, the most dominant noise contribution comes for the
PAs [6], which introduce additional non-linearities when op-
erating in the non-linear region. Consequently, the residual
SI power increases, limiting the maximum achievable gain
for a FD system. With per-antenna power constraints, we can
limit PAs’ non-linear behaviour and improve the SI channel
estimation while complying with the sum-power constraints
naturally imposed by the regulations. Moreover, the transmit
antennas nearest the receive array contribute the most to the
line-of-sight (LoS) component of the SI signal. As the analog
SIC stage has very high energy consumption, we can reduce
it by restricting the per-antenna constraints on the transmit
antennas nearest to the receive array. Note that, restricting



a lot the per-antenna power constraints improves the uplink
rate but can degrade the downlink rate. In practice, an opti-
mal trade-off between the uplink and downlink rate must be
investigated.
Notation: Boldface lower and upper case characters denote
vectors and matrices, respectively, andE{·}, tr{·}, (·)H , (·)T ,
(·)∗,I , and D1:d represent expectation, trace, conjugate trans-
pose, transpose, complex conjugate, identity matrix and the
d dominant vector selection matrix, respectively, and diag(·)
denote a diagonal matrix.

2. SYSTEM MODEL
We consider a BD-FD communication system consisting of
two MIMO FD node communicating with each other. Let
F = {1, 2} contain the indices of the FD nodes. Let Nl
and Ml denote the number of transmit and receive antenna
at the FD node l ∈ F , respectively. We consider a multi-
stream approach and let sl ∈ Cdl×1 denote the dl white and
unitary variance data streams transmitted from node l ∈ F .
Let Vl ∈ CNl×dl denote the digital beamformer at the node
l ∈ F . The signal received at the FD node l can be written as

yl = Hl,m(Vmsm + cm) + el + nl + Hl,l(Vlsl + cl) (1)

where l and m ∈ F and l 6= m. The channel between
transmit array of node m ∈ F and receive array at node l ∈
F , with m 6= l is denoted with Hl,m ∈ CMl×Nm and the SI
channel at the node l is denoted with Hl,l ∈ CMl×Nl ,∀l ∈ F .
The vector nl,∀l ∈ F denote the thermal noise vectors at the
FD node l with variance σ2

l IMl
. Let Tl = VlV

H
l denote the

transmit covariance matrix of node l ∈ F . The terms cl and
cm are the transmitter and el and em are the receiver noise
distortions due to LDR at the node l and m, respectively, with
l,m ∈ F and l 6= m, and can be modelled as [10]

cl ∼ CN
(
0Nl×1, kl diag(Tl)

)
, ∀ l ∈ F , (2)

el ∼ CN
(
0Ml×1, βl diag(Φl)

)
, ∀ l ∈ F , (3)

where kl � 1, βl � 1 and Φl = Cov(xl), where xl denotes
the undistorted received vector at node l, such that xl = yl −
el,∀l ∈ F . Let Xl be the received covariance matrix of the
undistorted received signal at node l given by

Xl = Hl,mTmHH
l,m + Hl,mkmdiag(Tm)HH

l,m + σ2
l I+

Hl,l(Tl + kldiag(Tl))H
H
l,l , ∀l,m ∈ F and l 6= m,

(4)
and let Kl , Hl,mTmHH

l,m denote the useful signal part.
The received (signal plus) interference and noise covariance
matrices received at the FD node l ∈ F denoted with (Rl) Rl

can be written as

Rl ≈ (Xl + βldiag(Xl)), Rl ≈ Rl −Kl. (5)

The WSR maximization problem for the bidirectional FD sys-
tem under the joint sum-power and per antenna power for
beamformers optimization can be stated as

max
Vl

∑
m∈F

wmln det
(
R−1
m Rm

)
(6a)

s.t. diag(VlV
H
l ) � Pl, ∀l ∈ F , (6b)

tr(VlV
H
l ) ≤ pl, ∀l ∈ F , (6c)

where wm denote the rate weights, pl and Pl (a diagonal
matrix) denote the sum-power and per-antenna power con-
straints, respectively. The problem (6) is non-concave in Tl
due to SI terms at both the FD nodes which leads to finding
the global optimum solution very challenging.

3. BEAMFORMING
To find a feasible solution, we construct a minorizer of (6) us-
ing the minorization-maximization approach [20] to optimize
the precoders Vl at each iteration of the alternating optimiza-
tion process.

3.1. Digital Beamforming Design

The WSR can be written as a sum of weighted rate of nodes
l and m ∈ F ,m 6= l, i.e. WSR = WRl + WRm. Note
thatWRl is concave in Tm and non-concave in Tl andWRm
is concave in Tl and non-concave in Tm due to SI, ∀l,m ∈
F ,m 6= l. Since a linear function is simultaneously convex
and concave, difference of convex (DC) programming [20]
introduces the first order Taylor series expansion of WRm in
Tl and WRl in Tm around T i.e., all Ti, as

WRl(Tm, T̂ ) = WRl(Tm, T̂ )− tr((Tm − T̂ )Gm) (7a)

WRm(Tl, T̂ ) = WRm(Tl, T̂ )− tr((Tl − T̂ )Gl) (7b)

where Gm and Gl are the gradients of WRm and WRl with
respect to T̂l and T̂m, respectively, and given by ∀l ∈ F and
l 6= m as

Gm =wm
(
HT
m,m(R−Tm −R−Tm + βldiag(R−Tm −R−Tm ))

H∗m,m + kmdiag(HT
m,m(R−Tm −R−Tm )H∗m,m)

(8)
which are derived by using the matrix differentiation proper-
ties defined in [21].Note that, the linearized tangent expres-
sion constitutes a touching lower bound for (6), hence DC
programming is also a minorization approach, regardless of
the reparameterization as a function of beamformers.

Let λl and Ψl = diag(ψl1, ..., ψ
l
Nl

) be the Lagrange mul-
tipliers associated with the sum-power and per-antenna power
constraint at node l ∈ F , respectively. Dropping the constant
terms, reparameterizing back Tl as function of precoders,
performing this linearization ∀l ∈ F , augmenting the WSR
cost function with the per-antenna and sum power constraints,
yields the following Lagrangian

L =
∑
m∈F

(
ψmpm + tr(ΨmPm) + ln det(I + V H

m HH
l,mR−1

l̄

Hl,mVm)− tr(V H
m (Gm + λmI + Ψm)Vm)

)
(9)



Note that the powers are left out for now and will be included
later. To optimize the precoder and decoders, we take the
derivative of (9) with respect to Vl,∀l ∈ F and l 6= m, which
yields the following Karush–Kuhn–Tucker (KKT) conditions
∀l ∈ F

HH
l,mR−1

l̄
Hl,mVl(I + V H

m HH
l,mR−1

l̄
Hl,mVm)−1

− (Gm + λmI + Ψm)Vm = 0.
(10)

Theorem 1. The optimal precoder Vm, ∀m ∈ F is given by
the generalized dominant eigen vector of the pairs

Vm →D1:dl

(
HH
l,mR−1

l̄
Hl,m,Gm + λmI + Ψm

)
(11)

Proof. The results follow directly by applying the proof avail-
able in [20] for Proposition 1, by substituting HH

i,iR
−1
i Hi,i

with HH
l,mR−1

l̄
Hl,m and Ai+µiI with Gm+λmI+Ψm

3.2. Optimal Power Allocation

Solution (11) diagonalize the matrices

V H
m HH

l,mR−1
l̄

Hl,mVm = Σ(1)
m ,

V H
m (Gm + λlI + Ψl)Vm = Σ(2)

m

(12)

at each iteration to maximize the weighted sum rate. Once
the precoders are computed, the optimal power allocation can
be included while searching for the multipliers, satisfying the
constraints. Formally, the power optimization problem can be
written as
max
Pm

wllndet(I + Σ(1)
m Pm)− tr(Σ(2)

m Pm),∀m ∈ F . (13)

with fixed multipliers and Vl. Note that as Vl is a general-
ized dominant eigen vector solution of (9) and therefore by
multiplying it by a diagonal matrix it still yields a generalized
dominant eigen vector and Theorem 1 is still valid. The opti-
mal power allocation at each FD node is obtained by solving
(13), which yields

Pm =
(
wl(V

H
m (Gm + λmI + Ψm)Vm)−1−(

V H
m HH

l,mR−1
l̄

Hl,mVm
)−1)+

.
(14)

where (x)+ = max{0, x}.
Now, in order to satisfy the per antenna and sum power

constraints we consider the following Lagrange dual function

min
λl,Ψl

L(λl,Ψl). (15)

The dual function L(λl,Ψl) is the pointwise supremum of a
family of functions of λl,Ψl, it is convex [22] and the glob-
ally optimal value λl,Ψl and can be found by using any of
the numerous convex optimization techniques. In this work,
we adopt the bisection algorithm for the search of multipliers.
Let Ll = {λl, ψl, .., ψNl

} contain the multipliers associated
with the joint constraints at the node l ∈ F . Let µi, and µi de-
note the upper and lower bounds for the Lagrange multiplier
µi ∈ Ll. The complete procedure to solve (6) is formally
stated in Algorithm 1.

Algorithm 1 Beamforming for BD-FD
Given: The CSI and rate weights.
Initialize:Vl,∀ ∈ F .
Repeat until convergence
for:∀l ∈ F , l 6= m.

Compute Ĝm with (8).
Compute Vm with (11) and normalize it.
Set µi = 0 and µi = µimax

∀i ∈ Lm.
for: ∀µi ∈ Lm
Repeat until convergence

set µi = (µi + µi)/2.
Compute Pm with (13),
If constraint for µi is violated,
set µi = µi, else µi = µi,

Set Tm = VmPmV H
m

Next l.

3.3. Convergence proof

To prove the convergence of Algorithm 1, the ingredients re-
quired are minorization [23], Lagrange duality, saddle point
and KKT conditions [22]. LetWSR(T ) denote the cost func-
tion (6) as a function of transmit covariance marices and let
WSR(T , T̂ ) leading to

WSR(T ) ≥WSR(T , T̂ ) =
∑
l∈F

wllndet
(
I + V H

m HH
l,m

R−1
l̄

Hl,mVm
)
− tr

(
(Tm − T̂ )Gm

)
.

(16)
and the minorizer which is now concave in T has the same
gradient of (6), therefore the KKT conditions are not affected.
Reparametrizing the transmit covariance matrices T as a
function of the variables: powers P and digital beamformers
V , then adding the power sum-power and per-antenna power
constraints yield the Lagrangian (9). During the alternating
optimization process, every alternating update of (9) leads to
an increase in the weighted sum rate, ensuring convergence
for both the parameters. For the KKT conditions, at the con-
vergence point, the gradients of (9) with respect to the digital
beamformers yield the same gradients of the original cost
function (6). For fixed digital beamformers, (9) is concave
in P , therefore we have strong duality for the saddle point
maxP minλ,ΨL. Moreover, at the convergence point the
solution to minλ,ΨL satisfies the complementary slackness
condition i.e.,

λl(pl − tr(VlV H
l )) = 0,∀l ∈ F (17a)

tr(ΨlPl − diag(VlV
H
l )) = 0,∀l ∈ F . (18a)

4. SIMULATION RESULTS

This section presents simulation results for our novel digi-
tal beamforming design under the joint sum-power and per-
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Fig. 1. Average WSR as function of LDR noise with k = β,
N1 = N2 = 10 and M1 = M2 = 5 and SNR =30 dB.

antenna power constraints. The SI channel is modelled with
a Rician fading channel model. We assume a highly dom-
inant line-of-sight (Los) component for the SI channel mod-
elled with a Rician factor 105 dB [24]. The direct channels are
modelled as CN (0, 1). The per-antenna power constraints at
each FD node are the total sum-power divided by the number
of transmit antennas. As we consider all the possible noise
contributions due to LDR noise and σ2

l , we label our design
as a practical BD-FD (P-FD) design.

For comparison, we define the following benchmark
schemes: 1) We define an ideal BD-FD (I-FD) communi-
cation system for which there is no LDR noise, and there is
perfect knowledge of the SI channel, i.e. k, β = 0. 2) We
define an ideal BD half-duplex (I-HD) system for which ideal
circuitry is assumed in the transmit and receive chains, i.e.
k, β = 0. and the resources are split equally in time to serve
in uplink and downlink mode. Moreover, we compared our
design with the WMSSE design proposed in [17]. Results are
reported by averaging over 100 channel realizations.

Let k = kl = km and β = βl = βm, Figure 1 shows the
performance of our proposed design as a function of the LDR
noise, i.e., k and β. Note that the I-FD and I-HD system’s per-
formance is limited by σ2

l , which set the maximum achievable
performance gain. It is possible to decrease the LDR noise
variance below σ2

l . However, no performance improvement
will be observed as the performance is limited by the maxi-
mum of the LDR noise variance or σ2

l . On our P-FD design,
the impact of LDR can be observed. It is visible that, as the
amount of LDR noise variance increase, the performance of
the P-FD decreases and tend towards the performance of an
I-HD system. Figure 2 shows the performance as a function
of SNR when with k = β = −40 dB. We can observe the im-
pact of the LDR noise and how the maximum achievable gain
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Fig. 2. Average WSR as a function of SNR with k = β =
−40 dB, N1 = N2 = 10 and M1 = M2 = 5.

deviates from the ideal FD system. We can also see, both the
communication link (H2,1 and H1,2) achieves same perfor-
mance on average. The most important result can be seen by
comparing our design with the WMMSE design [15], which
considers only the sum power constraints. It can be seen,
when the transmit power is low, then the system with only
sum-power constraints perform better as the LDR results to
be below the noise level. When the transmit power increases,
the LDR noise increases, being proportional to the total trans-
mit power. However, by setting the per-antenna power con-
straint equal to sum-power divided by the number of anten-
nas, equally distribute the total transmit power on each and
minimize the impact of the LDR noise on each antenna. In
a practical system, that would mean that the RF components
are forced to operate in a highly linear region.

4.1. CONCLUSIONS

In this work, we studied the problem of WSR maximization
for a BD-FD communication system under the joint-sum
power and per-antenna power constraints. These constraints
consider the hardware limitation and the maximum power
transmission limits imposed by the regulations. The optimal
digital beamformers are designed under the practical LDR
model, which considers the effect of non-ideal circuitry. Sim-
ulation results show significant performance gain compared
to a half-duplex BD communication system. It’s observed
that the achievable performance of a practical BD-FD system
is limited by the maximum of the LDR noise variance or the
thermal noise variance. Moreover, we can conclude that by
designing the FD system under the joint constraints can be
advantageous to limit the impact of the LDR noise.
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