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Abstract—In this paper, we consider the problem of user
rate balancing in the downlink of multi-cell multi-user (MU)
Multiple-Input-Multiple-Output (MIMO) systems with partial
Channel State Information at the Transmitter (CSIT). With
MIMO leading to multiple streams per user, user rate balancing
involves both aspects of balancing and sum rate optimization.
We linearize the problem by introducing a rate minorizer and
by formulating the balancing operation as constraints leading to a
Lagrangian, allowing to transform rate balancing into weighted
sum minimization with Perron Frobenius theory. We provide
original analytical expressions for the Lagrange multipliers for
the multiple power constraints which can also handle the case in
which some power constraints are satisfied with inequality, as can
arise in a multi-cell scenario. We introduce two partial CSIT for-
mulations. One is based on the ergodic rate Mean Squared Error
(EMSE) relation, the other involves an original rate minorizer in
terms of the received interference plus noise covariance matrix,
in the partial CSIT case applied to the Expected Signal and
Interference Power (ESIP) rate. The simulation results exhibit
the improved performance of the proposed techniques over naive
partial CSIT beamforming based on perfect CSIT algorithms,
and in particular illustrate the close to optimal performance of
the ESIP approach.

Index Terms—Inter-cell interference coordination (ICIC), Co-
ordinated Beamforming (CoBF), Multi-User MIMO, Rate Bal-
ancing, Partial CSIT

I. INTRODUCTION

Multi-user multiple-input multiple-output (MIMO) systems
are considered as a promising technique for next generation
cellular networks for their great potential to achieve high
throughput [1]. In downlink communications, when a certain
knowledge of the Channel State Information (CSI) at the trans-
mitter is available, the system throughput can be maximized.
In practical, obtaining CSI at the receiver is easily possible
via training, whereas CSI at the transmitter (CSIT) acquires
reciprocity or feedback from the receiver. Therefore, many
works address the problem of optimizing the performance
of MIMO systems with the presence of CSIT uncertainties,
better known as partial CSIT. Among the different optimiza-
tion criteria, we distinguish the transmit power minimization,
and the max-min/min-max problems w.r.t. either signal-to-
interference-plus-noise ratio (SINR) [2]–[6], Mean Square
Error (MSE) [7]–[9] or user rate. The latter is the focus of
this work. In particular, we study Multi-Cell MIMO User Rate
Balancing with Partial CSIT.

In perfect CSIT case, [10] studies the balancing problem
w.r.t. SINR for MISO system using uplink/downlink duality. In
fact, most of max-min beamforming problems are transformed
into the dual problem power minimization problem in the
uplink. In [11], SINR balancing problem subject to multiple
weighted-sum power constraints for MISO system is solved
by exploiting Perron-Frobenius theory and uplink/downlink

duality, and an iterative subgradient projection algorithm is
used to satisfy the per-stream power constraints. Similarly,
MSE duality, which states that the same MSE values are
achievable in the downlink and the uplink with the same
transmit power constraint, has been exploited to solve max-
min beamforming problems w.r.t. MSE. In [9], three levels of
MSE dualities are established between MIMO BC and MIMO
MAC with the same transmit power constraint; these dualities
are exploited to reduce the computational complexity of the
sum-MSE and weighted sum-MSE minimization problems
(with fixed weights) in a MIMO BC. On the other hand,
we prove that user-wise rate balancing outperforms user-wise
MSE balancing or streamwise rate (or MSE/SINR) balancing
when the streams of any MIMO user are quite unbalanced in
[12]–[14].

In contrast, due to the inevitability of channel estimation
error, CSI can never be perfect. This motivates [15] to consider
an MSE-based transceiver design problem where the channel
knowledge is modeled in terms of channel mean and vari-
ance both at the transmitter and receivers. Then, an iterative
algorithm is proposed to solve the expected MSE balancing
problem by switching between the broadcast and the multiple
access channels. Also, SINR balancing problem with imperfect
CSIT is studied in [16] for multi-cell multi-user MISO system.
Therein, the authors introduce an alternative biased SINR
estimate to incorporate the knowledge of the channel esti-
mation error, outperforming the unbiased maximum-likelihood
estimate. In [17], CSI error matrix is represented as a bounded
hyper-spherical region within some radius, leading to a robust
max-min SINR problem for single-stream MIMO system.
The latter is solved as semidefinite program problem, where
robust transmit and receive beamformers are obtained using
alternating optimization. Rate balancing problem is studied in
[18], for broadcast MISO channel, where the case of erroneous
CSI at the receiver is considered. The authors use duality w.r.t.
SINR to solve the balancing problem: they transform the BC
problem into dual MAC problem taking into consideration the
erroneous receiver CSI. Actually, in the single stream per user
case (e.g. in MISO systems), balancing w.r.t. SINR, MSE or
user rate is equivalent (in the unweighted case). Another rate
balancing work for MISO system is studied in [19], wherein
the statistical properties of the channel are exploited and an
algorithm for optimal downlink beamforming is derived using
uplink/downlink duality.

In this work, we focus on ergodic user rate balancing, which
corresponds to maximizing the minimum (weighted) per user



expected rate in the network. We consider a multi-cell multi-
user MIMO system with partial CSIT, which combines both
channel estimates and channel (error) covariance information.
In particular, we introduce a novel extension of [14] to partial
CSIT, maximizing an expected rate lower bound in terms of
expected MSE. Furthermore, we introduce a second algorithm
by exploiting a better approximation of the expected rate
as the Expected Signal and Interference Power (ESIP) rate.
Whereas we have considered the ESIP approach in previous
sum utility optimization work, the algorithm here is based on
an original minorizer for every individual rate term, different
from existing DC programming approaches in sum utility
optimization. Both algorithms are based on a Lagrangian
formulation introduced in [14] for perfect CSIT, in which
utility balancing gets transformed into a weighted sum utility
with known optimal beamformers.

II. SYSTEM MODEL

We consider a MIMO system with C cells. Each cell c
has one base station (BS) of Mc transmit antennas serving
Kc users, with total number of users

∑
cKc = K. We refer

to the BS of user k ∈ {1, . . . ,K} by bk. Each user has Nk
antennas. The channel between the kth user and the BS in cell
c is denoted by Hk,c ∈ CNk×Mc . We consider zero-mean white
Gaussian noise nk ∈ CNk×1 with distribution CN (0, σ2

nI) at
the kth user.

We assume independent unity-power transmit symbols sc =
[sTK1:c−1+1 . . . s

T
K1:c

]T, i.e., E
[
scs

H
c

]
= I, where sk ∈ Cdk×1

is the data vector to be transmitted to the kth user, with
dk being the number of streams allowed by user k and
K1:c =

∑c
i=1Ki. The latter is transmitted using the transmit

filtering matrix Gc = [GK1:c−1+1 . . .GK1:c
] ∈ CMc×Nc , with

Gk = p
1/2
k Gk, Gk being the (unit Frobenius norm) beamform-

ing matrix, pk is non-negative downlink power allocation of
user k and Nc =

∑
k:bk=c

dk is the total number of streams
in cell c. Each cell is constrained with Pmax,c, i.e., the total
transmit power in c is limitted such that

∑
k:bk=c

pk ≤ Pmax,c.
The received signal at user k in cell bk is

yk = Hk,bkGksk︸ ︷︷ ︸
signal

+
∑
i6=k
bi=bk

Hk,bkGisi

︸ ︷︷ ︸
intracel interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,jGisi︸ ︷︷ ︸
intercell interf.

+nk

(1)

Similarly, the receive filtering matrix for each user k is defined
as FH

k = p
−1/2
k FH

k ∈ Cdk×Nk , composed of beamforming ma-
trix FH

k ∈ Cdk×Nk . The received filter output is ŝk = FH
k yk.

III. JOINT MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k and BS index c
for simplicity. Assume that the channel has a (prior) Gaussian
distribution with zero mean and separable correlation model

H = C1/2
r H

′
C

1/2
t (2)

where C1/2
r , C1/2

t are Hermitian square-roots of the Rx and
Tx side covariance matrices

EHHH = tr{Ct} Cr
EHHH = tr{Cr} Ct

(3)

Now, the Tx dispose of a (deterministic) channel estimate

Ĥd = H +C1/2
r H̃

′

dC
1/2
d (4)

where again the elements of H̃
′

d are i.i.d. ∼ CN (0, 1), and
typically Cd = σ2

H̃
IM . The combination of the estimate with

the prior information leads to the (posterior) LMMSE estimate

Ĥ= E
H|Ĥd

H=Ĥd (Ct+Cd)
−1Ct, Cp=Cd (Ct+Cd)

−1Ct
(5)

where the estimation error on Ĥ can be modeled as Ĥ −
H = C

1/2
r H̃

′

pC
1/2
p with Ĥ and H̃

′

p being independent (or
decorrelated if not Gaussian). Note that we get for the MMSE
estimate of a quadratic quantity of the form

E
H|Ĥd

HHH = ĤHĤ + tr{Cr}Cp = R . (6)

Let us emphasize that this MMSE estimate implies R =
arg minT EH|Ĥd

||HHH − T ||2. It averages out to

E
Ĥd
R = E

H,Ĥd
HHH = EHHHH = tr{Cr}Ct . (7)

Hence, if we want the best estimate for HHH (which appears
in the signal or interference powers), it is not sufficient to
replace H by Ĥ but also the (estimation error) covariance
information should be exploited. Other useful expressions are

E
H|Ĥd

HHQH = ĤHQĤ + tr{CrQ}Cp (8)

and

E
H|Ĥd

HPHH = ĤPĤH + tr{CpP }Cr . (9)

Note that ρP = tr{ĤHĤ}
tr{Cr}tr{Cp} is a form of Ricean factor

that represents posterior channel estimation quality. It depends
on the deterministic channel estimation quality ρD = 1/σ2

H̃
.

Below we consider Cr = I , and the only covariance C we
shall need is Cp, hence we drop the subscript p. Perfect CSIT
algorithms can be obtained by setting σ2

H̃
= 0, leading to

Ĥ = H and Cp = 0.

IV. EXPECTED RATE BALANCING PROBLEM
In this work, we aim to solve the weighted user-rate max-

min optimization problem under per cell total transmit power
constraint, i.e., the user rate balancing problem expressed as
follows

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (10)

where rk is the kth user-rate

rk = lndet
(
I+R−1

k
Hk,bkGkG

H
kH

H
k,bk

)
= ln det

(
R−1

k
Rk

)
,

(11)

Rk = σ2
nI+

∑
l 6=k

Hk,blGlG
H
l H

H
k,bl , (12)

Rk = Rk+Hk,bkGkG
H
kH

H
k,bk , (13)

Rk and Rk are the interference plus noise and total received
signal covariances, and r◦k is the rate priority (weight) for
user k. Actually, in the presence of partial CSIT, we shall
be interested in balancing the expected (or ergodic) rates



max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, c = 1, . . . , C (14)

where rk = E
H|Ĥ rk. We shall need

Sk,i=Ĥk,biGiG
H
i Ĥ

H
k,bi +tr{GH

i Ck,biGi}I, Sk = Sk,k (15)

Rk = EH|ĤRk =σ2
nI+

∑
i6=k

piSk,i , Rk = Rk + pkSk (16)

However, the problem presented in (14) is complex and can
not be solved directly.
Lemma 1. The user k rate in (11) is lower bounded as [20]
rk = EH|Ĥ max

Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkEk

)
+ dk

]
(17)

≥ rlk = max
Wk,Fk

f l
k
, f l

k
= ln det

(
Wk

)
− tr

(
WkEk

)
+ dk (18)

where f l
k

= f l
k
(Wk,Fk) , Ek = E

[
(ŝk − sk)(ŝk − sk)H

]
= I −FH

k Ĥk,bkGk − GH
k Ĥ

H
k,bkFk + σ2

nFH
kFk

+

K∑
l=1

FH
k

(
Ĥk,blGlG

H
l Ĥ

H
k,bl + tr{GH

l Ck,blGl}I
)
Fk (19)

is the kth user downlink Expected MSE (EMSE) matrix
between the decision variable ŝk and the transmit signal sk,
and {Wk}1≤k≤K are auxiliary weight matrix variables with
optimal solution W opt

k = E
−1
k and the optimal receivers are

Fk = R
−1
k Ĥk,bkGk. (20)

with rate lower bound

rlk = − ln det(I − GH
k Ĥ

H
k,bkR

−1
k Ĥk,bkGk) . (21)

Note that f l
k

is a lower bound for any Wk,Fk and so is
rlk = maxWk,Fk

f l
k
. Now consider both (14) and (18), and let

us introduce ξk = ln det
(
Wk

)
+ dk − rMk , the matrix-weighted

EMSE (WEMSE) requirement, with target rate rMk . Assume
that we shall be able to concoct an optimization algorithm that
ensures that at all times and for all users the WEMSE satisfies
εw,k = tr

(
WkEk

)
≤ dk and ln det

(
Wk

)
≥ rMk or hence ξk ≥ dk.

This leads ∀k to
εw,k
ξk
≤ 1 ⇐⇒ ln det

(
Wk

)
+ dk − tr

(
WkEk

)
≥ rMk (22)

(a)
=⇒ rlk/r

M
k ≥ 1

where (a) follows from (18). To get to (22), what we can
exploit in (14) is a scale factor t that can be chosen freely
in the rate weights r◦k in (14). We shall take t = mink r

l
k/r
◦
k,

which allows to transform the rate weights r◦k into target rates
rMk = tr◦k, and at the same time allows to interpret the WEMSE
weights ξk as target WEMSE values.

Doing so, the initial rate balancing optimization problem
(14) can be transformed into a WEMSE balancing problem
expressed as follows

min
G,p,F

max
k

εw,k/ξk

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (23)

which needs to be complemented with an outer loop in which
Wk = E

−1
k , t = mink r

l
k/r
◦
k, rMk = tr◦k and ξk = dk+rlk−rMk get

updated. The problem in (23) is still difficult to be handled
directly.

V. THE WEIGHTED USER EMSE OPTIMIZATION

In this section, the problem (23) with respect to the matrix
weighted user EMSE is studied. The per user matrix WEMSE
can be expressed as follows

εw,k = tr
(
WkEk

)
(24)

= tr
(
Wk

)
− 2 tr

(
WkG

H
k Ĥ

H
k,bkFk

)
+ σ2

np
−1
k tr

(
WkF

H
k Fk

)
+ p−1

k

K∑
l=1

pltr
(
WkF

H
k

(
Ĥk,blGlG

H
l Ĥ

H
k,bl +tr{GH

l Ck,blGl}I
)
Fk
)

Define the diagonal matrixD of signal WEMSE contributions

[D]ii = tr
(
Wi

)
− 2 tr

(
WiG

H
i Ĥ

H
i,biFi

)
(25)

+ tr
(
WiF

H
i

(
Ĥi,biGiG

H
i Ĥ

H
i,bi + tr{GH

i Ci,biGi}I
)
Fi
)
,

and the matrix of weighted interference powers

[Ψ]ij =

{
tr{WiF

H
i

(
Ĥi,bjGjG

H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I

)
Fi}, i 6= j

0, i = j.

We can rewrite (24) as, with p = [p1 · · · pK ]T

εw,i = [D]ii + p−1
i [Ψp]i + σ2

np
−1
i tr

(
WiF

H
i Fi

)
(26)

Collecting all user WEMSEs in a vector εw =
diag(εw,1, . . . , εw,K), we get

εw1K = diag(p)−1 [(D + Ψ)diag(p)1K + σ] (27)

where the K × 1 vector σ is defined as

σi = σ2
n tr
(
WiF

H
i Fi

)
.

By multiplying both sides of (27) with diag(p), we get

εwp = (D + Ψ)p+ σ . (28)

Let ξ = diag(ξ1, . . . , ξK), then

ξ−1εw p = ξ−1(D + Ψ)p+ ξ−1σ . (29)

Actually, problem (23) always has a global minimizer p
characterized by the equality ξ−1εw(p) = ∆I, i.e.,

∆p = ξ−1(D + Ψ)p+ ξ−1σ . (30)

Now, consider the following problem

max
G,p,F

min
k

r̄k/r
◦
k

s.t.

C∑
c=1

θcc
T
c p ≤

C∑
c=1

θcPmax,c (31)

where cc is a column vector with cc(j) = 1 for K1:c−1 +1 ≤
j ≤ K1:c, and 0 elsewhere. This problem formulation is a
relaxation of (14), and θ = [θ1 · · · θC ]Tcan be interpreted as
the weights on the individual power constraints in the relaxed
problem. The power constraint in (31) can be interpreted as a
single weighted power constraint

(θTCT
C ) p ≤ θTpmax (32)

with CC = [c1 · · · cC ] ∈ RK1:C×C
+ and pmax =

[Pmax,1 · · ·Pmax,C ]T. Reparameterize p = θTpmax

θTCT
Cp
′ p
′

where



now p
′

is unconstrained, which allows us to write (30) as
follows (rewriting p

′
as p)

∆p = Λp with Λ = ξ−1(D + Ψ) +
1

θTpmax
ξ−1σθTCT

C . (33)

Now with (33), the WEMSE balancing problem of (23)
becomes

min
p

max
k

εw,k
ξk

= min
p

max
k

[Λp]k
pk

(34)

According to the Collatz–Wielandt formula [21, Chapter 8],
the above expression corresponds to the Perron-Frobenius
(maximal) eigenvalue ∆ of Λ and the optimal p is the
corresponding Perron-Frobenius (right) eigenvector

Λp = ∆p. (35)

Note that this implies the equality ξ−1εw = ∆ I as announced
in (30).

VI. ALGORITHMIC SOLUTION VIA LAGRANGIAN DUALITY
The max-min weighted user rate optimization problem (14)

can be reformulated as
min
t,G,p

− t

s.t. t r◦k − rlk ≤ 0, cTc p− Pmax,c ≤ 0 ,∀k, c. (36)

Introducing Lagrange multipliers to augment the cost function
with the constraints leads to the Lagrangian

max
λ
′
,µ

min
t,G,p

L

L = −t+
∑
k

λ
′
k(t r◦k − rlk) +

∑
c

µc(c
T
c p− Pmax,c) (37)

Integrating the result (22), we get a modified Lagrangian
max
λ
′
,µ

min
t,G,p,F,W

L (38)

L = −t+
∑
k

λ
′
k(tr(WkEk)− ξk) +

∑
c

µc(c
T
c p− Pmax,c)

We get µc = µoθc,
∑
c θc = 1, where µo is the Lagrange

multiplier associated with the constraint in (31). Introducing
λk = λ

′

kξk, we can rewrite (with some abuse of notation since
actually minW continues to apply to tr(WkEk)− ξk(Wk)),

max
λ,µ

min
t,G,p,F ,W

L

L = −t+
∑
k

λk(
tr(WkEk)

ξk
− 1) + µo

∑
c

θc(c
T
c p− Pmax,c)

(39)

We shall solve this saddlepoint condition for L by alternating
optimization. As far as the dependence on λ, µ,G,p,F is
concerned, we have

max
λ

min
G,p,F

∑
k

λk
ξk

tr(WkEk) (40)

+
∑
c

µc
( ∑
i:bi=c

tr{GH
i Gi} − Pmax,c)

which is of the form Weighted Sum EMSE (WSEMSE).
Optimizing w.r.t. Txs Gk:

∂L
∂G∗k

= 0 = −λk

ξk
ĤH
k,bk

FkWk + µbkGk+(∑
i
λi

ξi

(
ĤH
i,bk

F iWiFH
i Ĥi,bk+tr{F iWiFH

i }Ci,bk
))
Gk

(41)

This leads to

G′k=
( K∑
l=1

(
ĤH
l,bkF lW

′
lFH

l Ĥl,bk+tr{F lW
′
lFH

l }Cl,bk
)
+ µbkI

)−1

× ĤH
k,bkFkW

′
k , Gk =

√
pkGk , Gk =

1√
tr{G′Hk G′k}

G′k (42)

where W ′
k = λk/ξkWk, and accounting for the fact that the

user powers are actually optimized by the Perron-Frobenius
theory. Note that we can solve for µc by multiplying (41)
from the left by GH

k and summing over the users in cell c:

µc =
1

Pmax,c
btr{

∑
k:bk=c

[λk
ξk

GH
k Ĥ

H
k,bk

FkWk− (43)

GH
k

(∑
i

(
ĤH
i,bk

F iW
′
iF

H
i Ĥi,bk+tr{F iW

′
iF

H
i }Ci,bk

))
Gk
]
}c+

where we noted that Fk = FkWkEk = FkWk(I −
FH
k Ĥk,bkGk) and bxc+ = x if x ≥ 0 and is zero otherwise.

This nonnegativity constraint on µc stems from the fact that
µc = − ∂L

∂Pmax,c
≥ 0 since indeed the WSMSE can only

get smaller if we allow a larger power budget. We then get
θc = µc/

∑
c′ µc′ .

The Perron-Frobenius theory also allows for the optimiza-
tion of the Lagrange multipliers λk. With (34), we can
reformulate (40) as

∆ = max
λ:

∑
k λk=1

min
p

∑
k

λk
[Λp]k
pk

(44)

which is the Donsker–Varadhan–Friedland formula [21, Chap-
ter 8] for the Perron Frobenius eigenvalue of Λ. A related
formula is the Rayleigh quotient

∆ = max
q

min
p

qTΛp

qTp
(45)

where p, q are the right and left Perron Frobenius eigenvectors.
Comparing (45) to (44), then apart from normalization factors,
we get λk/pk = qk or hence λk = pkqk.

The proposed optimization framework is summarized in
Table I. Superscripts refer to iteration numbers. The algorithm
in Table I is based on a double loop. The inner loop solves
the WEMSE balancing problem in (23) whereas the outer
loop iteratively transforms the WEMSE balancing problem
into the original rate balancing problem in (14). The proof
of convergence of this transformation is similar to the one in
[12].

VII. ESIP RATE BALANCING

Now we follow another approximation of the expected rate
expression The following approach will use a rate minorizer
for every rk, similar but not identical to what is used as in
the DC programming approach which for the optimization
of Gk keeps rk and linearizes the rk. The approach does
not require the introduction of Rxs. We consider again the
(ergodic) rate balancing problem (14) where rk = E

H|Ĥ rk



TABLE I: WEMSE based User Rate Balancing

1. initialize: G(0,0)
k = (Idk : 0)T, p(0,0)

k = q
(0,0)
k =

Pmax,c

Kc
, m =

n = 0 and fix nmax,mmax and r◦(0)k = r◦k , initialize W
(0)
k =

Idk and ξ(0)k = dk

2. initialize F
(0,0)
k in F(0,0)

k = p
(0,0)−1/2
k Fk from (20)

3. repeat

3.1. m← m+ 1
3.2. repeat

n← n+ 1
i update Gk , Gk , µc from (42),(43)

ii update Fk = p
1/2
k Fk from (20)

iii update p and q using (45)
3.3 until required accuracy is reached or n ≥ nmax

3.4 compute E
(m)
k and update W

(m)
k = (E

(m)
k )−1

3.5 determine t = mink
r
l (m)
k

r
◦(m−1)
k

, r◦(m)
k = t r

◦(m−1)
k ,

and ξ(m)
k = dk + r

l (m)
k − r◦(m)

k
3.6 set n ← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to

re-enter the inner loop
4. until required accuracy is reached or m ≥ mmax

is now approximated by the Expected Signal and Interference
Power (ESIP) rate

rk= EH|Ĥ lndet
(
I+pkG

H
k H

H
k,bkR

−1

k
Hk,bkGk

)
≈ lndet

(
I+pkG

H
k EH|Ĥ{H

H
k,bk ( EH|ĤRk)−1Hk,bk}Gk

)
= rsk = fsk(

1

pk
Rk) = lndet

(
I+GH

k Bk(
1

pk
Rk) Gk

)
, (46)

Bk(T k) = ĤH
k,bkT

−1
k Ĥk,bk + tr{T−1

k }Ck,bk (47)

where the rk approximation rsk in (46) in general is neither
an upper nor lower bound but in the Massive MIMO limit
becomes a tight upper bound.

Lemma 2. The approximate rk, rsk, can be obtained as
fsk( 1

pk
Rk) = minT k

fs
k
(T k,

1
pk
Rk), with fs

k
(T k,

1
pk
Rk) :

fs
k

= lndet
(
I+GH

kBk(T k)Gk

)
+tr{W̆k(T k−

1

pk
Rk)} (48)

where

W̆k = T
−1

k

(
Ĥk,bkXk Ĥ

H
k,bk

+ tr{XkCk,bk}I
)
T
−1

k (49)

with Xk = Gk

(
I+GH

kBk(T k)Gk

)−1

GH
k (50)

The optimizer is T k = 1
pk
Rk. Also, fs

k
is a minorizer for

fsk( 1
pk
Rk) as a function of 1

pk
Rk.

Indeed, since fsk(.) is a convex function, it gets minorized
by its tangent at any point:

fsk(
1

pk
Rk) ≥ fs

k
= fsk(T k)+tr{∂f

s
k(T k)

∂T k
(

1

pk
Rk−T k)}

(51)
and W̆k = −∂f

s
k(T k)

∂T k
. Note that for the Perron-Frobenius

theory, we need a function that is linear in pk

pk
, hence we need

to work with 1
pk
Rk instead of Rk.

The modifications in the Lagrangian formulation in Sec-
tion VI are now∑

k

λ̆
′

k(t rok − f
s

k
)

= −
∑
k

λ̆
′

k

(
lndet

(
I+GH

kBkGk

)
− 1

pk
tr{W̆kRk} (52)

+ tr{W̆kT k}−t rok
)

=
∑
k

λ̆k(
1

pk ξ̆k
tr{W̆kRk}−1) (53)

where ξ̆k = tr{W̆kT k}+ lndet
(
I+GH

kBkGk

)
− t rok

(54)

and λ̆
′

k = λ̆k/ξ̆k, Bk = Bk(T k). The balancing of the rates
in (14) or equivalently the weighted interference plus noise
powers in (52) now leads to the same problem formulation as
in (34) with this time

Λ̆ = ξ̆−1Ψ̆ +
1

θTpmax
ξ̆−1σ̆θTCT

C with (55)

[Ψ̆]ij =

{
tr{W̆i(Ĥi,bjGjG

H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I)}, i 6= j

0, i = j
(56)

σi = σ2
n tr{W̆i}, ξ̆ = diag(ξ̆1, . . . , ξ̆K) . (57)

The Tx BF and stream power optimization will be based on∑
i
λ̆i

ξ̆i
fs
i
, which from (52) becomes (apart from noise terms)

∑
k

λ̆k

ξ̆k
fs
k

=
∑
k

λ̆k

ξ̆k
lndet

(
I+GH

kBkGk

)
−
∑
k

tr{pkGH
k AkGk}

(58)
with Ak=

∑
i 6=k

λ̆i

pi ξ̆i

(̂
HH
i,bkW̆iĤi,bk +tr{W̆i}Ci,bk

)
. (59)

For the optimal Tx BF Gk, the gradient of
∑
i
λ̆i

ξ̆i
fs
i
−

µbk
∑
i:bi=bk

pitr{GH
i Gi} with (58) (or (46)) yields

λ̆k

pk ξ̆k
BkGk (I +GH

k BkGk)−1−(Ak + µbkI)Gk = 0 . (60)

The solution is the dk maximal generalized eigen vectors

G
′

k = V1:dk(Bk,Ak + µbkI),Gk=G
′

kP
1/2

k ,Gk=Gk
√
pk
(61)

where the P k = diag(pk,1, . . . , pk,dk), tr{P k} = 1, are the
relative stream powers. Indeed, (60) represents the definition
of generalized eigen vectors. Consider

Σ
(1)
k =G

′H
k BkG

′

k, Σ
(2)
k =G

′H
k AkG

′

k (62)

then the generalized eigen vectors G
′

k of Bk,Ak +µbkI lead
to diagonal matrices Σ

(1)
k , Σ

(2)
k + µbkG

′H
k G

′

k. Note that the
normalized G

′

k are not orthogonal. Then (60) represents the
generalized eigen vector condition with associated general-
ized eigen values in the diagonal matrix pk ξ̆k

λ̆k
(I + Σ

(1)
k P k).

Also, plugging in generalized eigen vectors into (58) reveals
that one should choose the eigen vectors associated to dk
maximal eigen values to maximize (58). Now, premultiply-
ing both sides of (60) by pkG

H
k , summing over all users

k : bk = c, taking trace and identifying the last term with∑
k:bk=c pktr{GH

kGk} = Pmax,c allows to solve for



TABLE II: ESIPrate based User Rate Balancing

1. initialize: G(0,0)
k = (Idk : 0)T, p(0,0)

k = q
(0,0)
k =

Pmax,c

K
, m =

n = 0 and fix nmax,mmax, r◦k , and W̆
(0)
k from (49)

2. compute r
s (0)
k = lndet

(
I +GH

k Bk( 1
pk

Rk) Gk

)
, determine

t = mink
r
s (0)
k
r◦
k

, r◦(0)k = t r◦k , and ξ̆(0)k from (54)
3. repeat

3.1. m← m+ 1
3.2. repeat

n← n+ 1
i update Ak from (59)

ii update µc and G
′
k from (61),(63)

iii update P k from (65)
iv update p and q as maximal eigen vectors of Λ̆ in (55)

3.3 until required accuracy is reached or n ≥ nmax

3.4 compute Bk(T k) and update W̆k from (49)
3.5 compute r

s (m)
k = lndet

(
I +GH

k Bk( 1
pk

Rk) Gk

)
and

determine t = mink
r
s (m)
k

r
◦(m−1)
k

, r◦(m)
k = t r

◦(m−1)
k ,

and update ξ̆k from (54)
3.6 set n ← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to

re-enter the inner loop
4. until required accuracy is reached or m ≥ mmax

µc=
1

Pmax,c

 ∑
k:bk=c

tr{ λ̆k
ξ̆k

Σ
(1)
k P k(I+Σ

(1)
k P k)−1−pkΣ

(2)
k P k}


+

.

(63)
The P k are themselves found from an interference leakage

aware water filling (ILAWF) operation. Substituting G
′

k into
term k of (58), dividing by pk, and accounting for the
constraint tr{P k} = 1 by Lagrange multiplier νk, we get
the Lagrangian

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(Σ(2)

k + νkI)P k} = (64)

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(diag(Σ

(2)
k )+νkI)P k}.

Maximizing w.r.t. P k leads to the ILAWF

P k =

⌊
λ̆k

pk ξ̆k
(diag(Σ

(2)
k ) + νkI)−1 − Σ

−(1)
k

⌋
+

(65)

where the Lagrange multiplier νk is adjusted (e.g. by bisection)
to satisfy tr{P k} = 1. Elements in P k corresponding to zeros
in Σ

(1)
k should also be zero. This completes the ESIP rate

balancing algorithm derivation (Table II).

VIII. SIMULATION RESULTS

In this section, we numerically evaluate the performance of
the proposed algorithms. For the multipath channel model,

Ct =

Np∑
n=1

αi
vHi vi

viv
H
i (66)

with tr{Ct} =
∑Np

n=1 αi = Mc, αi = ci−1α1 (we use
c = 0.3) and the vi are i.i.d. vectors of Mc i.i.d. elements
CN (0, 1). We take Np = Mc/K. For all simulations, we take

nmax = 20, though typically 2-3 inner loop iterations suffice.
The algorithm converges after 4-5 (or 13-15) (outer) iterations
of m at SNR = 15dB (or 40dB). For all (partial CSIT) algo-
rithms, we evaluate the actual expected rate rk = E

H|Ĥ rk
by Monte Carlo averaging over 500 channel realizations. The
partial CSIT algorithms evaluated are the proposed WEMSE
and ESIPrate, and also Naive Partial CSIT which corresponds
to perfect CSIT by assuming the channel estimates to be
the true channels. Perfect CSIT algorithms are obtained from
WEMSE or ESIPrate by setting ρD =∞. We also evaluate LB
WEMSE, which considers ln(det(WkEk)), and UB ESIPrate,
which corresponds to (46) (Lower/Upper Bounds).

Figure 1 represents the average attained rate using the
proposed algorithms for different configurations of the system
(single and multi-cell). We can see that ESIPrate outperforms
WEMSE and suffers little loss compared to perfect CSIT, and
that the UB ESIPrate provides a tight upper bound. Note also
that for fixed ρD as considered here, Naive saturates at high
SNR, whereas WEMSE appears to suffer Degree-of-Freedom
(DoF) (slope) loss.

In Figure 2, we consider varying levels of channel es-
timation error σ2

H̃
. It is clear that when ρD = 1/σ2

H̃
is

proportional to SNR, all algorithms (only) suffer from varying
SNR offset, but ESIPrate still outperforms WEMSE for which
the signal link channel error covariance is accounted for in the
interference power instead of in the signal power.

Figure 3 illustrates the convergence of the user rates w.r.t.
the number of iterations for one channel realization, with SNR
= 20dB and ρD = 10. We observe that the rates obtained
using (46) and ln(det(WkEk)) are balanced. Both approaches
converge after about 5 iterations of the outer loop, while the
inner loop converges after 2-3 iterations. Of course, due to the
CSIT imperfections, the actual rates exhibit some randomness.
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IX. CONCLUSIONS

In this work, we addressed the multiple streams per MIMO
user case for which we considered user Erate (Expected rate)
balancing, not stream Erate balancing, in a multicell down-
link channel. Actually, we optimized the Erate distribution
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over the streams of a user, within the user Erate balancing
under per cell power constraints. We transformed the max-
min Erate optimization problem into a min-max weighted
EMSE optimization problem which itself was shown to be
related to a weighted sum EMSE minimization via Lagrangian
duality, involving linearizing the EMSE balancing problem by
transforming to EMSE constraints. The associated Lagrange
multipliers and user powers get found as left and right eigen
vectors of a weighted interference matrix in the Perron-
Frobenius theory. We also considered the ESIP Erate approx-
imation, for which we introduced an original minorizer, judi-
ciously chosen to be amenable to the Perron-Frobenius theory.
We furthermore introduced original explicit power constraint
Lagrange multiplier solutions, which can handle the case in
which some cell power constraints are met with inequality,
as can happen in a multi-cell scenario. The simulation results
exhibit the different SNR behavior of the Erate lower bound
vs. actual Erate, showed that the upper bound is a quite tight
approximation, and that the ESIP partial CSIT approach with
LMMSE channel estimation leads to very limited performance

loss compared to perfect CSIT. In the multi-cell case, the
proposed algorithms can handle scenarios in which the CSIT
quality could be very different between intracell and intercell
links.
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