
Positioning and Association Rules for Transparent
Flying Relay Stations

Mehyar Najla, Student Member, IEEE, Zdenek Becvar, Senior Member, IEEE, Pavel Mach, Member, IEEE,
and David Gesbert, Fellow, IEEE

Abstract—Transparent flying relay stations (FlyRSs), repre-
sented by transparent relays mounted on unmanned aerial
vehicles (UAVs), have the potential to improve cellular networks
capacity and coverage at little extra complexity and energy cost,
especially when compared with non-transparent relays. As the
transparent relays do not transmit reference signals, they do not
lend themselves easily to channel estimation. This makes solving
the problems of user association and positioning of transparent
FlyRSs much harder. We propose a solution enabling an efficient
association of users to the FlyRSs and determining suitable
positions of the FlyRSs. Surprisingly, this can be done knowing
neither the qualities of the channels linking the FlyRSs and the
users nor the users’ location information. Our approach involves
the users being grouped into clusters based on the channels
to nearby static base stations via agglomerative hierarchical
clustering. Then, 3D positions of one FlyRS per cluster are
determined by deep neural networks. The proposal improves the
users sum capacity with respect to existing solutions that rely on
the knowledge of users positions.

Index Terms—Transparent relays, unmanned aerial vehicles,
agglomerative hierarchical clustering, deep neural networks

I. INTRODUCTION

Relay stations (RSs) are deployed between a base station
(BS) and a user equipment (UE) to improve the network’s
capacity and coverage [1]. Two main types of the RSs are
distinguished: non-transparent (known also as Type I) and
transparent (Type II) [1]. The non-transparent RSs create
their own cell and perform typically all the functions that
the BS does (e.g., radio resource management). In contrast,
the transparent RSs are of limited functionalities and the BS
still controls a majority of the communication management
functions. Hence, the transparent RSs are less complex [2]
and, consequently, lighter, cheaper, and less energy demanding
comparing to the non-transparent RSs [3]. These features make
transparent RSs convenient for flying relay stations (FlyRSs),
i.e., the RSs mounted on Unmanned Aerial Vehicles (UAVs).

The FlyRSs can be deployed on-demand and can adjust
their position to handle short-term traffic peaks [4]. However,
the FlyRSs, in comparison to the fixed RSs, introduce new
challenges related to the positioning of the FlyRSs [5] and
the association of the UEs [6]. To solve these problems, the
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locations of the UEs or at least the spatial distribution of
the UEs are assumed to be known in [5], [6], and/or the
quality of access channels between the FlyRSs and the UEs
is obtained [7], [8], e.g., via an estimation from common
reference signals. However, in practice, information on the
UEs’ locations is either inaccurate or not known at all due to
the privacy preferences of the UEs. Moreover, the transparent
FlyRSs do not transmit their own reference signals [9] and
forward only data symbols transmitted by the BS [9] while
the control and reference signals are sent to the UEs directly
by the BS [9], [10]. Thus, the quality of the access channels
between the FlyRS and the UEs is not known.

In the literature, two ways for the estimation of the access
channel quality are proposed: i) the UEs feed their received
downlink data signal back to the BS, which processes the
fed-back signal [11], ii) the transparent RS listens to the
uplink signal transmitted by the UEs and reports it to the BS
[12]. However, such approaches imply a notable additional
signaling and an undesired latency. The harm of this latency
on the communication quality is emphasized if the FlyRSs
are considered, as they can change positions dynamically and
quickly over time. The positioning of the transparent FlyRSs
and the association of the UEs to these transparent FlyRSs
still remain unsolved for a practical case with unknown both
locations of the UEs and the qualities of the access channels.

In this letter, we address the yet not solved problems of
the transparent FlyRSs’ positioning and the UEs’ association
in a practical urban scenario with unknown UEs’ locations.
We propose a solution that, first, clusters the UEs into disjoint
groups so that the UEs with a high probability to be in LOS
and in a proximity to each other are in the same cluster.
As we target a realistic urban scenario with obstacles (e.g.,
buildings), the clustering is inspired by the Agglomerative
hierarchical clustering algorithm [13]. Then, one FlyRS is
deployed for each cluster and its 3D position maximizes the
ratio of the access channels with LOS between the FlyRS and
its associated UEs. The positions of the FlyRSs are predicted
via offline trained deep neural networks (DNNs) exploiting
the known qualities of the channels from the UEs to the BSs.
This prediction benefits from the correlation between different
types of channels and network’s topology and environment.
As this correlation is hidden and not explicitly available to be
extracted analytically, we adopt DNNs, which are known to
be efficient in extracting complex prediction models.

II. SYSTEM MODEL

We assume an urban area with buildings and M BSs
deployed on the rooftops of some of the buildings. In addition,



Fig. 1: System model. Red and blue lines denote unknown
access and other known channels, respectively.

K transparent FlyRSs relay data from the BSs to N UEs in
the downlink. The data is, first, sent via the backhaul channel
from the BS to the FlyRS and, then, forwarded via the access
channel from the FlyRS to the UE. Although every FlyRS is
assumed to receive data from the BS providing the highest
average signal to interference plus noise ratio, this assumption
does not limit or restrict the proposed solution.

The FlyRSs operate in the half-duplex decode-and-forward
mode. Thus, the FlyRSs transmit and receive data at the
same frequency channel, but in a different time. Hence, the
communication capacity of the n-th UE served by the k-th
FlyRS relaying data from the m-th BS is determined as:

Cm,k,n = min(T bCbm,k, (1− T b)Cak,n) (1)

where Cbm,k and Cak,n are the capacities of the backhaul
channel from the m-th BS to k-th FlyRS and the access
channel from the k-th FlyRS to the n-th UE, respectively, and
T b ∈ [0, 1] is the relative duration of the transmission over
the backhaul channel within one second. As shown in [14], the
optimal T b is the one that equalizes T bCbm,k and (1−T b)Cak,n
leading to T b = (Cak,n)/(C

b
m,k + Cak,n). Consequently, the

FlyRS can forward only the data already received from the
BS and such T b satisfies the information causality required
for relaying [17]. Then, Cm,k,n from (1) is defined as:

Cm,k,n = T bCbm,k = (1− T b)Cak,n =
Cbm,kC

a
k,n

Cbm,k + Cak,n
(2)

The capacity of the backhaul channel between the m-th BS
and the k-th FlyRS is derived as:

Cbm,k = Bn log2(1 +
Pmg

b
m,kθ

b
m,kφm

Bnσ + I
) (3)

where Bn is the bandwidth assigned to the n-th UE, Pm is
the transmission power of the m-th BS at the corresponding
channel, gbm,k is the backhaul channel gain between the m-
th BS and the k-th FlyRS, θbm,k is the fast fading power
component, φm is the antenna gain of the m-th BS, σ is the
noise density, and I is the interference from neighboring cells.

The capacity of the access channel between the k-th FlyRSs
and the n-th UE is defined as:

Cak,n = Bn log2(1 +
Pkg

a
k,nθ

a
k,n

Bnσ + I
) (4)

where Pk is the transmission power of the FlyRS at the cor-
responding channel, gak,n is the access channel gain between
the k-th FlyRS and the n-th UE. Note that gak,n is unknown
due to the use of the transparent FlyRSs [3].

As in the conventional mobile networks, we consider that

the network periodically estimates/measures the channel gains
between any UE and the surrounding BSs [15], and the channel
gain between the m-th BS and the n-th UE is denoted as Gm,n.
Then, the channel gain between any two UEs is determined
by the network exploiting the prediction presented in [16],
where the authors prove that the channel gain between any
two UEs can be predicted at a very low (or even no) additional
signaling cost from the channel gains between those UEs and
the surrounding BSs (i.e., from Gm,n) even in an urban area
with buildings and dynamic obstacles (e.g., vehicles). The
predicted channel gain between the i-th and j-th UEs is:

gei,j = gi,j + Ei,j [dB] (5)

where gi,j is the true channel gain between the i-th and j-
th UEs and Ei,j is the statistical channel estimation error
modeled as a zero-mean Gaussian error with a standard
deviation of ei,j , i.e., Ei,j = N (0, ei,j) as in [16].

III. PROBLEM FORMULATION

The aim of this letter is to associate the UEs to the FlyRSs
and to determine the positions of the FlyRSs in order to
maximize the sum capacity of the UEs under the two following
essential practical limitations: i) the qualities of the access
channels are not known, as the FlyRSs are transparent, and ii)
the locations of the UEs are not known. Then, the UEs sum
capacity maximization problem is formulated as:

X∗
K,Y

∗
K,Z

∗
K,ααα

∗ = argmax
XK,YK,ZK,ααα

n=N∑
n=1

K∑
k=1

αk,nCm,k,n (6)

s.t. αk,n ∈ {0, 1}∀k ∈ {1, 2, ...,K},∀n ∈ {1, 2, ..., N} (a)∑k=K
k=1 αk,n = 1 ∀n ∈ {1, 2, ..., N} (b)

(x∗k, y
∗
k, z

∗
k) ∈ Ao ∀k ∈ {1, 2, ...,K} (c)

z∗k ∈ [zmin, zmax] ∀k ∈ {1, 2, ...,K} (d)

where αk,n = 1 if the n-th UE is associated to the k-th FlyRS
and αk,n = 0 otherwise, XK, YK, and ZK are the x, y, and
z coordinates of all K FlyRSs, respectively, ααα is the matrix of
all binary association indicators αk,n for all N UEs and all K
FlyRSs, and X∗

K, Y∗
K, Z∗

K, and ααα∗ are the optimal XK, YK,
ZK, and ααα, respectively. The constraints (a) and (b) guarantee
that αk,n is binary and each UE is associated to only one
FlyRS, respectively. The constraint (c) guarantees that every
FlyRS is positioned within the set Ao of all possible locations
in the area excluding buildings, obstacles, etc. The constraint
(d) limits the altitude of the FlyRSs to a feasible/allowed range.
Note that (6) targets to determine the FlyRSs’ positions, but
the trajectory optimization is out of the scope of this letter.

The problem (6) is an MINLP problem as XK, YK,
and ZK are continuous while ααα is discrete. The MINLP
problems are NP-hard and very difficult to solve analytically.
Moreover, with unknown access channels and UEs’ locations,
the problem (6) cannot be solved analytically. Therefore, in
the next section, we exploit clustering and DNNs to solve
the association and positioning problems knowing neither the
UEs’ locations nor the qualities of the access channels.



IV. PROPOSED POSITIONING AND ASSOCIATION RULES

The proposed solution divides the UEs into disjoint clusters
(subsection IV-A) and deploys one FlyRS per cluster (IV-B).

A. Proposed UEs clustering

The clustering of the UEs is inspired by the unsupervised
Agglomerative Hierarchical Clustering, which groups the UEs
that are similar to each other. In our case, two UEs are
considered more similar to each other if the channel gain
between these UEs is higher. This way, the UEs that are likely
in LoS to each other are grouped into one cluster.

The proposed clustering starts with constructing a similarity
matrix S, which defines the similarity Si,j of every two UEs
(i-th and j-th UEs) to each other. Hence, S is expressed as:

S = [Si,j ]N×N where Si,j =

{
gei,j if i 6= j

0 if i = j
(7)

where S is the zero-diagonal matrix, which includes the
bilateral similarities (i.e., channel gains) among the N UEs.

At the beginning of the proposed UEs’ clustering, every UE
represents a separated cluster. Then, in every step, the two
clusters with the largest similarity are merged together. The
similarity between two clusters is the average of all bilateral
similarities between every pair of the UEs with each UE in the
pair belonging to a different cluster. The algorithm stops when
the largest similarity between two clusters becomes smaller
than the threshold geth. We set the threshold as geth = µS,
where S is the average over all non-zero elements in S, and µ
is a constant. When the algorithm stops, the number of created
clusters represents the number of FlyRSs to be deployed (K).
Hence, the lower µ is selected, the more FlyRSs are deployed
and µ provides a trade-off between the number of deployed
FlyRSs and the reachable sum capacity.

The result of the UEs’ clustering is a set of clusters created
so that the UEs in the same cluster are likely in LoS to each
other. Hence, positioning one FlyRS to serve each cluster of
UEs promises also LoS between the FlyRS and served UEs.

B. Proposed 3D positioning of transparent FlyRSs

In this section, we determine 3D positions of the FlyRSs.
As stated in [17], the FlyRS’s should be as close to the UEs
as possible while avoiding the terrain and buildings. Taking
this into consideration in addition to the fact that we have no
information about the quality of the access channels or the
UEs locations, determining x, y, and z jointly is not possible.
Hence, as in literature, see e.g., [18], we first determine x
and y coordinates of the FlyRSs. The x and y coordinates are
selected such that the ratio of the access channels with LoS is
increased regardless of the FlyRS’s altitude. Then, the altitude
(z coordinate) of every FlyRS is optimized given the selected
x and y coordinates, so that the FlyRS is as close as possible
to the UEs while still keeping a sufficient backhaul capacity.
This is done as follows.

Fig. 2: Two DNNs for prediction of FlyRS’s coordinates.

For every cluster c containing N c UEs, the similarity sub-
matrix Sc ⊂ S that includes the similarity Sci,j between every
two UEs from c is created as:

Sc =
[
Sci,j
]
Nc×Nc where Sci,j =

{
ge,ci,j if i 6= j

0 if i = j
(8)

where ge,ci,j is the channel gain between the i-th and the j-th
UEs from the cluster c.

Now, for every i-th UE from c, we derive the UE’s average
similarity (i.e., channel gain) to the other UEs in c so that
Sc
i = 1

Nc

∑Nc

j=1 S
c
i,j , ∀i ∈ {1, 2, , N c}. This step corresponds

to averaging the matrix Sc over its columns, resulting in a row
matrix Sc′ = [Sc

1,S
c
2, ...,S

c
Nc ]. Note that the probability that

the i-th UE in c has LoS channels with the other UEs in c
increases with rising Sc

i . Therefore, in our case, Sc′ expresses
the probability distribution of the LoS at the channels from
each UE in c to the rest of the UEs in c. Hence, to increase
the probability of LoS from the FlyRS to all served UEs, the
FlyRS should be positioned over the UE with the highest Sc

i ,
where i ∈ {1, . . . , N c}. The reason for such approach is that
the UE with the highest Sc

i has a high probability to be in
LoS with other UEs in the same cluster.

We assume the realistic case with unknown locations of
UEs. In such case, we can predict the location of the UE (de-
noted as i∗) above which the FlyRS should be positioned from
the channel gains between this UE and the surrounding BSs,
benefiting from the correlation between the location of the UE
and the channels between this i∗ UE and the surrounding BSs
[16]. This task is hard to be solved analytically, especially
with the presence of buildings randomizing the individual
channel gains differently depending on the environment. Thus,
we predict the coordinates of the FlyRSs via DNNs.

As explained above, we first determine x and y coordinates
via DNN 1 and, then, these x and y coordinates are inserted
to DNN 2 to determined z coordinate as shown in Fig. 2.
Theoretically, if the FlyRS goes closer to the UEs and further
from the static BS, the backhaul capacity decreases while the
access channel capacity increases. At a certain height when
the LoS between the FlyRS and the static BS changes to
NLoS, the backhaul capacity decreases significantly. Thus, as
we have no information about the access channels, DNN 2 is
trained to select the lowest possible altitude while satisfying
the constraints (c) and (d) in (6) and providing a sufficient
backhaul capacity. For every FlyRS, we determine the altitudes
z = z1, z2, zM , where zm is the altitude of the FlyRS if this
FlyRS is served by the m-th BS. Then, we select the m∗-th
BS which provides the highest average SNR.

Both DNNs are trained offline (before the communication



Fig. 3: Simulated scenario with building (black squares), BSs
(blue triangles), and UEs (black dots).

sessions) in a supervised fashion. The training data includes
features-target training samples. As the training is done offline,
the samples can be both artificial (generated via simulations)
or real data. For DNN 1, the features are represented by
the channel gains between the UE and the surrounding BSs
(G1,i∗ , G2,i∗ ,GM,i∗ in Fig. 2) and the targets are the x and y
coordinates of the FlyRS corresponding to the coordinates of
the i∗-th UE (xi∗ and yi∗ in Fig. 2) above which the FlyRS is
positioned. As the x and y coordinates are continuous values,
DNN 1 builds a regression model. Therefore, DNN 1 uses
Mean Absolute Error loss function minimizing the absolute
difference between the true and the predicted coordinates. The
predicted x and y coordinates represent features of DNN 2
that predicts a set of the FlyRS’s z coordinates. The DNN 2
is trained with the targets obtained via an exhaustive search
over a suitable range of a finite set of the altitudes to build
a classification model. Hence, DNN 2 uses the cross entropy
loss function minimizing the number of miss-classifications.

For both DNNs, every batch of training samples is inserted
to the DNN with the initialized weights and biases flowing
from the first layer to the last layer (i.e., the output layer).
Then, the weights and the biases of every layer are updated
sequentially and backwards (i.e., using backpropagation) re-
peatedly until the number of training iterations is reached.
After the training, the DNNs predict the 3D position of the
FlyRS online (i.e., during the communication session).

V. PERFORMANCE ANALYSIS

We consider a square urban area with buildings and up
to 300 UEs (see Fig. 3). The height of each building is
set uniformly from 20 to 30 m. Furthermore, five BSs are
deployed on the rooftops of the buildings. The path loss
models of the LoS communication channels are in line with
[19]. For the NLoS channel, an attenuation of 20 dB per every
wall is added to the LoS path loss. The LoS and NLoS status
of the channel is determined directly from the deployment
of buildings and their mutual positions with respect to the
positions of UEs and FlyRSs. Both LoS as well as NLoS
channels include fast fading power components generated as
exponentially distributed random variables with unit mean.
We consider also interference from neighboring cells mod-
eled randomly via Gaussian distribution N (−90, 10). As the
bandwidth allocation does not influence the proposed solution
itself, we split the band equally among the UEs.

For the proposed UEs’ clustering algorithm, the constant
µ defining the stopping threshold (see Section IV-A), is set

experimentally to 0.9, 0.88, 0.86, 0.84, 0.82, and 0.8 for 50,
100, 150, 200, 250, and 300 UEs, respectively. These values of
µ are chosen to keep a relatively low and acceptable number
of deployed FlyRSs, i.e., 5.3, 6.2, 6.9, 7.6, 8.3, 9.1 FlyRSs are
in average deployed for the respective numbers of the UEs.
The decreasing µ with the increasing number of UEs allows to
deploy more FlyRSs when more UEs are present (as explained
in Section II). Note that more analysis related to the detailed
setting of µ and its effect on the number of deployed FlyRSs
is left for future work due to the space limit.

Both DNNs (DNN 1 and DNN 2) are fully-connected and
composed of three hidden layers with 30, 40, and 40 neurons,
respectively. For all three hidden layers, we use the common
rectified linear unit (ReLU) activation function. The number
of learning samples is 106 and 80% of the samples are used
for the training and 20% for testing. The weights and the
biases of DNNs with a batch size of 1000 samples are updated
by stochastic gradient descent. The Xavier initialization is
adopted to initiate the weight of DNNs. The number of training
epochs is set to 5000 and the learning rate is set to 0.001 with
a customized decay to 0.0001 after the 2000-th epoch.

We compare our proposed solution to the well-known K-
means algorithm exploited, e.g., in [20], for the joint posi-
tioning of the FlyRSs and the association of the UEs. Note
that K-means requires the knowledge of the UEs’ locations
and also the number of FlyRSs should be known in advance.
Such knowledge required by K-means is usually not available
in the real networks as the locations of at least some of the
UEs may be unknown and the number of required FlyRSs
varies with the number of present UEs. Thus, K-means implies
requirements that cannot be fulfilled, and we include K-means
in the simulations only to benchmark the performance of our
proposal that eliminates these unrealistic requirements. Note
that we set the number of FlyRSs for K-means to the number
required by our proposal (i.e., K) for a fair comparison.

To show the effect of the possible error in the estimation of
the channels between the UEs (see (5)), we present the results
of our proposal when the channel gains among the UEs: i) are
perfectly known, i.e., Ei,j = 0 in (5) (denoted as Proposal
without channel estimation error) and ii) are estimated with
the zero-mean Gaussian error with the standard deviation set
such that (gi,j/ei,j)dB = 10log10(

gi,j
ei,j

) = 10 dB, see (5),
labeled as Proposal with channel estimation error.

In addition to K-means and two variants of the proposal,
we also show an additional scheme, which divides the UEs
into disjoint groups using the proposed UEs’ clustering and,
then, a single FlyRS is deployed in the center of gravity
(COG) of every cluster (this scheme is denoted as Proposed
clustering + COG positioning). Note that, the locations of the
UEs should be known to determine the COG. This scheme is
presented to show gains achieved by the proposed clustering
with a common existing positioning, which however assumes
unrealistic knowledge of accurate UEs’ positions.

Last, we also show the performance of the proposed scheme
when channel gains among the UEs are known perfectly
and the FlyRSs are positioned exactly above the chosen UE
in every cluster with optimal altitude derived via exhaustive



Fig. 4: Sum capacity of the UEs served by the FlyRSs

search (without the DNN-based prediction). This case, denoted
as Upper bound, indicates a theoretical maximal performance.

Fig. 4 shows the sum capacity of the UEs versus different
numbers of UEs (N ) in the area. The sum capacity of all
simulated algorithms increases with the number of UEs. This
behavior is justified by the increase in the number of deployed
FlyRSs (as indicated above in this section) if more UEs are
present in the area. Fig. 4 also shows that the Proposal without
channel estimation error is only up to 3% below the Upper
bound. This confirms the accuracy of the regression model
built by the DNNs. Moreover, in Fig. 4, we see that the
Proposal with channel estimation error loses less than 2%
comparing to the Proposal without channel estimation error.
This demonstrates the high robustness of the proposal against
possible errors in the estimation of the channels among the
UEs. This robustness results from the fact that the steps and
calculations related to the proposed approach (geth and Sc′ in
Sections IV-A and IV-B, respectively) are designed to average
out the errors in the estimation of the channels among UEs.

In addition to the robustness, Fig. 4 illustrates the superiority
of the proposal compared to K-means in terms of the UEs sum
capacity. The proposed clustering algorithm itself (Proposed
clustering + COG positioning) introduces a gain in the sum
capacity between 19% and 32% compared to K-means. More-
over, the Proposal with channel estimation error including the
proposed clustering and positioning increases the sum capacity
gain to the range from 23% to 46% comparing to K-means.
This gain results from the fact that the proposal increases
the LoS ratio at the access channels between the FlyRSs and
the UEs comparing to K-means. This is confirmed in Fig. 5
showing the LoS ratio at the access channels (i.e., the number
of UEs with LoS channels to the serving FlyRS divided by the
total number of UEs). Fig. 5 confirms that the general pattern
of the LoS ratio is analogical to the sum capacity pattern
shown in Fig. 4 for all algorithms. Fig. 5 affirms that the full
proposal including both clustering and positioning increases
the LoS ratio at the access channels comparing to K-means
by 27% to 46%.

The time complexity of our proposal is O(N2 logN) and
it is given mainly by the agglomerative hierarchical clustering
with average linkage. Such complexity is still low in terms
of practical implementation of our proposal even for a high
density of UEs.

Fig. 5: LoS ratio vs number of UEs.

VI. CONCLUSION

We have proposed a new scheme for 3D positioning of
transparent FlyRSs and UEs’ association. The proposed so-
lution enables to perform these tasks with the knowledge of
neither the qualities of the channels between the FlyRSs and
the UEs nor the UEs’ locations. Besides enabling the practical
use of the transparent FlyRSs in the realistic scenarios, the
proposal increases the UEs’ sum capacity even with respect
to the solution based on the known locations of the UEs.

REFERENCES

[1] C. Hoymann, et al., “Relaying operation in 3GPP LTE: challenges and
solutions,” IEEE Commun. Mag., vol. 50, no. 2, pp. 156–162, Feb. 2012.

[2] Huawei, “ Understanding on Type 1 and Type 2 Relay,” 3GPP TSG RAN
WG1 Meeting #57bis, Los Angeles, USA, June 29 – July 3, 2009 (R1
092370).

[3] M. Najla, et al., “Integrating UAVs as Transparent Relays into Mobile
Networks: A Deep Learning Approach,” in IEEE PIMRC, 2020, pp. 1–6.

[4] B. Galkin, et al., “UAVs as mobile infrastructure: Addressing battery
lifetime,” IEEE Commun. Mag., vol. 57, no. 6, pp. 132–137, Feb. 2019.

[5] J. Chen, et al., “Optimal positioning of flying relays for wireless networks:
A LoS map approach,” in IEEE ICC, May 2017, pp. 1–6.

[6] M. Mozaffari, et al., “Optimal transport theory for cell association in
UAV-enabled cellular networks,” IEEE Communications Letters, vol. 21,
no. 9, pp. 2053–2056, May 2017.

[7] Y. Zeng and R. Zhang, Energy-Efficient UAV Communication with Tra-
jectory Optimization, IEEE Transactions on Wireless Communications,
vol. 16, no. 6, pp. 3747–3760, Mar. 2017.

[8] M. D. Nguyen, et al., “UAV Trajectory and Sub-channel Assignment for
UAV-based Wireless Networks,” in IEEE WCNC, May 2020, pp. 1–6.

[9] R. N. Braithwaite, et al., “Improving data throughput for cell-edge users
in a lte network using up-link harq relays,” in IEEE VTC Fall, Sep. 2011,
pp. 1–5.

[10] R1-100951, ALU, ALU Shanghai Bell, CHTTL, Type 2 relay summary,
RAN1 #60, San Francisco, CA, Feb. 2010.

[11] D. Kim, et al., Filter-and-forward transparent relay design for OFDM
systems, IEEE Transactions on Vehicular Technologies, vol. 62, no. 9,
pp. 4392–4407, May 2013.

[12] J. Sydir and R. Taori, An evolved cellular system architecture incorpo-
rating relay stations, IEEE Commun. Mag., vol. 47, no. 6, pp. 115–121,
Jun. 2009.

[13] S. C. Johnson, Hierarchical clustering schemes, Psychometrika, vol. 32,
no. 3, pp. 241–254, 1967.

[14] P. Mach, et al., “Joint Association, Transmission Power Allocation and
Positioning of Flying Base Stations Considering Limited Backhaul,” in
IEEE VTC FalL, 2020, pp. 1–7.

[15] D. Astely, et al., “LTE: the evolution of mobile broadband,” IEEE
Communications Magazine, vol. 47, no. 4, pp. 44–51, May 2009.

[16] M. Najla, et al.,“Predicting Device-to-Device Channels from Cellular
Channel Measurements: A Learning Approach ,” IEEE Transactions on
Wireless Communications, vol. 19, no. 11, Jul. 2020.



[17] Y. Zeng, et al., “Throughput maximization for UAV-enabled mobile
relaying systems,” IEEE Transactions on Communications, vol. 64, no.
12, pp. 4983–4996, Sep. 2016.

[18] Y. Sun, et al., “Location optimization and user association for unmanned
aerial vehicles assisted mobile networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 10, pp. 10056–10065, Aug. 2019.

[19] 3GPP: 36.814 - Evolved Universal Terrestrial Radio Access (E-UTRA);
Further advancements for E-UTRA physical layer aspects, v 9.2.0, 2017.

[20] B. Galkin, et al., “Deployment of UAV-mounted access points according
to spatial user locations in two-tier cellular networks,” Wireless Days, Mar.
2016, pp. 1–6.


