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Abstract—In this work, we develop an algorithm to construct
radio maps that can predict the received signal strength between
a UAV-mounted base station and arbitrary ground users. The
novelty of the work lies in the fact that these maps are constructed
by fusing UAV-user radio signal strength measurements, and
depth information of the surrounding environment which is
obtained by an on-board laser range finder sensor. The proposed
approach exploits both line-of-sight (LoS) and non-line-of-sight
(NLoS) nature of UAV-user channels and depth information to
first obtain the 3D map of the city and then later use it to estimate
the radio map. Numerical results demonstrate the significant
gain brought by the fusion of radio and depth measurements as
opposed to a system which only relies on radio measurements.

Index Terms—UAV, drone, 3D map, learning, radio map

I. INTRODUCTION

Recently there has been an increased interest in the design
of flying radio access networks (FRANs), where wireless
connectivity to ground users is provided by aerial base stations
(BSs) or access points (APs) that can be mounted on low
altitude unmanned aerial vehicles (UAVs) [1], [2]. FRANs can
compliment the existing terrestrial radio access networks with
the added advantage that the UAV BS locations can be changed
dynamically to maximize the network performance [3], [4].

In UAV BS placement or trajectory optimization problems,
UAV-user channels play a crucial role, and often these are
unknown before deployment. While simple pathloss models
can be used in rural and suburban areas where UAV-user links
predominantly have line-of-sight (LoS) conditions, in urban
environments with number of buildings it is known that UAV-
user links often switch between LoS and non-line-of-sight
(NLoS) conditions due to the building blockages depending
on the UAV and user locations [5], [6]. In such scenarios,
radio maps which describe the average channel gains for all
combinations of UAV and user locations are needed.

The work in [7] considers the problem of radio map esti-
mation from the received signal strength (RSS) measurements
collected from the ground users who are served by the UAV.
A segmented pathloss model that differentiates between LoS
and NLoS conditions is used. The authors formulate the
problem as a joint classification and regression problem and an
expectation–maximization (EM) like algorithm is proposed to
estimate the radio map. However, the radio map for each user
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has to be re-estimated every time the user location is changed.
This drawback can be alleviated by exploiting the fact that
the radio map ultimately depends on the fine-grained building
topology which contains the information about LoS/NLoS
classification of UAV-user channels as shown in [8].

However, in situations where 3D map of the environment
is not readily available, different sensors on the UAV can be
used for the map reconstruction, examples include camera,
Lidar etc. An interesting idea is proposed in [9], where UAV
BS can use the signal strength measurements from the users
to reconstruct the 3D map. The authors first classify the data
into LoS/NLoS segments based on statistical techniques and
then use this information to construct the map. However, UAV
needs to collect measurements at various locations from a large
number of ground users to construct the 3D map.

In this work, we aim to estimate the radio map with a
UAV BS via constructing the 3D map of the environment and
learning the channel parameters in LoS and NLoS segments.
We assume that the UAV BS has an extra on-board laser
range finder sensor which allows it to obtain depth information
in the surrounding environment. Depth information consists
of distances from the surrounding objects in the sensor’s
range. This information is then fused with radio measurements
collected from the users to construct the 3D map. The extra
sensor alleviates the drawbacks of needing: a) re-estimation of
the radio map once the user location or UAV altitude changes
[7], b) radio measurement collection from large number of
users to construct the 3D map as in [9]. To the best of our
knowledge, the problem of radio map estimation with a UAV
BS by fusing depth and RSS measurements has not been
addressed before. Specifically, our contributions are as follows:
• In a limited UAV mission time, by exploiting both depth

information and RSS measurements from a limited num-
ber of ground users, we estimate the 3D city map and the
channel parameters.

• The 3D map along with the learned channel parameters
are then used to estimate a high-quality radio map.

II. SYSTEM MODEL

We consider a scenario where a UAV-mounted BS is serv-
ing K outdoor ground level users in an urban environment
comprising a number of city buildings. The environment is
denoted by a cuboid M = [0, a]× [0, a]× [0, h] ∈ R3, where
h represents the UAV flying altitude and it is larger than the



maximum height of the buildings in the considered area. The
users are scattered all over the city and uk = [xk, yk, 0]T ∈
M, k ∈ {1, . . . ,K} denotes the k-th user’s location. The users
are static and their locations are known. We intend to build
the radio map of any given user i.e, the signal strength from
the user to the UAV which can be at various points in M.
To construct such maps, the UAV BS not only uses radio
measurements from ground users but it is also aided with an
on-board 3D laser range finder sensor (i.e. Lidar) which will
be useful in the environment mapping.

A. UAV model

The UAV mission lasts for a duration of T during which the
UAV follows a trajectory of length L meters with a constant
velocity. We assume that the time period [0, T ] is discretized
into N equal length intervals, each of duration δ = T/N ,
indexed by n = 1, . . . , N . In the n-th interval, the UAV/drone
position is denoted by vn = [xn, yn, h]T ∈ Mh, where
Mh = [0, a]×[0, a]×h. We assume that the drone is equipped
with a GPS receiver, hence vn,∀n is known. While following
this trajectory, the UAV collects received signal strength (RSS)
measurements from the users and depth measurements from
the laser scanner to map the environment.

B. Measurement collection

Let us denote the arbitrary trajectory followed by the UAV
during the mission by a sequence v1:N = {vn, n ∈ [1, N ]}.
We assume that the UAV collects RSS measurements from all
ground users in each time slot and depth measurements are
obtained by the laser scanner on slots where (n mod κ) =
0, κ > 1, κ ∈ Z+. This assumption is used to model the fact
that in general radio measurements can be obtained at a rate
much faster than the laser scanner measurements as the laser
needs some time to map the environment.

Let gn,k represent the channel gain or RSS measurement
(in dB scale) obtained from the k-th user by the UAV in
the n-th interval. Using the segmented pathloss model that
is suitable for air-to-ground channels in urban environments
with buildings [6], [7], we have

gn,k =

{
λ(θLoS,vn,uk) + ηn,k,LoS if LoS
λ(θNLoS,vn,uk) + ηn,k,NLoS if NLoS

, (1)

where

λ (θs,vn,uk) = βs − αs10 log10(‖uk − vn‖), (2)

θs = [αs, βs]
T, s ∈ {LoS,NLoS}, αs is the pathloss exponent,

βs is the channel gain offset, and ηn,k,s represents shadowing
effect with zero-mean Gaussian distribution with variance σ2

s .
Moreover, the UAV collects depth measurements by scan-

ning the environment using its laser range finder. Each scan of
the laser range finder in a time slot contains J depth informa-
tion measurements of the observed objects in the environment.
The set of depth measurements at time interval n, such that
(n mod κ) = 0, is denoted as χdn = {γn,1, · · · , γn,J}.
The j-th depth measurement is denoted by a tuple γn,j =
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Fig. 1: Different steps in the radio map construction algorithm.

(rn,j , φn,j , ψn,j), where 0 ≤ rn,j ≤ rmax, 0 ≤ φn,j ≤
2π, 0 ≤ ψn,j ≤ ψmax are, respectively, the distance, the
azimuthal, and the polar angle of the observed object with
respect to the UAV. The maximum range of the sensor is
represented by rmax, and ψmax is the field of view of the sensor.
Note that, we assume the sensor is faced downwards to scan
the buildings on the ground. In this paper, we neglect the noise
of the depth measurements since most of the laser range finders
can provide highly accurate measurements.

C. Problem formulation

The aim of the UAV mission is to construct the radio
map of any given users i.e., the RSS estimate of UAV-user
channels at any arbitrary UAV location in M using the above
mentioned measurement collection process. To construct the
radio map for a user, we first need to determine the status of the
UAV-user link as LoS/NLoS and then using (1), the channel
gain in that segment can be estimated. The classification task
can be done by exploiting the 3D map of the environment,
since if we know the location of the blocking objects we
can determine the status of any UAV-user link. However, the
3D map of the environment is not available and needs to be
constructed as well. The radio channel parameters also need to
be learned from the collected radio measurements. The steps
in the proposed radio map reconstruction algorithmic process
is illustrated in Fig. 1.

III. 3D MAP RECONSTRUCTION

To construct the 3D map, we follow occupancy grid rep-
resentation approach. The map of the environment, M is
partitioned into M individual grids of equal volume. The
center of the i-th grid is denoted by ci ∈ M, i ∈ [1,M ].
The i-th grid is associated with a binary random variable mi

representing whether the grid is occupied or empty. Occupancy
grid algorithms compute approximate posterior estimates for
these random variables. More specifically, our goal is to
calculate the posterior distribution

p(M|χ1:N ,v1:N ), (3)

where χ1:N contains all the collected measurements in the
mission duration (i.e. radio and depth), v1:N denotes the
corresponding UAV locations for taking these measurements.
We assume that the map does not change with time (static
environment) and the grids are independent. Therefore,

p(M|χ1:N ,v1:N ) =
∏
i

p(mi|χ1:N ,v1:N ). (4)
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To compute this, we follow the steps as shown in Fig. 1.

A. Map construction using depth measurements

We first use the depth measurements to construct a 3D
model of the city which to be updated later by the radio
measurements. Based on the laser range finder measurements,
the grid probabilities are updated by [10]

p(mi|χd1:N ,v1:N )

1− p(mi|χd1:N ,v1:N )
=

N∏
n=1

J∏
j=1

p(mi|γn,j ,vn)

1− p(mi|γn,j ,vn)

× p(mi)

1− p(mi)
,

(5)

where we assume that the measurements are independent,
p(mi) represents the prior information, and the probability
density function (PDF) p(mi|γn,j ,vn) is the sensor model
which provides information about the map given a sensor
reading caused by an object in the environment. Note that on
time slots where the depth measurement is not available i.e.,
(n mod κ 6= 0), we have p(mi|γn,j ,vn) = 0.5. For a given
depth measurement γn,j = (rn,j , φn,j , ψn,j), let us denote G
as a set of all grid cells indices which lie on the straight line
between the sensor (UAV) and the detected object. The sensor
model for this measurement is given by [10]

∀i ∈ G, p(mi|γn,j ,vn) =


pfree if ‖ci − vn‖ < rn,j

pocc if ‖ci − vn‖ = rn,j

0.5 if ‖ci − vn‖ > rn,j ,

,

(6)
which says that, for all the grids between the sensor and
the detected object, there is a high probability that there is
no obstacle, then we assign a low probability of occupancy
pfree < 0.5 to all of these grids. Very close to the object it
is high likely that there is an obstacle. So, the grids around
the object are considered occupied with the probability of
pocc > 0.5. Since the sensor cannot see behind the object,
then we have no certain information about the grids behind the
object. Fig. 2 shows an example of the sensor model assigned
to each measurements obtained by the laser scanner.

This map will be fused with radio measurements in the next
step of the algorithm to learn the channel parameters and then
will be enhanced by the radio measurements.

B. Radio measurement classification and channel learning

In order to use the collected RSS measurements for the
purpose of 3D map enhancement, we first need to classify
them into LoS and NLoS categories. The problem of joint
classification and channel parameters learning has been studied
in [7]. However, the work in [7] depends only on channel

measurement statistics and does not have any prior information
regrading the 3D map. Since we have already an updated map
information which is obtained by the depth measurements,
we feed this information to our algorithm to jointly learn the
channel parameters and classify the radio measurements. The
proposed EM-based algorithm accepts the map information
(coming from previous section) and RSS measurements as
inputs and returns the labels of the RSS measurements as
LoS/NLoS and the learned channel parameters as outputs.

Let wn,k ∈ {LoS,NLoS} be a latent binary random variable
which determines the LoS/NLoS label of the RSS measure-
ment gn,k as defined in (1). We similarly define another binary
random variable ρn,k ∈ {LoS,NLoS} which determines the
label of each measurement from the constructed occupancy
grid map using the depth information. The joint PDF of gn,k
can then be written as

p(gn,k, wn,k, ρn,k) = p(gn,k|wn,k, ρn,k) p(wn,k|ρn,k) p(ρn,k).
(7)

Given two variables s and ŝ, where each one takes on the
values in the set {LoS,NLoS}, we can write

p(gn,k, wn,k = s, ρn,k = ŝ) = p(gn,k, s, ŝ) τs,ŝ πn,k,ŝ, (8)

where p(gn,k, s, ŝ) , p(gn,k|wn,k = s, ρn,k = ŝ), τs,ŝ ,
p(wn,k = s|ρn,k = ŝ), and πn,k,ŝ , pn,k(ρn,k = ŝ).
According to (1), p(gn,k, s, ŝ) has the following distribution

p(gn,k, s, ŝ) ∼ N
(
λ(θs,vn,uk), σ2

s

)
, s ∈ {LoS,NLoS},

(9)
which only depends on the latent variable wn,k and doesn’t
depend on ŝ. The marginal probability τs,ŝ, has the following
property ∑

s

τs,ŝ = 1, ∀ŝ ∈ {LoS,NLoS}. (10)

The probability that the measurement gn,k belongs to segment
ŝ, denoted by πn,k,ŝ, is obtained by leveraging the occupancy
grid map as follows

πn,k,ŝ =


1− max

i∈G(vn,uk)
p(mi|χd1:N ,v1:N ) if ŝ = LoS

max
i∈G(vn,uk)

p(mi|χd1:N ,v1:N ) if ŝ = NLoS
,

(11)
where G(vn,uk) is a set of grids which lie on the straight
line between the UAV at location vn and the k-th user. The
occupancy probability of grid mi based on the depth measure-
ments, p(mi|χd1:N ,v1:N ), is obtained from (5). Equation (11)
stems from the definition of the NLoS link, i.e, a link between
UAV and user is considered as NLoS if it is obstructed by at
least one blocking object. So, even if one grid is occupied
along the link, we consider it as a NLoS link.

Assuming that RSS measurements conditioned on channel
parameters and user positions are independent and identically
distributed 1, the log-likelihood of the unknown parameters

1This amounts to assuming the shadowing coefficients are independent over
successive UAV locations, which is a classical assumption, see for e.g. [7].



ξ = {θs, σs, τs,ŝ ;∀s, ŝ} is given by

L(ξ) =
∑
n,k

log p(gn,k; ξ)

=
∑
n,k

log
∑

wn,k,ρn,k

p(gn,k, wn,k, ρn,k; ξ)
(12)

For each measurement, let Q(wn,k, ρn,k) be a joint distribution
over wn,k and ρn,k. We can then reformulate (12) as

L(ξ) =
∑
n,k

log
∑

wn,k,ρn,k

Q(wn,k, ρn,k)
p(gn,k, wn,k, ρn,k; ξ)

Q(wn,k, ρn,k)

≥
∑
n,k

∑
wn,k,ρn,k

Q(wn,k, ρn,k) log
p(gn,k, wn,k, ρn,k; ξ)

Q(wn,k, ρn,k)

(13)
The last step follows from Jensen’s inequality. Now for any
distributions Q, the formula (13) provides a lower bound on
L(ξ). This bound can be tighten by choosing Q as follows

Q(wn,k, ρn,k) =
p(gn,k, wn,k, ρn,k; ξ)∑

wn,k,ρn,k
p(gn,k, wn,k, ρn,k; ξ)

=
p(gn,k, s, ŝ; ξ) τs,ŝ πn,k,ŝ∑
s,ŝ p(gn,k, s, ŝ; ξ) τs,ŝ πn,k,ŝ

.

(14)

In this case, the step involving Jensen’s inequality in (13) holds
with equality and we have a tight lower bound on L(ξ). Let
Ωn,k,s,ŝ denote the probability of wn,k, ρn,k taking the values
s and ŝ, respectively, hence,

Ωn,k,s,ŝ , Q(wn,k = s, ρn,k = ŝ).

Then the maximum log-likelihood estimation of ξ can be
obtained by solving the following problem

max
ξ,Ωn,k,s,ŝ

∑
n,k

∑
wn,k,ρn,k

Ωn,k,s,ŝ log
p(gn,k, s, ŝ; ξ) τs,ŝ πn,k,ŝ

Ωn,k,s,ŝ

s.t. (10).
(15)

Problem (15) is non-convex so challenging to solve. To deal
with this difficulty, we instead find a sub-optimal solution
by solving (15) iteratively. This algorithm iterates between
two steps known as expectation and maximization, a.k.a. E-M
steps. During the E-phase, the Ωn,k,s,ŝ is computed by using
(14) while fixing parameters ξ. In the M-step, problem (15)
is solved only for parameters ξ by fixing Ωn,k,s,ŝ. We denote
i as the iteration index of the algorithm and we assume that
the process is repeated for I iterations.

Let ξ(i) be the parameters available from the i-th iteration,
then during the E-step we have

Ω
(i+1)
n,k,s,ŝ =

p(gn,k, s, ŝ; ξ
(i)) τ

(i)
s,ŝ πn,k,ŝ∑

s,ŝ p(gn,k, s, ŝ; ξ
(i)) τ

(i)
s,ŝ πn,k,ŝ

. (16)

For the M-step, (15) can be reformulated as follows:

max
ξ(i)

∑
n,k

∑
s,ŝ

Ω
(i+1)
n,k,s,ŝ log

p(gn,k, s, ŝ; ξ
(i)) τs,ŝ πn,k,ŝ

Ω
(i+1)
n,k,s,ŝ

s.t. (10).

(17)

where the objective function is concave. By setting the deriva-
tive of (17) with respect to ξ(i) to zero and solving, we find

θ(i+1)
s = A−1

s bs, (18)

σ(i+1)
s =

√√√√√∑n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ

(
gn,k − λ(θ(i+1)

s ,vn,uk)
)2

∑
n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ

,

(19)
where

As =

[∑
n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ d

2
n,k

∑
n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ dn,k∑

n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ dn,k

∑
n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ

]
,

bs =

[∑
n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ dn,k gn,k∑

n,k

∑
ŝ Ω

(i+1)
n,k,s,ŝ gn,k

]
,

and dn,k = −10 log10(‖uk − vn‖). The value of τ (i+1)
s,ŝ is

computed as

τ
(i+1)
s,ŝ =

∑
n,k Ω

(i+1)
n,k,s,ŝ∑

n,k

∑
c∈{LoS,NLoS} Ω

(i+1)
n,k,c,ŝ

. (20)

C. Map enhancement

In this step, we make use of the joint distribution of the
labels Ωn,k,s,ŝ to enhance the 3D map. The probability of a
measurement gn,k belonging to LoS category is given by

Ω
(I)
n,k,LoS =

∑
ŝ∈{LoS,NLoS}

Ω
(I)
n,k,LoS,ŝ, (21)

where Ω
(I)
n,k,s,ŝ is the marginal probability at the last iteration

of the algorithm as described in Section III-B. Let sn,k be
the label of the measurement gn,k that is obtained using hard
classification as follows

sn,k =

{
LoS if Ω

(I)
n,k,LoS > 0.5

NLoS else
. (22)

The LoS measurements will be used to improve the 3D map,
as the LoS measurements indicate that there is no obstacle
between the corresponding user and the UAV as illustrated in
Fig. 3. Therefore, for a given UAV-user link which is LoS,
grids that lie on the LoS line and also all the grids above
the LoS line are high likely to be empty. We then assign the
probability of occupancy pfree < 0.5 to these grids. Note that,
since we assume that all the users are on the ground then there
are no grids to be seen behind the users.

To update the 3D map with the radio measurements,
we treat the map constructed using the depth information
p(M|χd1:N ,v1:N ) as a prior. Similar to (5), the updated map
can be approximated as follows

p(mi|χd1:N , χ
r
1:N ,v1:N )

1− p(mi|χd1:N , χ
r
1:N ,v1:N )

≈
N∏
n=1

∏
k∈Kn

p(mi|gn,k,vn)

1− p(mi|gn,k,vn)

× p(mi|χd1:N ,v1:N )

1− p(mi|χd1:N ,v1:N )
,

(23)
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Fig. 3: LoS and NLoS radio measurements.

where Kn is a set of user indices that are LoS to the
UAV at the n-th time step, and χr1:N is all of LoS radio
measurements collected up to time step N . The probability
p(mi|gn,k,vn) = pfree for all the grids which are above or
lie on the line between the UAV location vn and the k-th user,
otherwise it is equal to 0.5.

IV. RADIO MAP ESTIMATION

Building on the estimated 3D map and the learned channel
parameters, we now estimate the radio map for a given user
and any UAV locations. To this end, we start by finding
the LoS probability of the UAV-user link. To do this, the
occupancy map, which was reconstructed in the previous
section is used. Akin to section III-B, for any arbitrary UAV
location v ∈ M, the LoS probability of the link between the
UAV and the user located at u ∈ R2 can be obtained as follows

p(v,u) = 1− max
i∈G(v,u)

p(mi|χd1:N , χ
r
1:N ,v1:N ). (24)

The estimated channel gain of the UAV-user link is given by

ĝ(v,u) =

{
λ(θ

(I)
LoS,v,u) if p(v,u) > 0.5

λ(θ
(I)
NLoS,v,u) else

. (25)

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the
performance of the proposed algorithm. We consider a dense
urban city neighborhood of size 600 × 600 m2, comprising
buildings and regular streets as shown in Fig. 4. The height
of the buildings is Rayleigh distributed in the range of 5
to 40 m [6]. The true propagation parameters are chosen as
αLoS = 2.5, αNLoS = 3.04, βLoS = −30 dB, βNLoS = −35 dB
according to an urban micro scenario [11]. The variances of
the shadowing components in LoS and NLoS scenarios are
σ2

LoS = 3 dB, and σ2
NLoS = 5 dB, respectively. To construct

the 3D map of the city and to learn the channel parameters,
the UAV collects the radio measurements and the depth
information while following a square trajectory of length 1600
m as shown in Fig. 4. The altitude of the UAV is fixed to 60
m during the course of its trajectory. The UAV collects radio
measurements from the ground users every 0.1 second while
the depth measurements are collected every 2 seconds. The
Lidar sensor has the maximum range of rmax = 150 m and
ψmax = 50 degrees field of view. The mission time is assumed
to be fixed and equals to 115 seconds.

Fig. 4: Top view of the city and the UAV trajectory. Users are marked with circles.

In Fig. 5, we compare the map reconstruction performance
of the proposed algorithm (fusing depth and radio measure-
ments) to that of a case where only depth measurements are
used, for the system setting shown in Fig. 4. The UAV follows
a square trajectory and 10 users are randomly scattered over
the city as depicted in Fig. 4. We also show the true and
the estimated radio map for a given user which is located at
u = [180, 400, 0]T m. We can see that there is considerable
improvement in the estimated maps with the fusion of depth
and radio measurements. Note that, the radio map is recon-
structed for a fixed altitude of 60 m.

To compare the performance of the algorithms in an average
sense, an average root mean square error (ARMSE) is used as
the metric and it is given by

E =
1

K

K∑
k=1

√
E
{

(ĝ(v,uk)− g(v,uk))
2
}
, (26)

where g(v,uk) is the true channel gain, ĝ(v,uk) is the
estimated gain, and the expectation is taken over a set of
random UAV locations. In Fig. 6, we show the ARMSE of the
radio map estimation versus increasing the number of ground
users. We also compare the results of our algorithm with [7],
and an extension of [9]. In [7], the radio map is estimated
just from the collected radio measurements by using the EM
algorithm (no 3D map is reconstructed), while in [9] a 3D
model of the city is constructed from the radio measurements.
We then use this 3D map to estimated the radio map akin to
Section IV. For further comparisons, we have computed the
ARMSE of the radio map reconstruction when only the depth
measurements are utilized for the 3D map construction. In this
approach, the 3D map of the city is first constructed using the
depth information and then the collected radio measurements
are classified as follows

sn,k =

{
LoS if pn,k(ρn,k = LoS) > 0.5

NLoS else
, (27)

where sn,k is the label of each measurement and pn,k(ρn,k =
LoS) is computed from (11). Having classified the mea-

surements, the radio channel parameters are learned in each
segment using maximum likelihood estimator [9]. The radio
map then is estimated similar to Section IV. The performance
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Fig. 5: For the system setting shown in Fig. 4, (a) True 3D city map. (b) Reconstructed 3D map using depth data. (c) Reconstructed 3D city map by fusing depth and radio
measurements.(d) True radio map for a given user. (e) Estimated radio map from depth data for a given user. (f) Estimated radio map from depth and radio data for a given user.
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Fig. 6: Radio map estimation error vs. number of users.

of different approaches are compared over Monte-Carlo simu-
lations with different user locations. Note that, in each run of
the Monte-Carlo simulation, the users location are same for
the measurement collection (3D map construction and channel
learning) and for the evaluation (radio map estimation) phases.
As it can be seen, our proposed algorithm outperforms other
approaches. It is worth noting that, by increasing the number of
users the estimation error decreases for both of our algorithm
and the extension of [9]. Because in both approaches, the
collected radio measurements are used to construct the 3D
model of the city. Therefore, the more radio measurements
we collect, the more precise 3D map estimation we can obtain
which consequently improves the radio map estimation.

VI. CONCLUSION

We have investigated the problem of radio map estimation
from the RSS and depth measurements obtained by a UAV

BS. The proposed approach consists of i) estimating the 3D
map from the depth measurements, ii) fusing it with RSS
measurements to refine the 3D map and learning the channel
parameters, and iii) estimating the radio map. Numerical
results show that fusion of radio and depth measurements
significantly improves the map estimation.
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