
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Preventing RLC Buffer Sojourn Delays in
5G
MIKEL IRAZABAL1, ELENA LOPEZ-AGUILERA 1, ILKER DEMIRKOL 2, ROBERT SCHMIDT 3

AND NAVID NIKAEIN.3
1Dept. of Network Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain (e-mail: name.surname@upc.edu)
2Dept. of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain (e-mail: name.surname@upc.edu)
3Dept. of Communication Systems, Eurecom, Sophia-Antipolis, France (e-mail: name.surname@eurecom.fr)

Corresponding author: Mikel Irazabal (e-mail: mikel.irazabal@upc.edu).

This work was supported in part by the EU Horizon 2020 research and innovation program under grant agreement No. 675806 (5GAuRA),
grant agreement No. 857201 (5G-Victori) and in part by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement
from the Generalitat de Catalunya under grant agreement No. 2017 SGR 376.

ABSTRACT The 3rd Generation Partnership Project (3GPP) is investing a notable effort to mitigate the
endogenous stack and protocol delays (e.g., introducing new numerology, through preemptive scheduling or
providing uplink granted free transmission) to attain to the heterogeneous Quality of Service (QoS) latency
requirements for which the fifth generation technology standard for broadband cellular networks (5G) is
envisioned. However, 3GPP’s goals may become futile if exogenous delays generated by the transport layer
(e.g., bufferbloat) and the Radio Link Control (RLC) sublayer segmentation/reassembly procedure are not
targeted. On the one hand, the bufferbloat specifically occurs at the Radio Access Network (RAN) since the
data path bottleneck is located at the radio link, and contemporary RANs are deployed with large buffers
to avoid squandering scarce wireless resources. On the other hand, a Resource Block (RB) scheduling
that dismisses 5G’s packet-switched network nature, unnecessarily triggers the segmentation procedure at
sender’s RLC sublayer, which adds extra delay as receiver’s RLC sublayer cannot forward the packets to
higher sublayers until they are reassembled. Consequently, the exogenously generated queuing delays can
surpass 5G’s stack and protocol endogenous delays, neutralizing 3GPP’s attempt to reduce the latency.
We address RLC’s related buffer delays and present two solutions: (i) we enhance the 3GPP standard and
propose a bufferbloat avoidance algorithm, and (ii) we propose a RB scheduler for circumventing the added
sojourn time caused by the packet segmentation/reassembly procedure. Both solutions are implemented and
extensively evaluated along with other state-of-the-art proposals in a testbed to verify their suitability and
effectiveness under realistic conditions of use (i.e., by considering Modulation and Coding Scheme (MCS)
variations, slices, different traffic patterns and off-the-shelf equipment). The results reveal current 3GPP
deficits in its QoS model to address the bufferbloat and the contribution of the segmentation/reassembly
procedure to the total delay.

INDEX TERMS 5G, Bufferbloat, low-latency, SDAP, RLC, OpenAirInterface.

I. INTRODUCTION

ULTRA-reliable low-latency communications (URLLCs)
are intended to address two orthogonal weaknesses

faced in contemporary cellular networks: reliability and low-
latency.

On the one hand, as Shannon proved in his information
theory founding paper [1], given a noisy discrete channel
and a transmission rate smaller than the channel capacity,
there exists an encoding scheme capable of generating an
equivocation rate (ε) arbitrarily small. This theoretical result

shows how reliability depends on the coding scheme and
confirms that new coding schemes (e.g., low-density parity-
check (LDPC) codes) can achieve arbitrarily small equiv-
ocation rates at the expense of using big data blocks [2].
3GPP has already defined the new channel codings [3], and
the successful achievement of reliable communications is
indispensable for the URLLC adoption. On the other hand, a
large amount of efforts are being invested by 3GPP trying to
mitigate or eliminate the latency introduced by endogenous
cellular stack design (e.g., new numerology for mini-slots

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

or pre-emptive scheduling [4]) and cellular protocol (e.g.,
uplink granted free transmission to avoid the Scheduling
Request procedure delay [5]). Moreover, a new sublayer
for addressing different services has been introduced (i.e.,
Service Data Adaptation Protocol (SDAP) [6]), and a new
QoS indicator (i.e., Quality of Service Flow Indicator (QFI))
will classify the different flows according to their different re-
quirements [7]. However, exogenous 5G stack latency causes
(i.e., latencies not directly induced by the 5G stack such as
the bufferbloat or the RLC packet segmentation/reassembly
procedure) can ultimately become the main contributors to
the delay.

Bufferbloat at the RAN specifically occurs and plays a
central role in the delay of low-latency traffic since (i) the
data path bottleneck resides at the RAN as contemporary
wireless channel capacity is inferior to wired channel ca-
pacity in contemporary networks; (ii) RANs are equipped
with large buffers to absorb the unpredictable dynamic ra-
dio channel capacity and thus, avoid squandering wireless
resources; and, (iii) flows with distinct characteristic share
buffers on the data path in the 5G stack due to 5G’s QoS
funnel architecture. The first two premises combined with
TCP’s congestion control’s greedy nature (e.g., TCP Cubic
[8]) are necessary and sufficient to generate a plethora of
packets at the bottleneck, which induces delays in the order
of seconds [9]. In essence, packets from a greedy flow start
accumulating at the bottleneck’s link buffer, impeding a rapid
packet delivery from other flows that share the same bottle-
neck queue. The ongoing bufferbloat research has primarily
focused on the IEEE 802.3 and the IEEE 802.11 standards,
achieving remarkable results [10] and proposing numerous
new algorithms (such as Controlled Delay (CoDel) [11] and
Fair Queuing CoDel (FQ-CoDel) [12]). The main challenge
with regard to the bufferbloat is two-fold: (i) maintaining the
buffer with enough data to fully use the available bandwidth
and thus, avoid buffer starvation; and (ii) preventing exces-
sive data in the buffer to minimize the packet’s sojourn time.

3GPP has also introduced stack network improvements at
the RLC sublayer in 5G [13] compared to 4G [14] aiming
to decrease the latency. At 4G, the RLC Protocol Data Unit
(PDU) header for data transmission consists of a fixed (i.e.,
one or two bytes depending on the configuration) and an
extension part. The extension part is only present when more
than one packet is assembled and is composed by an Exten-
sion bit (E) and a Length Indicator (LI). The E field is one bit
long and indicates if another set of E and LI fields follows, or
if the next bit is part of the data. The LI indicates the length
of the packet and varies from 11 to 15 bits according to the
configuration. In 5G the extension part has been renamed to
Segment Offset (SO), and consists of 16 bits for all cases. It
indicates the absolute position of the packet in bytes within
the RLC PDU. This change of paradigm from a relative
position to an absolute position (i.e., LI vs. SO) deteriorates
the data compression ratio as the difference between packets
starting positions is necessarily smaller than the absolute
packets starting position. However, in modern processors the

minimum amount of data that can be accessed is 1 byte.
Therefore, if the information lies between 2 bytes, some bit
manipulation assembly instructions need to be generated to
access the value (e.g., with three E-LIs pairs of 12 bits, the
information of the second packet starts at the bit 12+1 = 13,
which corresponds to the second byte, and ends at position
12 + 12 = 24, which corresponds to the third byte). 5G
simplifies this process as the packet starting position infor-
mation is byte aligned and, thus, it can be directly accessed,
sacrificing some throughput to reduce the latency. However,
this latency reduction may not play an important role if
another phenomenon that contributes to augment the delay
in 5G is ignored: the segmentation/reassembly procedure.
Every TTI, the MAC scheduler requests a PDU (i.e., an
amount of bytes) from the RLC sublayer. This may involve
segmenting an RLC Service Data Unit (SDU) packet to fit
within the demanded total size of the PDU. If the packet is
segmented, part of it is transmitted, while the rest waits at the
sender’s RLC sublayer. Once the rest of the packet is trans-
mitted, a reassembly at the receiver’s RLC sublayer occurs,
and the packet is submitted to the Packet Data Convergence
Protocol (PDCP) sublayer in the downlink procedure. Even
though the segmentation/reassembly procedure depends on
5G stack exogenous causes (i.e., packet sizes, radio link
conditions and MAC scheduler algorithm1), it has a non-
negligible contribution in the delay that a packet suffers, as
demonstrated in this paper. Moreover, slicing has emerged
as a new 5G pillar feature [7], which fundamentally can be
reduced to a resource allocation issue, and thus, exacerbates
the problem. Unfortunately, recent research studies have
mostly focused on resource distribution [15] [16], ignoring
5G’s specificities and the packet-switched network nature of
the Internet, and therefore, the delays associated with RLC’s
segmentation/reassembly procedure have been overlooked.

This paper addresses the bufferbloat and the segmenta-
tion/reassembly procedure in 5G, and in summary makes the
following contributions:

• We analyze 5G’s exogenous delays that arise at the
RLC sublayer’s buffers (i.e., bufferbloat and segmenta-
tion/reassembly procedure).

• We propose an enhanced 3GPP QoS scenario for im-
proving the latency in 5G.

• We introduce a novel bufferbloat avoidance algorithm
(i.e., e5G-BDP) based on the bandwidth delay product,
which is the optimal theoretical pacing rate for avoiding
the bufferbloat, while fully utilizing the link [17].

• We present a resource scheduling algorithm (i.e.,
Enhanced Quantum Partition (EQP)) considering
5G specificities that minimizes RLC’s segmenta-
tion/reassembly procedure.

• We implement and evaluate the performance of our pro-
posed algorithms (i.e., e5G-BDP and EQP) against cur-
rent state-of-the-art solutions, emulating real network

13GPP does not define the MAC scheduler algorithm, and therefore, it
cannot be considered an endogenous stack delay cause.

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

conditions and using off-the-shelf equipment, ultimately
validating our solutions as they significantly reduce the
RLC buffer sojourn delay.

The rest of this paper is structured as follows. In Sec-
tion II, 5G’s contemporary QoS scenario is presented along
with our enhanced 3GPP QoS architecture proposal. Section
III thoroughly discusses the bufferbloat and the segmenta-
tion/reassembly procedure in 5G and describes related works
in the field. Our proposed solutions appear in Section IV,
while the utilized evaluation framework is described in Sec-
tion V. In Section VI the results from our solutions and the
state-of-the-art solutions are evaluated, and lastly, in Section
VII we expose the conclusions of this paper.

II. BACKGROUND IN 5G’S QOS MODEL
5G use case heterogeneity inherently creates a non-trivial
QoS scenario that is described in [7]. In the following, the
most important aspects of the QoS scheme for the data path
in the 5G Access Network (5G-AN) are presented, assuming
the downlink procedure unless otherwise mentioned.

Packets from the data network will flow through the N3
interface to the 5G-AN already marked with a QoS Flow
Identifier (QFI) [18]. The QFI is responsible to denote among
other things: the maximum data burst volume, the resource
type, the packet priority level for scheduling purposes, the
tolerated delay referred to as the Packet Delay Budget (PDB)
or the tolerable error rate through the Packet Error Rate
(PER). PDB indicates the upper bound for the permissible
delay, measured from the N6 interface (i.e., from the moment
that the packet arrives to the User Plane Function (UPF))
until the packet is received by the UE, while PER is de-
fined as the amount of packets received in the UE’s PDCP
sublayer divided by the amount of packets forwarded by
the RLC sublayer of the 5G-AN. Three different resource
types are described by 3GPP: Delay-Critical Guaranteed Bit
Rate (Delay-Critical GBR), Guaranteed Bit Rate (GBR) and
Non-Guaranteed Bit Rate (Non-GBR) [7]. The first entity
to apply QoS traffic engineering techniques in 5G-AN, is
the newly defined SDAP sublayer [6]. An SDAP entity per
PDU session is foreseen in [6], although it is mentioned
that other implementations are valid. SDAP’s main function
or raison d’être is mapping the QFI flows into Data Radio
Bearers (DRBs), according to the configuration provided by
the Radio Resource Control (RRC). Therefore, it lacks any
queue or scheduling capability, contrary to what is depicted
in Fig. 1. However, the QFI is a 6 bit field (i.e., 26 = 64 [19]),
while the maximum number of DRBs is 30 [19]. For every
DRB a new RLC entity is instantiated and therefore, an RLC
buffer per DRB exists. This inevitably generates a funnel,
as shown in Fig. 1, where a many-to-one relation will occur
following the pigeonhole principle. 3GPP has not explicitly
defined any scheduling capabilities in the SDAP. However, if
stringent and diverse QoS requirements must be met, mobile
network operators will need to provide a packet based sched-
uler, since finding and arbitrarily dequeuing packets with
different QFIs that are already queued is costly and complex.

FIGURE 1. Proposed enhanced QoS model per UE.

Furthermore, if no scheduling capabilities are added to the
SDAP sublayer, the only sublayer at the 5G-AN where QoS
traffic engineering techniques can be applied is the MAC,
which will pull data from bloated RLC buffers if the packets
are forwarded as they arrive. Until the RLC sublayer, data is
transmitted in packets, where a header is added to the original
packets that arrived to the SDAP sublayer. However, once the
MAC sublayer notifies the RLC sublayer about the amount
of bytes that need to be forwarded, packets are joined to form
the requested Transport Block (TB). If the requested TB size
(TBS) cannot be filled with the current packets (e.g., two
1000 bytes packets in the RLC buffer, yet the MAC requests
1500 bytes) a packet segmentation occurs. Consequently, part
of the original packet is transmitted to the UE, while the rest
waits at the 5G-AN. This phenomenon delays the information
delivery, as packets cannot be submitted to the UE’s PDCP
until reassembled. Lastly, the MAC scheduler pulls the re-
quired data from the RLC queues and forwards it through the
Downlink Shared Channel (DL-SCH), as observed in Fig. 1.
To gain finer control over the packets’ QoS, we enhance the
current SDAP standard with two new capabilities: (i) we add
a queue per QFI (i.e., 64 queues per SDAP entity) with the
purpose of segregating different traffic flows and retain the
packets at the SDAP sublayer, and (ii) we provide scheduling
capabilities to the SDAP sublayer.

III. PROBLEM DESCRIPTION AND RELATED WORK
This section describes the two phenomena analyzed in this
paper along with the existing related work. In the first subsec-
tion, the bufferbloat phenomenon at contemporary cellular
networks along with the state-of-the-art solutions for address-
ing it are presented. In the second subsection, RLC’s seg-
mentation/reassembly procedure is thoroughly studied and its
effect on augmenting the delay is exposed.

A. BUFFERBLOAT AT THE RLC SUBLAYER
1) Problem description
Bufferbloat is the name by which the effect of excessive
buffering of packets in the bottleneck’s data link buffer is
known. Such effect in the 5G stack is caused by (i) sender’s
congestion control algorithm (e.g., TCP Cubic [8]), and
(ii) large buffers at the bottleneck link (i.e., RLC sublayer

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

buffers). The default Linux kernel congestion control algo-
rithm (i.e., TCP Cubic) is loss-based. Therefore, the conges-
tion is detected through a packet lost, which ideally coincides
with the available bandwidth.

However, if large buffers are deployed at the bottleneck’s
link, a queue is formed once the available bandwidth is
reached, misinforming TCP’s congestion control algorithm,
as the packets are not lost, but rather experience a larger delay
than expected due to the sojourn time at bottleneck’s link. In
essence, TCP’s congestion control algorithm cannot differen-
tiate between the delay generated by congested buffers, and
the delay produced by the packet propagation. Contempo-
rary wireless links are considerably slower than wired links
(e.g., a 20 MHz bandwidth LTE base station can forward
approximately 70 Mbit/s with a 28 MCS [20], in contrast with
400 Gbit/s of an IEEE 802.3db fiber-optic physical media
interface), forming the bottleneck at the RAN, and specifi-
cally at the RLC sublayer, where the last buffer before the
wireless transmission is located. Due to the dynamic nature
of the radio channel capacity, service providers deploy large
RLC buffers aiming to avoid squandering the scarce wireless
resources, and thus, unintentionally generating the necessary
conditions for the bufferbloat to appear. The challenge to
avoid the bufferbloat in 5G is explained in the following
dichotomy. On the one hand, the RLC buffer must contain
enough bytes to feed the MAC sublayer. A failure to this
requirement results in wireless resource under-utilization. On
the other hand, no more bytes than the requested from the
MAC sublayer should be waiting at the RLC queue, so that
a low-latency flow can avoid unnecessary queuing sojourn
time.

2) State-of-the-art solutions
Small queue sizes result in lower latencies as demonstrated
in [21]. The basic idea is to reduce the amount of packets
in the queues caused by overdimensioned buffers, while not
starving the transmission channel. Due to the queue size
limits, packets start accumulating at higher sublayers follow-
ing a phenomenon known as back-pressure. If the packets
reside at different queues, a scheduler can easily pull the most
stringent demanding packet from the higher layer queues, re-
ducing the sojourn delay. Such a scheme is used by Dynamic
RLC (DynRLC) [22] and Enhanced Bearer Buffer (EBB)
[23], presented by the same authors. These methods estimate
the available bandwidth measuring the packet’s sojourn time.
If the sojourn time increases, the allowed size of the buffer,
which is defined as the maximum number of SDUs, decreases
and no more packets from higher sublayers (i.e., PDCP) are
delivered. If on the contrary, the sojourn time decreases, the
buffer capacity limit of the RLC is augmented. The Dynamic
RLC Queue Limit (DRQL) [24] is a similar solution based
on limiting the queue size, considering the amount of bytes
instead of the number of SDUs remaining on the queue.

Another well studied policy for improving the buffer so-
journ time is Active Queue Management (AQM) [25], being
CoDel [11] the most widely applied AQM policy. CoDel is

governed by two parameters: the desired delay (5 ms by
default) and the interval time value (100 ms by default). A
timestamp is added to every newly ingressed packet and the
sojourn time is measured when packets egress. If the sojourn
time of all the packets egressed during the interval time
have been above the desired delay value, the next packet is
dropped, informing the sender that congestion is happening,
and the control law that determines the next drop time is
updated. The next drop time is reduced in inverse proportion
to the square root of the number of packets dropped since
the dropping state was entered. Such an approach permits
the existence of bursty traffic during periods shorter than the
interval value. Recent results on CoDel in cellular networks
[21] [24] [26] show a latency reduction when adopted.

Other state-of-the-art solutions try to avoid the bufferbloat
through the keep the pipe justfull, but not fuller prin-
ciple described by Kleinrock [17]. The TCP BBR [27] algo-
rithm fulfills such principle from the OSI Layer 4 perspective.
BBR estimates the actual bandwidth observing the Round
Trip Time (RTT) of the packets, and it interprets an increase
in the RTT as a sign of bottleneck forming, thus reducing
its sending rate. However, as demonstrated in [24], such an
approach may not be optimum in a mobile network. A similar
approach is considered in [28], where the congestion control
algorithm is manipulated through the ECN bits to acceler-
ate or slow down the packet delivery rate. Other advanced
algorithms that are based on the same principle within the
cellular network are 5G-BDP and USP [24], which reported
promising results.

Segregating the flows into different buffers is one of the
solutions that can partly eliminate the sojourn time induced
by other flows. It has been successfully implemented in the
Fair Queuing scheduler [29], and presents many variants
(e.g., FQ-CoDel [12]). A greedy flow will not monopolize a
queue’s assigned throughput as it rests in a separate queue,
and a scheduler pulls data according to different policies
(e.g., round-robin or earliest deadline first). Recently, a new
research paradigm (i.e., Low Latency, Low Loss, Scalable
Throughput (L4S) [30]) proposes to segregate the packets
into two queues: one for the traffic prone to generate queuing
delay, and the other one for traffic that inherently avoids
the bufferbloat (e.g., traffic generated through TCP’s BBR
congestion control algorithm). However, there exist many
services that demand stringent low-latency delays to function
correctly (e.g., VoIP [31] or mobile gaming [32]), where
identifying and tagging them for segregation purposes rep-
resents a challenge, due to their origin’s dynamic nature
(i.e., servers can be relocated, altering their 5-tuple identifier)
and amount. Furthermore, the rising digital privacy concerns
in contemporary societies will increase the encrypted, as
well as, relayed traffic, disabling deep packet inspectors and
origin/destination identifiers’ tagging capability. Lastly, as
explained in Section II, the 5G QoS architecture forms a
funnel with limited QFIs (i.e., 64) and DRBs (i.e., 30) per
UE, and therefore, the solution of segregating the packets
lacks scalability as the number of flows grows.

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

B. SEGMENTED PACKETS AT THE RLC SUBLAYER

1) Problem description

Packets shall flow through the 5G stack until the RLC buffer,
as shown in Fig. 1 and may start accumulating there, as the
wireless link is the slowest link in the data path. Packets wait
at the RLC sublayer until the MAC scheduler pulls a specific
number of bytes. While every UE will be provided with at
least one DRB, up to 30 DRBs per UE can coexist, and
therefore, 30 RLC buffers. Parallel queues will be formed,
and thus, the MAC scheduler has to map the available re-
sources to the RLC buffers according to the scheduler policy
(e.g., round-robin). The RLC buffer is a FIFO queue [33]
[34] since packets within a DRB should be treated equally
[7], and, therefore the MAC scheduler can only access the
most recently inserted packets after it has pulled the older
ones. This introduces a precedence relation for the packets
that belong to the same queue (i.e., packets from the same
queue can only be egressed following the arrival order).
Furthermore, the radio resource allocation performed by the
MAC scheduler does not map directly bytes to the RLC
buffers, but rather it assigns Resource Blocks (RBs). RBs
are grouped into Resource Block Groups (RBG) according to
the cell configuration (e.g., in a 5 MHz bandwidth cell with
Type 0 and Configuration 1, the minimum number of RBs
to distribute is 2, except for the last RB [35]), which forms
the smallest unit that can be assigned to a UE. Moreover,
to assure an error rate below 10% [35], the UE delivers
a channel quality estimation through the Channel Quality
Indicator (CQI) in uplink. The CQI is a scalar and its value
is translated into a Modulation and Coding Scheme (MCS)
[35]. The MCS defines the modulation to use (i.e., BPSK,
QPSK, 16 QAM, 64 QAM or 256 QAM that transmit 1,
2, 4, 6 or 8 bits per symbol, respectively) and coding rate,
and thus, the channel capacity is determined by the radio
conditions (i.e, under good radio conditions, larger amount
of information can be transmitted).

Furthermore, 3GPP defines three different modes in which
a RLC entity can be instantiated [13]: Transmission Mode
(TM), Unacknowledged Mode (UM) and Acknowledged
Mode (AM). Through a TM entity, only control information
can be forwarded, while data information can flow by either
a UM or AM entity. Both UM and AM share the ability to
segment a packet if the TBS notified by the MAC does not
fit within the size of the packets waiting, as seen in Fig.
2. According to 3GPP [13], packets at the RLC sublayer
will be segmented if the RLC SDU size is larger than the
bytes requested by the MAC sublayer. As seen in Fig. 2,
once packets are segmented and a RLC header is added, they
are transmitted to the receiver’s RLC, where after removing
the RLC header, they wait for a SDU reassembly before
submitting them to the next sublayer (i.e., UE’s PDCP in the
downlink procedure). Therefore, information will not be for-
warded until a complete reassembly occurs, which in the best
case will occur in the next TTI. Segmentation/reassembly
procedure guarantees a full frequency spectrum utilization

FIGURE 2. RLC UM functions as described by 3GPP [13].

in the cases where the next packet size exceeds the TBS.
For example, in a static scenario with a LTE base station
with a 5 MHz bandwidth, under the best channel conditions
(i.e., 28 MCS), approximately 2289 bytes can be transmitted
every TTI [20]. However, bulky flows in an IP network will
use the maximum allowable packets size (i.e., 1500 bytes in
Ethernet) to minimize the protocol’s overhead and maximize
the transmitted information ratio. This example shows that
even ignoring the dynamic radio link channel’s capacity (i.e.,
assuming a static TBS of 2289 bytes), a myriad of fragmented
packets at the RLC sublayer are generated as the TBS notified
by the MAC would rarely coincide with the packets’ size, and
consequently, the delay is increased.

The principal constraints to consider in RLC’s segmenta-
tion/reassembly procedure can be summarized as:

• The RLC buffers are FIFO queues, and thus the packets
cannot be pulled arbitrarily.

• The resource allocation is performed through RBG,
rather than bytes.

• The MCS determines the channel capacity, which dy-
namically changes according to the radio link condi-
tions.

2) State-of-the-art solutions

Resource allocation has recently received significant atten-
tion as it is one of the pivot ideas around the slicing concept
[36] [37] [38]. Unfortunately, most literature about slicing
discusses the resource allocation problem without consider-
ing 5G’s packet-switched network nature (e.g., segmentation
problem where the information is not forwarded unless all
the fragments are reassembled), or 5G’s RB distribution
peculiarities (e.g., RBG).

In contrast, in other protocols such as Ethernet (i.e., IEEE
802.3) or Wi-Fi (i.e., IEEE 802.11), the data is transmitted

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

asynchronously. In Ethernet, the MTU size is 1500 bytes2

[39], while in Wi-Fi it reaches 2304 bytes [40]. Even though
modern versions of Ethernet do not use any collision de-
tection mechanism, Wi-Fi employs a collision avoidance
mechanism to orchestrate the access of multiple stations to
the wireless channel. An acknowledgment frame from the re-
ceiver is used to confirm that the data arrived correctly. IEEE
802.11 increases its probability of successfully transmitting
a packet in a noisy channel through packet fragmentation.
However, the asynchronous nature of accessing the channel,
compels to aggregate frames for achieving full bandwidth
[41], and therefore, the fragmentation procedure is rare in
comparison with the RLC segmentation/reassembly mecha-
nism that arises in cellular networks due to their synchronous
nature. Therefore, the segmentation/reassembly procedure
can be mostly considered as a cellular network specificity,
and consequently, it has not been thoroughly researched in
IEEE 802.3 and IEEE 802.11 standards.

IV. PROPOSED SOLUTIONS TO ADDRESS 5G’S
EXOGENOUS DELAYS
In this section, the proposed solutions to mitigate the exoge-
nous delays suffered by the 5G network stack are presented.
Specifically, a bufferbloat avoidance algorithm is presented
along with a novel algorithm that reduces the RLC SDU
segmentation/reassembly procedure delay.

A. ENHANCED 5G-BDP (E5G-BDP)
In [24], we presented different solutions that rely on the
communication between the SDAP and the MAC sublayers.
Among them, 5G-BDP was presented and shown as the most
successful algorithm to address the bufferbloat. 5G-BDP
calculates the Bandwidth Delay Product (BDP), which is the
optimal pacing value to forward the packets from the SDAP
to the RLC to work on the optimal rate [17]: not starving the
MAC scheduler, but also avoiding to bloat the RLC buffer.

However, 5G-BDP expects a uniform bandwidth schedul-
ing between TTIs (i.e., it expects the MAC scheduler to
distribute the RBs uniformly, such as {6,6,6,6,6} instead
of {0,12,0,0,18} during 5 TTIs). The resource distribution
relies on the MAC scheduler policy, from which 5G-BDP
is decoupled, as it only acquires RLC buffer occupancy
information. For example, the MAC scheduler algorithm may
assign RBs according to the current buffer occupancy. In such
scenarios, where the RBs are not uniformly distributed, a
non-virtuous cycle may occur in 5G-BDP. 5G-BDP will not
forward packets to the RLC sublayer, since in the last TTI
no RBs were assigned to the RLC buffer, while the MAC
scheduler might not assign more RBs to the RLC buffer
due to its low occupancy. Additionally, 5G-BDP does not
consider the size of the current packet to submit. Once a large
packet is queued in the RLC buffer, completely submitting it
can last several milliseconds, especially in scenarios with low

2The standard explicitly talks about octets rather than bytes. Through
this paper, no differentiation is made and the bytes are considered as 8 bits
objects or octets.

throughput, and therefore, to avoid forwarding them unless
necessary also improves the sojourn time suffered by low-
latency packets.

To avoid the situations described, we present the enhanced
5G-BDP (e5G-BDP) solution which is threefold. In the
first place, the BDP is calculated through an Exponentially
Weighted Moving Average (EWMA). An EWMA smooths
out short term fluctuations while exposes longer term trends.
This provides a more accurate bandwidth computation and
absorbs outlier bandwidth oscillations (e.g., bandwidth vari-
ations due to HARQ/NACK or non-uniform scheduling). In
the second place, packets are forwarded more actively in
comparison with 5G-BDP, avoiding the non-virtuous cycle
previously explained. In e5G-BDP packets are also for-
warded according to the BDP, yet ignoring the amount of
accumulated bytes at the RLC buffer. However, if packets
are not forwarded in the following TTI, the BDP will be
reduced, and thus this second measurement can be thought
as a smooth packet forwarding reduction mechanism. In the
third place, the size of the packet to forward to the RLC buffer
is considered (i.e., small size packets are more proactively
submitted to the RLC buffer while large packets tend to stay
longer at the SDAP sublayer).

e5G-BDP works within a 1 ms TTI, as it is the lowest
common denominator of 5G’s possible TTIs, since the slot
duration in 5G fluctuates between 1 ms and 62.5 µs at the
expense of using more frequency spectrum [42].

The pseudo-code of e5G-BDP is presented through the
Algorithms 1, 2 and 3. e5G-BDP algorithms are executed by
different sublayers (i.e., SDAP and MAC). Algorithm 1 rep-
resents the main e5G-BDP function, which is executed by the
SDAP scheduler per active RLC buffer periodically within a
TTI, to determine whether a packet can be sent to the subse-
quent lower sublayer. e5G-BDP calculates the BDP per RLC
buffer. It first checks whether the update_flag variable was
set (line 1) by the MAC scheduler, and if so, it recalculates
the bandwidth calling the function update_last_bandwidth
given in Algorithm 3. The update_flag is set every 1 ms by
the MAC sublayer, after the packets from the RLC sublayer
are received. At line 5, it is checked if the sum of the
bytes submitted from the SDAP to the RLC (i.e., SDAP-
RLC submitted bytes srs_bytes) and the last accumulated
bytes in the RLC buffer surpasses the maximum capacity
under the current MCS. If the sum surpasses the capacity,
a true value is returned, thus, informing the SDAP scheduler
that the limit is reached, and therefore, no more packets are
forwarded to the RLC buffer. If the sum is smaller than
the capacity, the paced_bytes (line 8) are calculated. This
feature, enables the pacing capability, as the paced_bytes
depend on the elapsed time since the last 1 ms TTI (e.g.,
if the actual bandwidth is 2200 bytes/TTI and the elapsed
time since the last 1 ms TTI is 0.5 ms, 1100 bytes are
the theoretical paced bytes, without any sum or multiplica-
tive factor). In this manner, large packets (e.g., 1500 bytes
packets) are more likely submitted during the last moments
of the TTI (e.g., (750, 1000) µs interval), and therefore,

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

if a low-latency packet with higher priority arrives at the
beginning of a TTI (e.g., (0, 750) µs interval) it can avoid
a bloated buffer. It can be argued that the best results could
be achieved if the packets are kept at the SDAP sublayer and
forwarded to the RLC sublayer just a moment before the TTI
(i.e., TTI−). However, the cellular network is a real time
system, where the lower layers/sublayers (i.e., PHY layer or
MAC sublayer) have higher priority than the higher sublayers
(i.e., RLC, PDCP or SDAP sublayers). Therefore, it may
occur than the TTI− forwarding opportunity at the SDAP
sublayer is missed, which would lead to starve the MAC
sublayer (i.e., not having enough bytes to forward from the
RLC to the MAC), and thus, squander throughput. At line
9, the paced_bytes is reduced by a constant in the range
of (0.0, 1.0], and if it exceeds the sum of the next packet
data size (i.e., size of the packet candidate to forward to
the RLC from the SDAP) and the already submitted bytes,
a false value is returned, informing the SDAP scheduler to
submit the packet. This feature enables the forwarding of the
packets independently of the last measured buffer occupancy,
contrarily to what happens at line 16, and mostly in the latter
moments of the TTI (i.e., in the (500, 1000) µs range rather
than the (0, 500) µs range since last transmission, assuming
a 1 ms TTI), as the paced_bytes value increases with the
elapsed time and, therefore, dispatches packets more actively
as compared with 5G-BDP. It also favors forwarding small
packets. At line 12, the extra_bytes variable is initialized to
data_size/5, and if a packet has already been transmitted
and some bytes were accumulated during the last TTI, it is
set to data_size/3 at line 14. It incentivizes forwarding the
next packet if during the current TTI no packet has already
been forwarded and the RLC buffer was emptied in the last
TTI. This variable also discourages submitting large packets
that are one of the causes of the bufferbloat. Lastly, at line
16, the already submitted bytes (i.e., srs_bytes) plus the
last accumulated bytes on the buffer, and the extra_bytes
variable, are compared against the paced_bytes to decide to
forward or keep the packet at the SDAP sublayer. Contrarily
to line 9, in this last condition (i.e., line 16) the occupancy of
the RLC buffer after submitting the RLC PDU is considered
before forwarding the packet.

Algorithm 2 and Algorithm 3 are helper functions, where
the last bandwidth according to the RLC buffer occupancy
after the 1 ms TTI is estimated, and the paced_bytes are
calculated. In Algorithm 2, the bandwidth is estimated ac-
cording to the number of bytes that were pulled by the
MAC from the RLC buffer through an EWMA calculation.
The bytes that remained in the RLC buffer are gathered
(i.e., line 1), the bytes that were transmitted to the MAC
sublayer are calculated (i.e., line 2), and the new bandwidth
is estimated (i.e., line 3). Lastly, the submitted bytes from the
SDAP sublayer to the RLC are reset (i.e., line 4), and the
last_acc_bytes and last_tti updated. As previously men-
tioned, e5G-BDP is intended to be executed per active DRB,
and thus, Algorithm 2 is called for each active RLC buffer.
In Algorithm 3 the paced_bytes are calculated, based on

Algorithm 1: e5G-BDP limit_reached.
It answers the SDAP sublayer whether to keep a
packet or forward it.

Input: Size of the next packet (data_size)
Output: Bool value whether to forward or keep the packet

1: if update_flag == True then
2: update_bw_est(); // Alg. 2
3: update_flag = False
4: end if
5: if srs_bytes+ last_acc_bytes > max_bytes then
6: return True;
7: end if
8: paced_bytes = calculate_paced_bytes();

// Alg. 3
9: if
paced_bytes×reduce_const > data_size+srs_bytes
then

10: return False;
11: end if
12: extra_bytes = data_size/5;
13: if srs_bytes 6= 0 ∧ last_acc_bytes 6= 0 then
14: extra_bytes = data_size/3;
15: end if
16: if srs_bytes+ last_acc_bytes+ extra_bytes >

paced_bytes then
17: return True
18: end if
19: return False

Algorithm 2: e5G-BDP update_bw_est.
It estimates the actual bandwidth per RLC queue.

Input: Current time (now)
Output: Updated bandwidth and RLC buffer occupancy

information (rms_bytes,bandwidth, srs_bytes,
last_acc_bytes and last_tti)

1: acc_bytes = get_bytes_rlc_queue();
2: rms_bytes =
srs_bytes− (acc_bytes− last_acc_bytes);

3: bandwidth = EMWA(rms_bytes/TTI);
4: srs_bytes = 0;
5: last_acc_bytes = acc_bytes;
6: last_tti = now;

the elapsed time, the bandwidth and the last accumulated
bytes. A multiplicative factor variable at line 2 (i.e., incr) that
depends on the elapsed time helps forwarding packets more
actively during the latter moments of the TTI, since the value
increases during the second half of the TTI. Therefore, the
packets are forwarded more actively during the last moments
of the TTI, avoiding a possible starvation that would have
an impact in the throughput. If the bandwidth is not equal to
zero, an additive factor of MTU/7 is used, again, to avoid a
possible starvation in real time systems at line 5. The value

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 3: e5G-BDP calculate_paced_bytes.
It calculates how many bytes could had been for-
warded theoretically, according to the current band-
width and the elapsed time since last TTI.

Input: Current time (now)
Output: Paced bytes (paced_bytes)

1: elapsed = (now − last_tti)/TTI ;
2: incr = elapsed < 0.5?1.2 : 1.33;
3: paced_bytes = 0;
4: if bandwidth 6= 0 then
5: paced_bytes =

incr × elapsed× bandwidth+MTU/7;
6: else if last_acc_bytes == 0 ∧ elapsed > 0.5 then
7: paced_bytes =MTU/4;
8: end if
9: return paced_bytes

FIGURE 3. e5G-BDP pacing mechanism outcome.

of MTU/7 is chosen as a compromise in a packet based
network as 5G, where most of the packets will be based on
TCP and transported through Ethernet (i.e., MTU of 1500
bytes), and UDP packets, that are normally scarce, small in
size and do not contribute as severely to the bufferbloat as
the TCP ones. The MTU value is divided by 4 (i.e., line 7)
with the intention of forwarding the packet to the RLC buffer
in the cases where the bandwidth was 0, the RLC buffer is
empty and the elapsed time is beyond 50% of the TTI, as seen
in line 6. This assures that a packet will be forwarded from
the SDAP as the theoretical calculated value (i.e., MTU/4)
will be bigger than the data_size/5 for all the packet sizes,
as seen in Algorithm 1 at line 16.

e5G-BDP pacing mechanism is illustrated in Fig. 3. Let
us assume that 600 bytes remained in the RLC buffer from
the previous TTI (i.e., last_acc_bytes = 600 bytes), the
calculated bandwidth is 1000 bytes/TTI, the MTU is 1500
bytes and that packets from two different flows share the
RLC buffer, one bulky (i.e., 1500 bytes packets) and one with
low-latency requirements (i.e., 200 bytes packets) [31] for a

quantitative discussion. Let us assume that at t = 1/4 of the
TTI since the last RLC to MAC forwarding event, e5G-BDP
obtains an opportunity to forward packets from the SDAP
sublayer to the RLC sublayer. These opportunities cannot be
precisely predicted, as the upper stack sublayers (i.e., RLC,
PDCP and SDAP) may miss some events, in contrast with
the lower layers/sublayers (i.e., PHY and MAC), where syn-
chronization is mandatory, and thus, real time predictability.
As observed in Fig. 3, the packet to forward is large in
comparison with the current computed bandwidth, which is
calculated through an EWMA filter. The paced_bytes value
is 1.2×0.25 TTI×1000 bytes/TTI+1500/7 bytes = 514
bytes, while the sum of the srs_bytes (i.e., bytes forwarded
from the SDAP to the RLC during this TTI, 0 bytes), the
last_acc_bytes (i.e., 600 bytes) and the extra_bytes (i.e.,
1500/5 = 300 bytes) reaches 900 bytes. Therefore, e5G-
BDP refuses to submit the packet, and the same reasoning
applies when e5G-BDP obtains a forwarding opportunity
at t = 1/2 (i.e., paced_bytes = 1.2 × 0.5 TTI ×
1000 bytes/TTI + 1500/7 bytes = 814 bytes), since
forwarding a large packet during the first moments of the
TTI, would block the possibility of other packets with higher
priority that may arrive during the TTI to be transmitted in the
next TTI. At t = 3/4, another forwarding opportunity occurs.
In this case, however, a smaller packet with higher priority
arrived into the SDAP between t = 1/2 and t = 3/4. Since
paced_bytes increases with the elapsed time (i.e., 1.33 ×
0.75 TTI × 1000 bytes/TTI + 1500/7 bytes = 1211.5
bytes), the next packet to submit is small (i.e., 200 bytes), and
thus the variable extra_bytes (i.e., 200/5 = 40 bytes), and
the RLC buffer is not bloated (i.e., last_acc_bytes = 600
bytes and srs_bytes = 0 bytes), the packet is forwarded.
However, the large packet (i.e., the 1500 bytes packet) is
not forwarded during this opportunity, as the paced_bytes
value did not change (i.e., 1211.5 bytes), and is smaller than
the sum of the already sent bytes (i.e., srs_bytes = 200
bytes), the extra_bytes (i.e., 1500/3 = 500 bytes) and
the last_acc_bytes (i.e., 600 bytes). Lastly, a forwarding
opportunity during the last moments of the TTI (t = TTI−)
arrives at the e5G-BDP. This time, e5G-BDP forwards the
large packet that it refused to submit before, as the sum of the
submitted bytes variable (i.e., srs_bytes = 200 bytes), the
last_acc_bytes (i.e., 600 bytes) and the extra_bytes (i.e.,
1500/3 = 500 bytes) is smaller than the paced_bytes (i.e.,
1.33× 1.0 TTI × 1000 bytes/TTI +1500/7bytes = 1544
bytes). In this manner, e5G-BDP prioritizes utilizing full
bandwidth (i.e., it submits more bytes than the calculated
bandwidth) at the possible cost of generating some sojourn
time. In Fig. 3, if we suppose that the next bandwidth
will be equal to the calculated one, the packet forwarded
at t = TTI− will be segmented and some bytes of it
shall block the path of future packets. However, through this
pacing mechanism, the buffer starvation is avoided, while the
sojourn time of packets with different QFIs that share the
RLC buffer is reduced.

e5G-BDP was explicitly designed to maintain 5G’s sublay-

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. FP and EQP RB distribution algorithms.

ers decoupled since coupling impedes the 5G foreseen func-
tional split [43], is prone to bugs [44], and is a undesirable
software architecture feature overall.

B. ELASTIC QUANTUM PARTITION (EQP)
As described in Section III-B, packet segmentation procedure
enables full wireless resource utilization, yet it should be
avoided whenever possible as it increases the latency. For ex-
ample, a strict spectrum based distribution or Fixed Partition
(FP) (i.e., fixed number of RBs per RLC buffer every TTI)
leads to a plethora of packets waiting at the receivers’ RLC
buffer, which significantly augments the delay. In Fig. 4, the
problem is depicted with four RLC buffers, each containing
one packet of 4 RBs, and a bandwidth of 4 RBs/TTI. In the FP
approach, one fourth of each packet is sent every TTI. This
leads to segmented packets that cannot be forwarded until the
4th TTI, leading to an average delay of 4 × 4 TTIs / 4 pack-
ets = 4 TTI/packet. Contrarily, a segmentation/reassembly
avoidance distribution would assign all the capacity to one
RLC buffer every TTI, so that no segmentation/reassembly
happens, and packets can flow to the next sublayer, leading
to an average delay of (1 + 2 + 3 + 4) TTI / 4 packets = 2.5
TTI/packet.

We mathematically formalize the RLC segmenta-
tion/reassembly model as follows. Consider the partially
ordered set (X,≤) composed by N packets at the RLC
sublayer x1, x2, ..., xN , where N ∈ N. Since packets are
egressed in a FIFO order from every RLC queue, there
exists a precedence constraint (i.e., to egress a particular
packet all the packets that arrived before it have to be first
dequeued), and therefore, the precedence relation (i, j) exists
in X if item i can only be pulled once j has been pulled.
We represent the radio channel capacity with C ∈ N, and
the set R composed of r1, r2, ..., rN contains the ceil size
in RBs of the RLC SDU packets. These values need to
be recalculated every TTI due to the radio link channel
dynamicity. As an example, and without loss of generality,
let us assume that a RB can transport up to 88 bytes (i.e., the
approximate number of bytes per RB with 28 MCS [45]),
and that a queue contains two packets of 1500 and 500
bytes, in that precise order. For transmitting the first packet,
d1500/88e = 18 RBs are needed, while for transmitting the

first and the second packet, d(1500 + 500)/88e = 23 RBs
are required. Hence, adding the second packet, has a total
contribution in the number of RBs of 23− 18 = 5 instead of
d500/88e = 6. Therefore, that queue would contain a 18 RB
packet followed by a 5 RB packet. The objective function to
avoid the segmentation/reassembly procedure given the 5G
model is to maximize the number of packets pulled from
the RLC buffers, given a capacity C during a TTI, which
mathematically can be expressed as:

max

(
N∑
i=1

xi

)
(1)

s.t.
N∑
i=1

xiri ≤ C (2)

xi ∈ {0, 1},∀i ∈ N (3)

xi ≤ xj ,∀(i, j) ∈ X (4)

The objective function is (1), where the number of packets
transmitted is to be maximized. Thus, x can be either 0
(i.e., not selected) or 1 (i.e., selected) according to constraint
(3). Constraint (2) models the requirement that the sum
of the RBs, where r represents the amount of RBs of a
packet, cannot surpass the capacity C. Lastly, (4) models
the precedence constraint. If a precedence constraint exists
between two packets (i, j) (i.e., they belong to the same
queue and the packet xj arrived before packet xi), the packet
xi can only be selected (i.e., get the value 1) if the packet
xj has already been selected (i.e., has already a 1 value).
This segmentation avoidance algorithm can be reduced to a
well-known problem: the precedence constrained knapsack
problem (PCKP)3, which is also known as the open pit
mining problem. Even though the PCKP is known to beNP-
complete [47], there exists a solution that runs inO(NC). In
5G, the capacity C is a modest number that depends on the
channel bandwidth (e.g., in 5G the maximum number of RBs
is limited to 275 [42]). This fact mitigates the effect of C
in the scheduling algorithm, as no more than the equivalent
to 275 RBs per queue have to be considered, and Ethernet
packets will be mostly composed by packets larger than one
RB4. However, N depends on the number of connected UEs,
which in commercial base stations can be of the order of 104

[48], which should be multiplied by the maximum number
of DRBs (i.e., 30 [19]) per UE. The PCKP applied to the
RB distribution, maximizes the number of non-segmented

3The Weighted Completion Time and Chains [46] algorithm which
achieves the optimum scheduling for precedence constrained jobs, does
not output the optimum permutation as the time is discrete rather than
continuous (i.e., it can only be a multiple of a TTI, but not a fraction of
it).

4Since the RB set contains the ceil value in RBs of the packets, adding
a new small packet could result in a 0 size RB packet. This has no
practical relevance as (i) no infinite number of packets with size zero can
be accumulated as eventually a new RB will be needed and, (ii) packets are
usually sent with at least tens of bytes in information to mitigate the header
overhead inserted by the transport layer.

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

packets and, therefore, the delay suffered by segmentation
is minimized. However, such scheduling algorithm does not
include any fairness. A rogue flow that transmits smaller
packets than its competitors would monopolize the access to
the resources if we only cared about the objective function
(1). Fortunately, the problem of the fairness in a packet based
network has been widely studied in the last decades [49]
[50]. In [49], the Deficit Round Robin scheduler is presented,
where the quantum is used to represent the total bandwidth
fraction of each queue in bytes. At every egress opportunity,
the corresponding quantum value is added to a state vari-
able that is maintained per queue. If the following packet’s
size is smaller than the accumulated quantum, the packet is
forwarded and the quantum value is reduced according to
the packet’s size. This procedure is repeated until either the
queue is empty or the following packet’s size exceeds the
quantum value. In this manner, a past bandwidth deficit is
fixed in future egress opportunities, achieving fairness. How-
ever, in a typical spectrum sharing scenario, the percentage
of the total RBs is agreed between different parties through
a Service Level Agreement (SLA), and such percentage of
RBs is respected within a window time, similarly to the
guarantees offered by QFI in 5G (e.g., GBR) [7]. Henceforth,
a dichotomy between the short and long term objectives
is explicitly presented. On the one hand, in the short term
we want to reduce the segmentation that causes delay. On
the other hand, inside the agreed window time, we want to
respect the percentage of RBs between different queues.

Aiming to bring fairness to our algorithm, we introduced
a variable named quantum q. Next, we assume a slicing
scenario with a SLA between different slices (i.e., an amount
of RBs per slice every TTI). Moreover, an analogous sce-
nario arises whenever a UE has different active DRBs, and
thus, our proposed algorithm is also valid in such scenarios.
The quantum is increased with the theoretical amount of
RBs corresponding to the slice during that TTI (e.g., 12
RBs if there are 24 available RBs and the resource share
assigned is 50% of the total RBs). Our algorithm lets slices
lend (i.e., quantum to increase) or borrow (i.e., quantum
to decrease) RBs within a limit. Consequently, a slice can
borrow more RBs than planned in a TTI to avoid packet
segmentation and, thus, reduce the delay. However, to avoid
unfairness, a limit to the amount of quantum is applied. Such
quantum limit depends on the deviation from the agreed
percentage of RBs inside the window time (e.g., in a time
window of 1 second, with a 1 ms TTI, a SLA of 12 RBs
and a quantum limit of 100 RBs, a maximum deviation of
max_possible_RB_deviation/total_RBs = (100 - (-100))
/ (12 RBs x 1000 TTIs/sec) = 1.6% is expected). If the
transmission of the following packet decreases the quantum
beyond the minimum limit, the access to new RBs is denied.
The sum of the resource quantums of all the slices is zero
n∑

i=1

qi = 0 since the resources lent by a slice are borrowed by

another, resulting in a zero sum operation. However, a greedy
approach leads to slices working at the quantum limit under

certain traffic patterns, and thus, when low-latency packets
arrive, an already indebted slice would lack the capability
of borrowing enough resources to transmit the low-latency
packets rapidly. In the last years, different buffer management
policies for packet switches [51] using the competitive anal-
ysis [52] have flourished. The competitive analysis measures
the optimality of an online algorithm (i.e., an algorithm that
takes decisions without knowing the entire input sequence
from the beginning) against the optimal offline algorithm
(i.e., an algorithm that knows the entire input sequence
before starting) performance for any input packet sequence.
Even though the cellular network segmentation/reassembly
problem cannot be reduced to a known scheduling buffer
model due to its complexity (e.g., different packet sizes or
dynamic radio link capacity), some outputs can be applied
to it. In [53], five different buffer management policies are
presented for packets that can have two values (i.e., high
or low). The most successful policy (i.e., Dynamic Flexible
Partition) accepts low value packets according to the amount
of enqueued low value packets and it’s free slots through
an exponential function. The reasoning being as follows.
Since in an online algorithm, the future packet sequence is
unknown, the resources for packets that do not contribute to
the total reward significantly should be used cautiously, as
the algorithm may need the resources in the near future for
more profitable packets. We use an analogous approach to
discourage an already indebted slice from acquiring more
resources. The size of the packets are multiplied by an
exponential function that depends on the borrowed RBs (i.e.,
the quantum value). In this manner, acquiring a larger amount
of quantum (i.e., acquiring a new debt) is discouraged when
the already borrowed quantum approaches the limit, as the
packets seem larger. With this mechanism, the greedy effect
of selecting the packets from an indebted slice with small size
packets is limited, achieving the objective of reducing the
packet segmentation effect while maintaining the fairness in
the SLA within a small deviation. To achieve such objectives,
we propose the Elastic Quantum Partition (EQP) presented
in Algorithm 4.

EQP first assigns the corresponding quantum to every slice
according to their SLA and the available RBs for the current
TTI (i.e., in a 50% slice where 24 RBs can be allocated,
b24 × 0.5c = 12 RBs). It then converts the current queues
with packets in bytes, into queues with RBs considering the
cellular network characteristics (e.g., the MCS), as well as
the quantum, through the generate_rbs function. Packets
belonging to indebted slices (i.e., negative quantum) are
considered larger (i.e., their number of bytes are multiplied
by an exponential function that depends on the fraction
quantum borrowed/quantum limit). In line 3, Algorithm
4 calls the segmentation avoidance algorithm. It returns
a permutation of packets considering the slices’ quantum
that does not trigger the segmentation/reassembly procedure.
Next, EQP assigns the RBs to the permutation returned by the
seg_avoid function and updates the remaining total_rbs, as
well as the slices’ quantum. However, some RBs may still

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

be unallocated (i.e., total_rbs may not be 0). Therefore, the
slices are sorted in quantum descending order and the next
UE (i.e., the Radio Network Temporary Identifier (RNTI) is
a temporal identifier for a UE) selected. The empty queues, as
well as the queues that will get drained in the next TTI (i.e.,
the already assigned RBs in lines 4 – 8 will empty them), are
excluded from the sorting. If there are still unallocated RBs
and the slice quantum is not indebted above the 75% of the
quantum maximum limit, the RBs are distributed considering
5G specificities (i.e., using RBG). Such mechanism objective
is twofold. On the one hand, it avoids squandering RBs.
For example, in a two slice scenario, if the buffers of the
first slice are empty while the second slice buffers contain
packets, the second slice can use the RBs from the first slice
to minimize the unused RBs, and thus, augment the total
throughput. On the other hand, it limits the RBs assigned to
a slice that does not achieve forwarding a full packet. In this
way, slices maintain a quantum buffer of around 25% of the
total quantum limit, in case that these RBs are needed during
the next TTIs. This is important in an online scenario, such
as 5G, where the traffic patterns cannot be foreseen, and a
slice may use the quantum in a more rewarding manner (i.e.,
being able to forward a larger amount of packets). Lastly,
the remaining RBs are assigned to the slices with the highest
positive quantum (i.e., line 19), even if the buffers of these
slices are empty. Such a decision sacrifices some throughput
in favor of fairness, since EQP interprets the lack of more
packets in a slice as a desired symptom (e.g., the application
may not have more information to transmit) and abides by
the SLA.

Algorithm 5 presents the segmentation avoidance algo-
rithm. It consists in a recursive algorithm where a memoiza-
tion5 (i.e., at lines 7, 8 and 31) in the packet position (i.e.,
idx_q and idx_pkt), and the capacity is implemented with
the goal of obtaining aO(NC) algorithmic complexity rather
than O(2N). Through memoization, repetitions of already
calculated permutations in the packet index, queue index and
capacity are avoided.

Due to the recursive nature of Algorithm 5, we will start
presenting it from the middle rather than from the beginning.
The core of the segmentation avoidance algorithm resides
at lines 23 and 24. The algorithm either selects the cur-
rent packet (i.e., adding the current packet act_pkt in the
possible permutation) and reduces the remaining capacity
accordingly, or jumps to the next queue maintaining the
current capacity, generating all the valid permutations along
the way. Once the stack unwinds, two possible permutations
are available (i.e., the permutation of selecting the current
packet (i.e., take) and reduce the capacity (line 23) or ignore
it and jump to the next queue maintaining the available capac-
ity (i.e., dont_take) (line 24)). At line 26, the permutation
with the largest amount of packets is selected. If lengths
are equal, the solution with the largest sum of the quantum

5Memoization is not a typo from the word memorization but rather an
optimization technique.

Algorithm 4: Elastic Quantum Partition (EQP).
It maps the free RBs to non empty RLC buffers.

Input: Total number of RBs to schedule and active RNTI
(total_rbs and active_rntis).

1: assign_quantum_slices();
2: idx_q = generate_rbs(total_rbs, active_rntis);
3: out_arr = seg_avoid(idx_q, 0, total_rbs, out_arr); //

Alg. 5
4: for all pkt, rnti, slice ∈ out_arr do
5: assign_rbs(rnti, pkt);
6: reduce_slice_quantum(slice, pkt);
7: total_rbs− = pkt;
8: end for
9: sort_slices();

10: rnti = next_rnti()
11: while total_rbs > 0 ∧ slice_quantum(rnti) >
−0.75× limit_quantum do

12: assign_rbs(rnti,min_rbg);
13: reduce_slice_quantum(slice,min_rbg);
14: total_rbs− = min_rbg;
15: sort_slices();
16: rnti = next_rnti()
17: end while
18: if total_rbs > 0 then
19: map_last_RB_slices()
20: end if

packets is selected at line 28 (i.e., every packet belongs to
a slice with a quantum associated, so the larger sum of the
quantum indicates the permutation of packets that reside at
slices that lent more RBs). Such measurement balances the
quantum values of the slices and achieves higher fairness in
the case where the same amount of packets can be pulled.
The algorithm lastly saves the obtained result (i.e., out_arr)
according to the idx_q, idx_pkt and capacity at line 31
before returning.

As input, Algorithm 5 receives the queue index (i.e.,
idx_q), the packet index (i.e., idx_pkt), the remaining ca-
pacity (i.e., capacity) and a copy of the ongoing selected
array permutation (i.e., out_arr). The termination conditions
of the recursive Algorithm 5 are coded in the first lines
(i.e., lines 1 – 6). At line 1, the capacity is checked, and
if zero (i.e., no more RBs available), the current packets
permutation (i.e., out_arr) is returned. At line 4 the end of
the queues (i.e., no more queues to consider) are checked,
and if the end is reached, returned. At line 7, whether the
packet permutation has already been resolved is checked,
thus avoiding unnecessary work and reducing the algorithm
complexity. At line 10, the packet size in RBs according to its
queue index (i.e., idx_q) and packet index (i.e., idx_pkt) is
acquired (i.e., p_size). At line 11, the remaining capacity is
obtained (i.e., t_capacity) if the current packet is selected in
the permutation (i.e., packet at queue index idx_q and packet
index idx_pkt), with 5G’s RBG specificity adjusted. If after

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 5: EQP seg_avoid.
It selects a permutation of packets according to their
size and the slice quantum that does not cause seg-
mentation.

Input: Queue index, packet index, capacity and
permutation of selected packets (idx_q, idx_pkt,
capacity and out_arr)

Output: Permutation of selected packets (out_arr)
1: if capacity == 0 then
2: return out_arr;
3: end if
4: if idx_q > max_idx_q then
5: return out_arr;
6: end if
7: if is_memoized(idx_q, idx_pkt, capacity) then
8: return memoized(idx_q, idx_pkt, capacity);
9: end if

10: p_size = pkt_size(idx_q, idx_pkt) ;
11: t_capacity = adjust_rbgs(capacity, out_arr, p_size)

;
12: if t_capacity < 0 then
13: idx_q = next_idx_q(idx_q) ;
14: idx_pkt = 0 ;
15: return

seg_avoidance(idx_q, idx_pkt, capacity, out_arr)
16: end if
17: idx_pkt+ = 1 ;
18: if idx_pkt == max_idx_pkt(idx_q) then
19: idx_q = next_idx_q(idx_q) ;
20: idx_pkt = 0 ;
21: end if
22: act_pkt = {idx_q, idx_pkt};
23: take =

seg_avoid(idx_q, idx_pkt, t_capacity, out_arr +
act_pkt) ;

24: dont_take =
seg_avoid(next_idx_q(idx_q), 0, capacity, out_arr);

25: out_arr = dont_take ;
26: if len(take) > len(dont_take) then
27: out_arr = take ;
28: else if

len(take) == len(dont_take) ∧ quantum(take) >
quantum(dont_take) then

29: out_arr = take ;
30: end if
31: memoization(idx_q, idx_pkt, capacity, out_arr) ;
32: return out_arr ;

considering the 5G RBG distribution, the capacity drops
below zero, this combination is discarded and the algorithm
recursively calls itself at line 15, after updating the queue and
packet index. If the current packet is the last one in the queue,
the queue and the packed indexes are updated (i.e., idx_q and
idx_pkt at lines 19 and 20).

In summary, Algorithm 5 generates a packet permutation
where the number of packets to forward without generating
segmentation is maximized (i.e., line 26). In case that two
permutations would forward the same number of packets,
Algorithm 5 selects the permutation with the largest quantum
(i.e., line 28), and thus, it reduces the unfairness between
slices, as the slices with larger quantum lent more RBs in the
past. Lastly, Algorithm 5 is aware of the RBG distribution
and adjusts the remaining capacity accordingly through the
function adjust_rbgs.

V. EVALUATION FRAMEWORK
In this section a complete overview of the evaluation condi-
tions, the testbed configuration and the measurement method-
ologies are exposed.

A. SOFTWARE
To evaluate and validate the proposed e5G-BDP and EQP
algorithms, a real cellular network testbed using OpenAir-
Interface (OAI) [45] was built. For this, we enhanced the
OAI implementation with the i) SDAP sublayer with QFI
queues and ii) the scheduler proposed in Section II. Downlink
traffic was generated to validate the results, and analogous
outcomes are expected in uplink procedure due to 5G stack’s
symmetry. We configured OAI’s channel bandwidth to 5
MHz (i.e., 25 RBs). The TTI in OAI is 1 ms. The default
bearer was mapped to a RLC-UM bearer, as it was OAI’s
default option. The SDAP scheduler iteratively asks e5G-
BDP limit_reached function (i.e., Algorithm 1) whether it
should forward a packet or maintain it. However, OAI is a
soft real time system where an excessive burden to the CPU
leads to de-synchronize the UE and the eNodeB. Therefore,
a 200 µs sleep between the iterative calls was applied, which
heuristically proved correct for the hardware tested.

B. HARDWARE
As seen in Fig. 5, a B-200 Ettus USRP connected to a
computer with an Intel(R) Core(TM) i9-9980HK CPU @
2.40 GHz processor with the Linux 5.3.0-51 low-latency
kernel was deployed at the eNodeB side. For the first UE (i.e.,
UE0), a Commercial off-the-shelf (COTS) Huawei E3372
LTE USB stick connected to a Raspberry Pi 4 Model B
was used. For the second UE (i.e., UE1), another Huawei
E3372 LTE USB stick connected to a computer with an AMD
FX(TM) 8120 CPU @ 1.40 GHz processor with the Linux
4.4.0-141-generic kernel was used.

C. RADIO LINK CHANNEL CAPACITY
The radio link plays a central role establishing the channel
capacity. To realistically emulate the channel capacity, and

12 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. Evaluation testbed.

thus, validate our proposals as reliably as possible, we con-
verted the CQI data gathered from two major Irish opera-
tors [54] into MCS sequences according to OAI’s CQI to
MCS conversion function. In [54], LTE UE statistics for five
different mobility patterns (i.e., static, pedestrian, car, tram
and train), at a granularity of one sample per second, are
provided. We selected two mobility patterns (i.e., pedestrian
and train), thus, exposing our solutions to diverse, and yet
realistic patterns. Every second, we set the MCS according
to the data provided by the mobility patterns file, instead of
the MCS that would had been assigned in accordance with
the CQI provided by the UE (i.e., in our testbed conditions
the UE always reports the maximum possible CQI), and
therefore, we realistically emulated the dynamic radio link
channel capacity.

D. BUFFERBLOAT SOLUTIONS CONFIGURATION

TABLE 1. Bufferbloat algorithms tested.

Van. CoDel BBR e5G-BDP Dyn. DRQL
X-layer No No No Yes Yes Yes
Pacing No No Yes Yes No No

Knob-less Yes Yes Yes Yes No Yes
Drop pkts No Yes No No No No

We implemented the six solutions shown in Table 1 to
compare and validate our proposed e5G-BDP. The Vanilla
case represents the default OAI implementation. It does not
have any cross-layer communication mechanism or pacer,
is knob-less and does not drop packets. For the evaluation
of CoDel, we substituted the default RLC FIFO buffer with
a CoDel queue according to the values described in [11]
(i.e., interval value set to 100 ms and target value set to
5 ms). CoDel, contrarily to the Vanilla implementation,
drops packets to inform the sender that excessive buffering
is happening. For the BBR [27] evaluation, we used the
default TCP BBR version from the Linux kernel 5.3.0-62-
lowlatency. As explained in Section III, BBR calculates
the BDP and transmits the packets accordingly through a
pacing mechanism. Lastly, the three algorithms that permit

a rapid low-latency packet delivery from within the cellular
network due to their cross-layer communication capability
were evaluated: DynRLC, DRQL and e5G-BDP. DynRLC
measures the sojourn time suffered by the SDUs at the RLC,
and consequently adjusts the maximum number of allowed
SDUs in the RLC buffer. The sojourn time is captured for
every packet that egresses the RLC buffer, and depending
on whether the sojourn packet time is bigger or smaller than
a target delay, the number of SDUs permitted at the RLC
is increased or reduced accordingly. An α parameter marks
the increase or reduction rate. The new maximum number of
allowed SDUs is updated every interval of time [22], which
we set to 10 ms (i.e., a radio frame duration in LTE), in
contrast to the 200 ms mentioned in [22]. We set the target
delay to 3 ms instead of the minimum of 30 ms reported by
[22], as a smaller value was heuristically found not to achieve
full bandwidth, and a larger value just adds unnecessary
sojourn time. We set the maximum number of packets to 10,
the minimum to 1 and the α value to 0.05. DynRLC lacks
any pacing capability as elapsed time is not considered while
forwarding the packets. DRQL [24], on the contrary, is based
on the number of bytes that remain at the RLC buffer after
a TTI, and no parameters need to be adjusted as DRQL tries
to maintain the equivalent of one MTU in the RLC buffer
after the TTI. Packets are also forwarded in a bursty manner,
as DRQL also lacks a pacing mechanism. Lastly, e5G-BDP
measures the bandwidth directly through the amount of bytes
that were pulled from the RLC buffer in the last TTI. It also
owns a pacing mechanism to augment the probabilities of
delivering a packet within a TTI, and is a knob-less solution
as no parameters need to be configured. We did not use any
slicing to evaluate the bufferbloat as it would not report any
advantage over the simple scenario with 1 UE.

E. EQP CONFIGURATION
To test the EQP we created two slices through FlexRAN
[55], each one containing a single UE. We evaluated differ-
ent SLAs for slices with 75%, 50% and 25% of the total
floor number of RBs (e.g., for 25 RBs this is translated to
b(25 ∗ 0.75)c = 18, b(25 ∗ 0.50)c = 12 and b(25 ∗ 0.25)c =
6 RBs per TTI.). In this manner, we evaluated EQP for
slices with large, as well as small amounts of RBs, emulat-
ing different, yet realistic, slicing scenarios. OAI’s default
slice SLA was preserved, where the slices are generated
according to a percentage of the total data RBs excluding
the retransmissions (i.e., due to HARQ/NACK mechanism),
as well as the RBs assigned to transmit control informa-
tion. We compared our proposed EQP solution against the
default resource scheduling in OAI for slicing. We named
such distribution FP as it corresponds to a fixed partition,
which is independent of the size of the packets. Since the
bufferbloat effect introduces a delay several orders of mag-
nitude larger than the segmentation/reassembly procedure,
we evaluated EQP in conjunction with e5G-BDP due to its
superior results when compared with its direct competitors,
as proved by this paper. We also tested the effect of the

VOLUME 4, 2016 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

quantum limit through five different values (i.e., 25, 50, 100,
250 and 500 RBs) in a 25% slice with 8 VoIP flows, as it
represents our most challenging scenario for EQP. We set
the exponential function of the function generate_rbs to
5 × (quantum borrowed/quantum limit)5 to discourage
considering packets from indebted slices for scheduling, and
a quantum value limit of 100 RBs was set as the default value
as at demonstrated by this paper, it avoids a possible EQP
saturation for the scenarios evaluated.

F. TRAFFIC GENERATION
To model realistic low-latency flows, the Isochronous Round-
Trip Tester (irtt) [56] was used, where a G.711 VoIP conver-
sation is emulated through UDP data frames of 172 bytes
with an interval of 20 ms [31], resulting in a bandwidth
consumption of 64 Kbps. Conversely, we used the iperf3 tool
in reverse mode to generate a bulky TCP flow that models a
service that demands bandwidth (e.g., a mobile application
update), with a maximum segment size (i.e., MTU minus
40 IP header bytes) of 1460 bytes. We chose TCP as the
competing flow as most of the Internet traffic is forwarded
through HTTP/2, which relies on TCP [57] as its transport
layer protocol. In this manner, we modelled two different
flows (i.e., one bulky and one with low-latency requirements)
that try to access limited resources and share the RLC buffer.
Both flows were always segregated at the SDAP sublayer
according to their 5-tuple, and the UDP flow’s packets were
placed in a higher priority queue, imitating the behavior
of two flows with distinct QFI. TCP Cubic [8] was used
for all the bandwidth driven flows, except when BBR [27]
is explicitly mentioned, as it is the most deployed TCP
congestion control algorithm. To achieve TCP’s steady state,
avoid its slow start, and generate the bufferbloat, the bulky
traffic started 5 seconds before the VoIP flow. Therefore,
the VoIP flow avoided possible outlier results generated at
the beginning of the transmission and the repeatability of
the results was improved. Every VoIP lasted for 60 seconds,
which represents 60000 TTIs (i.e., 60000 ms x 1 TTI/ms) in
which 3000 UDP packets were sent. Every test was repeated
5 times (i.e., 300000 TTIs) to correctly verify the results and
minimize the possible outliers’ effect. Scalability was evalu-
ated with 1, 2, 4 and 8 VoIP flows in parallel, thus modeling a
group phone call conference scenario with background TCP
traffic.

G. MEASUREMENT METHODOLOGIES
To report the delay, a timestamp was added to all the packets
once they enter the SDAP sublayer in the case of DynRLC,
e5G-BDP and DRQL, or the RLC sublayer in the case of
Vanilla, BBR and CoDel. The elapsed time was measured
in the VoIP packets once they were forwarded to the MAC
sublayer, and thus, the HARQ/NACK delay was not mea-
sured in our setup. By doing so, the delay that occurs in the
SDAP/RLC sublayers was isolated, and thus, the effective-
ness of the proposed solutions could be verified minimizing
the effect of other possible phenomena. The Round Trip Time

(RTT) was reported through the irtt tool, which generated the
VoIP flows. The achieved bandwidth was measured through
the iperf3 tool (i.e., counting the TCP packets that arrived
to the UE), as well as counting the unused transmission
opportunities that happened every TTI at the eNodeB (i.e.,
unused RBs). In this manner, the throughput was verified
from two different perspectives. A UDP packet was sent from
the UE before the beginning of the emulated VoIP phone call
to start reading the MCS profile, when different scenarios
(i.e., train and pedestrian) were involved.

VI. EVALUATION RESULTS
In this section, we first evaluate the algorithms that address
the bufferbloat (i.e., Vanilla, CoDel, BBR, e5G-BDP, Dyn-
RLC and DRQL). To verify their suitability they are tested
in a static scenario (i.e., 28 MCS, one VoIP flow and one
bulky flow) and a dynamic scenario (i.e, using the train and
pedestrian reported MCS, one VoIP flow and one bulky flow).
Their scalability is tested with 1, 2, 4 and 8 VoIP flows in
parallel, emulating a group phone call conference scenario
along a bulky traffic flow that tries to monopolize the access
to the RBs.

Following, we show the effect of RLC’s segmenta-
tion/reassembly procedure and evaluate EQP. To this end,
we first show the results in a slicing scenario with different
RB percentage shares (i.e., 25%-75% and 50%-50%) and a
VoIP and a bulky flow with a fixed 28 MCS. Next, the results
obtained from a scalability test in a 25% RB slice with 1, 2, 4,
and 8 VoIP flows in parallel along a bulky flow are displayed.
Following the effect of the quantum limit in a 25% slice with
8 VoIP flows in parallel is evaluated. We finish this section
showing the effect of EQP on two UEs with 50% of the total
RBs each, that belong to two different mobility patterns MCS
(i.e., pedestrian and train).

A. RLC BUFFERBLOAT
1) Static MCS scenario
3GPP standard does not include any mechanism capable
of addressing the bufferbloat problem in current cellular
networks. Therefore, 5G’s stack is susceptible to experience
large delays, as it is equipped with large buffers, the RAN
is commonly the slowest link of the data path, and packets
are usually transmitted through a loss-based TCP congestion
control algorithm (e.g., TCP Cubic). Thus, packets with low-
latency requirements that share the RLC buffer with bulky
flows suffer from large buffer depletion times. Such an effect
can be clearly seen in Fig. 6, where the correlation between
the VoIP packet’s delay and the RLC queue size can be
clearly observed in an OAI Vanilla deployment, when one
low-latency flow shares the RLC buffer with a bulky flow.
The delay suffered by low-latency flows due to bloated
buffers generated by bulky flows in Vanilla deployments, can
reach the order of seconds as reported by [9] and shown in
Fig. 6.

The RLC buffer should contain just enough bytes to satisfy
the MAC sublayer demands. Any additional byte just aug-

14 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. Delay suffered by a VoIP flow when sharing the RLC buffer with a
bulky flow and the RLC buffer occupancy in a Vanilla OAI deployment.

ments the delay [24], as newly arrived data packets suffer the
depletion time of the previously enqueued packets. On the
other hand, if the RLC cannot satisfy MAC sublayer’s de-
mands, a transmission opportunity is squandered. Fulfilling
both objectives is very challenging in the 5G environment
due to the dynamic nature of the radio link channel. In Fig.
7, the RLC buffer occupancy for the six different methods
from Table I can be observed, where a bulky flow shares the
RLC buffer with a VoIP flow during 60 seconds. Note the
change of scale between the different solutions, where CoDel
and BBR reduce the amount of bytes at the RLC queue by at
least 5 times when compared with Vanilla. However, CoDel’s
mechanism for discarding packets results in transmission
opportunity losses (i.e., not containing enough bytes at the
RLC buffer when a MAC notification arrives). On the other
hand, BBR periodically drains the bottleneck queue after
10 seconds during 200 ms if the measured RTT does not
decrease in that period [27]. This leads to a small total
bandwidth utilization reduction, as the RLC buffer does not
contain enough bytes to satisfy the MAC sublayer’s TBS de-
mands during that 200 ms periods. This effect can be clearly
observed in Fig. 7, as the BBR RLC buffer is drained several
times during the emulated 60 seconds VoIP call. Moreover,
Vanilla, CoDel and BBR create a large queue that impedes
a fast packet delivery. Conversely, the algorithms that are
deployed directly in the cellular network stack (i.e., e5G-
BDP, DynRLC and DRQL), estimate more accurately the
data link capacity, forwarding enough bytes to feed the MAC
requests every TTI, while maintaining the rest segregated at
the higher sublayer queues (i.e., SDAP). Thus, a low-latency
flow, where e5G-BDP, DynRLC or DRQL is implemented,
sharing the bottleneck buffer (i.e., RLC buffer in 5G) with
bulky traffic flows considerably avoids large queuing sojourn
times, as the amount of bytes is meticulously maintained low.

As observed in Fig. 7, e5G-BDP is able to maintain the
RLC buffer with fewer bytes than DynRLC or DRQL. Under
a MCS index of 28 and 25 RBs in OAI, the MAC scheduler
pulls between 2289 and 1569 bytes, depending on whether
the subframe contains control and data information or just
data. Hence, the queues shown at Fig. 7 should never contain
less than 2289 bytes to avoid wasting any transmission oppor-

FIGURE 7. RLC buffer size for Vanilla, CoDel, BBR, e5G-BDP, DynRLC and
DRQL with MCS 28.

FIGURE 8. Cumulative Distribution Function (CDF) of the VoIP flow’s RTT.

tunity, while any additional byte just increments the delay. In
our evaluation, the bulky flow packets are 1500 bytes long,
while the packets from the low-latency flow are 200 bytes
long (i.e., 172 bytes of data, 20 bytes of IPv4 header and
8 bytes of UDP header). Consequently, precisely occupying
the RLC queue with 2289 bytes may not be possible in many
TTIs. Hence the problem between the packet sizes and the
TBS is explicitly shown, as the TB transmits information in
bits while the RLC buffer stores packets. It is not possible to
pass bits from the SDAP sublayer to the RLC sublayer, and
thus, to assure full throughput, the RLC buffer should always
contain more than 2289 bytes, which increases the sojourn
time.

In Fig. 8 the same conclusions from the RTT of the VoIP
flow’s perspective reported by irtt are explicitly drawn. The
RTT is composed by the cellular stack delay (i.e., uplink and
downlink procedure), the cellular protocol delay (e.g., the up-
link Scheduling Request procedure), the packet routing and
various buffering delays (e.g., Network Interface Controller
(NIC) buffers). However, the importance of segregation in the
cellular downlink procedure is clearly shown in Fig. 8, where
the packets sent through e5G-BDP, DynRLC and DRQL
surpass the alternatives that do not segregate the packets (i.e.,
Vanilla, CoDel and BBR). e5G-BDP also surpasses DynRLC
and DRQL as observed in Fig. 8. It can be also concluded
that in our cellular network testbed a minimum of 20 ms RTT
delay exists.

VOLUME 4, 2016 15

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Fig. 9, depicts the CDF of the queuing delay in the down-
link procedure for the SDAP sublayer, the RLC sublayer and
the sum of both. Packets sent with Vanilla, CoDel and BBR
algorithms face an order of magnitude larger delay than pack-
ets sent with e5G-BDP, DynRLC or DRQL. The time where
Vanilla, CoDel and BBR’s CDF asymptotically converge into
1.0 are located far after the scope of Fig. 9. Indeed, only 12%,
76% and 91% of the total packets at Vanilla, BBR and CoDel,
suffer less than 50 ms of delay. Vanilla, CoDel and BBR lack
an SDAP sublayer, and therefore, no graph is depicted in the
first row of the Fig. 9. Between e5G-BDP, DRQL and Dyn-
RLC, the lack of a pacing mechanism in DRQL and DynRLC
has notorious effects. Every new TTI, the SDAP scheduler
forwards the packets of non-empty queues according to its
priority policy (i.e., in our evaluation scenario it schedules
low-latency packets first). This effect can be clearly seen in
Fig. 9 at the RLC buffer, where the packets are forwarded
from the SDAP sublayer at the beginning of the TTI and
have to wait at the RLC buffer until the next transmission
opportunity occurs (i.e., most of DynRLC and DRQL packets
at RLC wait between (750, 1000) µs, meaning that they
were forwarded from the SDAP sublayer in the (0, 250) µs
time interval after a TTI). Moreover, if the packets have not
been forwarded at the beginning of the TTI, they have to
wait at the SDAP sublayer until the next TTI opportunity
(i.e., an additional delay of 1000 µs is added at the SDAP
sublayer for DynRLC and DRQL). On the other hand, the
pacing capabilities of e5G-BDP permit that a newly arrived
packet at the SDAP is forwarded to the RLC immediately,
avoiding having to wait for the next TTI. Such effect is also
appreciable at the RLC queue, where the e5G-BDP permits
ingressing packets, due to its pacing capabilities, at any time
within a TTI, if the limit has not been reached, considerably
reducing the delays at the RLC buffer (i.e., the packets stay
mostly at the RLC sublayer between (500, 1000)) µs). This
pacing capability allows e5G-BDP to avoid waiting for a
new TTI, and therefore, outperforms DRQL and DynRLC
as shown in Fig. 9, delivering more than 95% of the packets
within a TTI, while only around 50% and 30% of the packets
using DRQL and DynRLC are delivered during the first 1000
µs.

Achieving low-latency for the new cellular network is
of vital importance. However, low-latency can be trivially
achieved if some throughput is sacrificed, simply maintaining
the RLC buffer with less bytes than the MAC requested
TBS. Therefore, the real challenge is to achieve low-latency
while not starving the RLC buffer, and thus, utilizing all the
available throughput. To this end, the throughput is quantified
from two perspectives. First we measured the results from
iperf3 (i.e., the bulky flow) that rely on Layer 4 measure-
ments. The results can be observed in Fig. 10, where Vanilla,
CoDel, BBR, e5G-BDP, DynRLC and DRQL reported 16.58,
12.95, 16.05, 16.20, 14.35 and 16.30 MBits/sec. As a second
approach, we compared the number of unused RBs during
the 60 second VoIP conversation. The Vanilla case transports
data information in all the RBs during the 60 seconds and,

FIGURE 9. CDF of the queuing delay at RLC, SDAP and the sum of both for a
28 MCS.

FIGURE 10. Average throughput reported by iperf3 with MCS 28.

therefore, achieves the highest possible throughput. BBR, as
shown in Fig. 7, drains the buffer to get a new measurement
of the bottleneck link path every 10 seconds. This effect
contributes to wasting 3.1% of the total RBs during the 60
seconds of VoIP conversation. The mechanism of discarding
packets utilized by CoDel results in a 20.92% of transmission
opportunity losses. DynRLC and DRQL endure a 10.12%
and a 1.3% unused RBs. Lastly, e5G-BDP does not transmit
data information in 1.9% of the total available RBs. These
results match the outcomes provided by iperf3 as shown in
Fig. 10. From this scenario, e5G-BDP clearly outperforms
its competitors. While some RBs are squandered (i.e., 1.9%),
more than 95% of the low-latency packets are forwarded
within a TTI (i.e., 1000 µs) as shown in Fig. 9, while DRQL
needs two TTIs and DynRLC needs three TTIs to forward
more than 95% of the packets. A summary of the results can
be observed in Table 2.

2) Scalability evaluations
In contemporary cellular networks, different flows with het-
erogeneous QoS requirements share the RLC buffer. Thus,
the presented solutions must scale well when the number of
flows increases. To this end, we tested the effect of 1, 2, 4
and 8 VoIP flows in parallel along a bulky flow, emulating

16 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Performance comparison of static MCS scenario: Percentage of
packets with < 1 ms queuing delay, the throughput of iperf3 flow in
MBits/sec, and the percentage of used RBs.

Van. CoDel BBR e5G-BDP Dyn. DRQL

Delay 0% 9% 4% 95% 30% 50%
Throu. 16.58 12.95 16.05 16.20 14.35 16.30
RBs 100% 79.08% 96.9% 98.1% 89.88% 98.7%

FIGURE 11. Delay faced by VoIP packets with 1,2,4 and 8 flows with 28 MCS.

a group phone call conference scenario. Note that DynRLC
relies on the number of SDUs in the RLC and the delay they
suffer to adjust the amount of SDUs at the buffer. However,
the MAC sublayer requests bytes from the RLC. This creates
a weakness on DynRLC when packets of different sizes are
mixed (i.e., DynRLC does not differentiate between a 1500
or 200 bytes SDU), thus wasting transmission opportunities
(i.e., not containing enough bytes at the RLC buffer when
the MAC requests them) and creating additional delay (i.e.,
when low-latency packets bursts occurs, they may not all be
forwarded to the RLC if they exceed the number of optimal
SDUs). Additionally, as observed in Fig. 11, it does not
scale well in comparison with e5G-BDP and DRQL that are
methods that rely on the amount of bytes rather than the
number of SDUs.

FIGURE 12. Bytes requested by the MAC sublayer and MCS for the train and
pedestrian datasets.

FIGURE 13. RLC buffer size for Vanilla, CoDel, BBR, e5G-BDP, DynRLC and
DRQL for the train dataset.

3) Dynamic MCS scenario
We obtained the previously shown results in a controlled
static environment with the maximum MCS index (i.e., 28)
and nearly no interference. However, in real cellular network
deployments the radio link channel capacity abruptly changes
[54]. Therefore, we emulated a scenario with dynamic MCS,
setting its value according to real LTE traces [54]. We chose
a pedestrian scenario, where the MCS differs more slowly,
and a train scenario, where the MCS changes more abruptly.
In Fig. 12, the MCS values from these two traces and the
number of bytes requested by the MAC sublayer during the
60 seconds VoIP conversation can be observed. As seen in
Fig. 12, they are highly correlated, and therefore, a MCS
reduction directly affects the available bandwidth during the
following TTI (i.e., bytes requested/TTI). The sudden MCS
variation at the 35th second in the train scenario presents a
challenge for the algorithms, as they have to rapidly estimate
the data link bandwidth, so that the bufferbloat is prevented,
and thus, the delays associated with it. Under such conditions
we can observe how the proposed algorithms behave in
Fig. 13. A reduction at the 35th second in the amount of
bytes at the RLC buffer can be observed for CoDel, BBR,
e5G-BDP and DRQL, while no specific change at Vanilla
and DynRLC is shown. The dynamic MCS scenario shows
DynRLC limitations, as its buffer capacity calculation is
performed according to the number of SDUs. Therefore,
the amount of lost transmission opportunities is increased.
However, e5G-BDP still delivers the low-latency packets
faster than DynRLC as it can be observed from Fig. 14, due
to the lower sojourn times experienced by the low-latency
flows at the SDAP sublayer. No algorithm is capable of fully
utilizing the bandwidth and, at the same time, forward the
low-latency packets within a TTI. Such outcome results from
the fact that no preemption is allowed from the RLC buffer in
our model. Therefore, if a packet of 1500 bytes has already
been forwarded from the SDAP to the RLC and just 500 bytes
are forwarded from the RLC to the MAC every TTI, a newly
arrived low-latency packet will suffer at least the depletion
time from the previous packet (i.e., at least 3 TTIs or 3000
µs).

The average throughput for the train scenario reported by

VOLUME 4, 2016 17

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 14. CDF of the queuing delay at RLC, SDAP and the sum of both for
the train dataset.

FIGURE 15. Average throughput reported by iperf3 for train dataset.

iperf3 can be observed in Fig. 15, with 6.20, 5.20, 6.20, 5.98,
4.30 and 6.0 MBits/sec for Vanilla, CoDel, BBR, e5G-BDP,
DynRLC and DRQL.

One of the most important features when analyzing the
bufferbloat problem is the bandwidth vs. delay dichotomy.
It is relatively easy to obtain the lowest possible latency
if some bandwidth is squandered and, analogously, it is
relatively easy to obtain full bandwidth if large queues (i.e.,
bufferbloat) can be formed. However, achieving both is very
challenging as not only the dynamic cellular network radio
link channel effects have to be taken into account, but also
TCP’s behavior has to be considered. In Fig. 16, the sojourn

FIGURE 16. Normalized Utilized RBs vs Average Delay for the train and
pedestrian datasets.

time from the low-latency flows vs. the normalized amount of
used RBs for the train and pedestrian scenarios is depicted.
A RB is composed of several bytes and therefore, a small
mismatch between the utilized RBs and the real bandwidth
may exist. In Fig. 16 the solutions that nearly maintain full
bandwidth while preventing the generation of the bufferbloat,
and hence large delays, at the RLC buffer are e5G-BDP
and DRQL. DynRLC suffers from the previously mentioned
effect of calculating the delay according to the number of
packets at the RLC, which maintains the queue depleted,
albeit squandering transmission opportunities, as also seen in
Fig. 15. Table 3 shows numerically the average delay values
presented in Fig. 16. The solutions based on the 5G stack
(i.e., e5G-BDP, DRQL and DynRLC) notably surpass the
solutions that are based on other mechanisms (i.e., CoDel and
BBR), while the default scenario (i.e., Vanilla) manifestly
shows the present bufferbloat problem in cellular networks.
Table 4 depicts the 95% CDF value for average delay as
shown in Fig. 14, while Table 5 displays the percentage
of used RBs in the train and pedestrian scenarios. It can
be clearly observed that in both scenarios, e5G-BDP out-
performs in average every competitor in average sojourn
time and the 95% delay packet, while squandering less than
1% of the available resources. DynRLC and DRQL show
comparable results as DynRLC sacrifices bandwidth, while
DRQL suffers larger delays. CoDel and BBR show their
limitations, while Vanilla clearly exposes the contemporary
bufferbloat problem. From the results provided, we conclude
that e5G-BDP is the best solution tested in this paper for
addressing the bufferbloat.

TABLE 3. Average Delay in ms at the eNodeB for the train and pedestrian
scenarios.

Van. CoDel BBR e5G-BDP Dyn. DRQL

Train. 2366.08 24.27 84.06 1.93 2.67 4.42
Ped. 2841.73 31.58 85.60 2.19 2.92 5.59

TABLE 4. 95% Delay in ms at the eNodeB for the train and pedestrian
scenarios.

Van. CoDel BBR e5G-BDP Dyn. DRQL

Train. 5325.93 52.93 186.94 3.93 5.56 8.94
Ped. 5261.16 138.94 218.93 3.90 5.57 8.77

TABLE 5. Percentage of used RBs for the train and pedestrian scenarios.

Van. CoDel BBR e5G-BDP Dyn. DRQL

Train 100% 85.0% 98.1% 99.1% 75.6% 100%
Ped. 100% 93.0% 97.6% 99.3% 80.9% 100%

B. RLC SUBLAYER PACKET
SEGMENTATION/REASSEMBLY

18 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 17. CDF of the queuing delay at SDAP, RLC and the sum of both, for FP and EQP in two slicing scenarios: a) 75%-25% and b) 50%-50% resource
distribution with 28 MCS.

FIGURE 18. Average throughput reported by iperf3 in two slicing scenarios
(i.e., 75%-25% and 50% - 50% resource distribution) for both UEs with 28
MCS for FP and EQP.

1) Static MCS scenario

As analysed in Section IV-B, RLC sublayer’s capacity to
segment the packets generates an unnecessary, yet avoidable,
delay. In this subsection, we evaluated the EQP algorithm
against the Fixed Partition or FP RB distribution algorithm
(i.e., the RBs are scheduled in a fixed manner) in a slicing
scenario with the e5G-BDP algorithm as our base bufferbloat
avoidance solution. Similar comparative results are expected
for DRQL or DynRLC. We created two different slicing
scenarios, one where both slices are assigned the 50% of the
available resources, and a second one where the resources
are shared with a 75%-25% ratio. For both scenarios we
generated a low-latency traffic flow along with a bulky traffic

flow.
As it can be observed in Fig. 17, the EQP significantly

reduces the delay suffered by low-latency flows when com-
pared to the FP resource scheduling. However, the benefit is
more evident in the slices with scarce RB share. In a 25%
RB slice, approximately 78% of the packets are delivered
during the first 1000 µs, in contrast with the approximately
15% when FP is used. The improvement is reduced, albeit
is still significant, when the RBs are equally shared, with an
approximate 64% vs. 14% of packets being forwarded within
the first 1000 µs. Moreover, the results are non-negligible
for the slice with 75% of the RBs, where a 88% vs. a 73%
is observed. These results confirm the validity of the model
exposed in Section IV-B. A fixed RB partition does not
maximize the number of packets forwarded (i.e., objective
function 1), and thus, the delay is larger in comparison with
the EQP scheduling.

EQP’s objective is to foster the forwarding of full packets
to avoid the sojourn time suffered at the UE’s RLC when
segmentation occurs. This effect can be clearly seen in Fig.
17 where the use of EQP reduces the latency of the VoIP
packets for both scenarios. However, EQP squanders bytes
when the last packet of the queue is transmitted. For example,
18 RBs can transport up to 1692 bytes with a 28 MCS
[20], so if the queue contains 1650 bytes, 42 padding bytes
are added into the last RB, and therefore, 42 bytes do not
transport information, reducing the throughput. This effect
is more pronounced due to the RB distribution based in
RBGs [35] (e.g., for a 5 MHz bandwidth cell, the minimum

VOLUME 4, 2016 19

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

RBG size is 2). Such behavior supposes a challenge for
e5G-BDP, as enough packets should be forwarded to the
RLC to minimize the buffer starvation, without bloating it.
However, the padding effect, as seen in Fig. 18, for 5 MHz
bandwidth base stations, does not substantially reduce the
throughput, when compared with FP. A 15.80 vs. 15.60,
15.45 vs. 15.35 and 16.20 vs. 15.40 MBits/sec for the 25%-
75%, 50%-50% and 75%-25% resource distribution for FP
and EQP is reported. OAI’s default resource distribution (i.e.,
FP) discards the last RB (i.e., b0.75 ∗ 25RBsc = 18RBs
and b0.25 ∗ 25RBsc = 6RBs for the total of 25 RBs),
and therefore, the average throughput of Fig. 18 is slightly
smaller than the average throughput of e5G-BDP in Fig. 10.

The possibility of acquiring more resources than the ones
assigned in a strict RB distribution (i.e., FP), emerges here
again. As explained in Section IV-B and more concisely
in [51], momentarily using more resources than the ones
agreed in a SLA, reduces the latency in realistic use case
scenarios, while achieving competitive throughputs as seen
in the summary of results in Table 6.

TABLE 6. Performance comparison of static MCS scenario: Percentage of
packets with < 1 ms queuing delay, and the throughput of iperf3 flow.

Delay Throughput
25% EQP 78% 3.50
25% FP 15% 4.10

Ratio (EQP/FP) 5.20 0.85
50% EQP 64% 7.45
50% FP 14% 7.65

Ratio (EQP/FP) 4.57 0.97
75% EQP 88% 11.65
75% FP 73% 11,75

Ratio (EQP/FP) 1.14 0.99

2) Scalability evaluations

As previously mentioned, the cellular network is exposed
to services with heterogeneous QoS requirements, that can
contain several flows each. To this end, we evaluated 1, 2,
4, and 8 VoIP flows in parallel, to emulate a multi user VoIP
call, in a 25%-75% slice resource sharing scenario, where the
25% slice contains the low-latency flows along a bulky traffic
flow, while the 75% slice, only transports one bulky traffic
flow. As it can be observed in Fig. 19, EQP considerably
surpasses the FP solution, reducing the sojourn time of the
low-latency packets. However, a saturation effect is observed
when the number of VoIP flows increases. When 8 flows are
generated a packet every 2.5 ms is in average created (i.e., a
packet is created every 20 ms per flow to emulate a VoIP flow
[31] / 8 flows = 2.5ms/packet). When the interarrival time of
low-latency packets approaches to one TTI (i.e., 1 ms in our
testbed), the quantum mechanism’s advantage is attenuated
as EQP’s core idea is to momentarily borrow some resources
and give them back during the next TTIs. The percentage of
packets that are submitted within 2000 µswith EQP are 98%,
98%, 96% and 94% for 1, 2, 4, and 8 VoIP flows while for

FIGURE 19. Total CDF queuing delay for VoIP packets with 1,2,4 and 8 flows
with 28 MCS in a 25% slice for FP and EQP.

similar results (i.e., 96%, 95%, 95% and 88% of the packets)
the FP needs 4000 µs.

3) Effect of quantum limit
As explained in Section IV-B, the quantum limit plays a
central role in EQP, as it indicates the amount of RBs that
a slice can lend or borrow, thus denoting the maximum RB
deviation between the SLA and the slice. To test the effect
of the quantum limit within the EQM, we generated two
slices with a 25%-75% RB distribution. A bulky flow along
with 8 VoIP flows traverse the 25% slice, while only a bulky
flow is instantiated at the 75% slice. As observed in Fig.
20, augmenting the quantum limit from 25 to 100 improves
the latency of the VoIP packets. However, after a value of
100, augmenting the quantum limit value does not provide
any latency reduction. This fact shows that there exists a
boundary to the achievable latency reduction for the current
packet sequence tested and thus, augmenting the quantum
limit value beyond it does not report any benefit. However,
even though we tested the quantum value in our most strin-
gent scenario, 5G is an heterogeneous network with myriads
of different traffic patterns. Therefore, if the quantum value
is to be optimized, the traffic patterns that traverse the slices
must be known beforehand. Although it consist in a very
interesting problem for contemporary research topics (e.g.,
machine learning), predicting the future traffic flows lies out
of the target of this paper, and therefore is not analyzed.

In Fig. 21 the boxplot for the quantum distribution can
be observed. The zero value indicates the equilibrium (i.e.,
no lent or borrowed RB), while a negative value shows that
the slice is indebted, and a positive value manifests that
less than the SLA RBs have been used by that slice. The
25% slice tends to borrow resources to forward the VoIP
packets, and thus, to maximize the number of forwarded
packets, while the 75% slice tends to lend resources as only
bulky packets traverse it. Moreover, EQP tends to be a fair
RB scheduling (i.e., the median slightly deviates from the
equilibrium point) even if large amounts of quantum RBs are
available. This is an important property in an environment
where the future traffic demands are unknown, as it lets a
margin for borrowing RBs in the future if needed, while

20 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 20. Total CDF queuing delay for VoIP packets with 8 flows in a 25%
slice with 28 MCS for FP and EQP with 25, 50, 100, 250 and 500 RBs
quantum limit.

FIGURE 21. Quantum boxplot in a 25%-75% slicing scenario with 8 VoIP
flows and a bulky flow in the 25% slice and a bulky flow in the 75% slice.

maintaining the fairness stipulated by the SLA. As expected,
the median values of the scenarios with lower quantum values
are closer to the equilibrium point in comparison with higher
quantum values.

4) Dynamic MCS scenario
The previously tested scenarios were based in a static MCS.
However, the radio link conditions can abruptly change, and
thus, directly impact the throughput. Moreover, the MCS
changes do not affect all the UEs equally. For example,
one pedestrian carrying a UE and one UE inside a train
will be exposed to different MCS profiles. Therefore, in our
last scenario, we analyzed two slices with 50% share of the
total resources with a bulky flow and a VoIP flow each in a
pedestrian and train scenario, to realistically validate EQP.
In the first slice, a UE (i.e., UE0) with the pedestrian MCS
scenario is attached, while for the second slice a UE (i.e.,
UE1) with the train MCS scenario is utilized. Fig. 22 shows
the CDF sojourn time for both slices, where EQP unam-
biguously surpasses the FP distribution, especially for the
pedestrian slice. This occurs since the average MCS for the
pedestrian slice is smaller than the average MCS for the train
slice (i.e., 11.02 vs. 14.48 on average, cf. Fig. 12) which is
strongly connected with the throughput. Therefore and since
EQP especially benefits the scenarios with scarce resources,
the difference between EQP and FP for the pedestrian slice

FIGURE 22. Total CDF queuing delay for VoIP packets in two 50%-50% slices
for the train and pedestrian datasets for FP and EQP.

is more explicit. Within the first 4000 µs, EQP forwards
approximately 66% and 76% of the total low-latency packets
for the pedestrian and train slices, in contrast with the 44%
and 77% with OAI’s default approach (i.e., FP). This is an
expected result as the throughput is reduced when compared
to the static MCS scenario (i.e., a 28 MCS index against
the MCS reported in Fig. 12). Here again EQP significantly
reduces the latency of the slice with lower throughput (i.e.,
pedestrian), while achieves similar results for the slice with
higher throughput (i.e., train).

VII. CONCLUSION
In this paper we have extensively evaluated RLC buffer
delay avoidance solutions in a testbed. The bufferbloat phe-
nomenon in the hierarchical multi-queue 5G QoS architec-
ture has been presented. We verified that 3GPP’s Vanilla
solution does not address the packet accumulation problem
(i.e., the bufferbloat) at RLC’s buffer, for which, we pre-
sented a solution (i.e., e5G-BDP) and evaluated it against
different state-of-the-art proposals. We also exposed RLC’s
segmentation/reassembly procedure contribution to the la-
tency, presented the EQP algorithm for minimizing such
effect and evaluated it against a strict spectrum scheduling
algorithm. The most remarkable results from this paper can
be summarized as follows:

• Contemporary cellular networks bloat their RLC sub-
layer buffers, and therefore, ruin 3GPP’s efforts to re-
duce the latency through stack and protocol improve-
ments.

• Introduction of the SDAP sublayer is insufficient if the
heterogeneous QoS requirements of different services
has to be fulfilled. 3GPP should consider the insertion of
a queue-based architecture in the SDAP sublayer with
scheduling capabilities to avoid bloating its stack and
achieve its low-latency envisioned goals.

• Classic bufferbloat solutions (e.g., CoDel and BBR)
do not suffice to meet the most stringent latency re-
quirements in 5G. New solutions that directly rely on
the cellular network stack and gather information from
it must be considered as they outperform the classic
solutions by an order of magnitude (e.g., e5G-BDP).

VOLUME 4, 2016 21

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• In a packet based network such as the cellular net-
work, packet sizes must be considered by the resource
scheduling algorithm, if latency is a concern. Solutions
ignoring such fact only generate a myriad of segmented
packets at the RLC sublayer increasing the total latency
and impeding a rapid packet delivery. We presented,
evaluated and validated an algorithm (i.e., EQP) that re-
duces such effect, while deviating from the SLA within
a limit.

As future work, we plan to study the wired network delays
(e.g., Time Sensitive Networks) in conjunction with the 5G
stack delays.

REFERENCES
[1] C. Shannon, “A Mathematical Theory of Communication,” The Bell

System Technical Journal, Oct. 1948.
[2] S.-Y. Chung, G. Jr, T. Richardson, and R. Urbanke, “On the Design of

Low-density Parity-check Codes within 0.0045 dB of the Shannon Limit,”
Communications Letters, IEEE, vol. 5, pp. 58 – 60, 03 2001.

[3] 3GPP, “NR, Multiplexing and channel coding,” 3rd Generation Partnership
Project (3GPP), Technical Specification (TS) 38.212, Abr. 2020, version
16.1.0.

[4] ——, “Study on physical layer enhancements for NR ultra-reliable and
low latency case (URLLC),” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 38.824, Mar. 2019, version 15.5.1.

[5] G. Berardinelli, N. Huda Mahmood, R. Abreu, T. Jacobsen, K. Pedersen,
I. Z. Kovács, and P. Mogensen, “Reliability Analysis of Uplink Grant-Free
Transmission Over Shared Resources,” IEEE Access, vol. 6, pp. 23 602–
23 611, 2018.

[6] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and NR;
Service Data Adaptation Protocol (SDAP) specification,” 3rd Generation
Partnership Project (3GPP), Technical Report (TR) 37.324, Sep. 2018,
version 15.1.0.

[7] ——, “System architecture for the 5G System,” 3rd Generation Partnership
Project (3GPP), Technical Report (TR) 23.501, Dec. 2018, version 15.4.0.

[8] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64–74, Jul. 2008.
[Online]. Available: https://doi.org/10.1145/1400097.1400105

[9] The bufferbloat project. [Online]. Available: https://www.bufferbloat.net/
projects/

[10] T. Høiland-Jørgensen, M. Kazior, D. Täht, P. Hurtig, and A. Brunstrom,
“Ending the Anomaly: Achieving Low Latency and Airtime Fairness in
WiFi,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, 2017, pp. 139–151.

[11] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled De-
lay Active Queue Management,” Internet Requests for Comments, RFC
Editor, RFC 8289, Jan. 2018.

[12] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
“The Flow Queue CoDel Packet Scheduler and Active Queue Management
Algorithm,” Internet Requests for Comments, RFC Editor, RFC 8290, Jan.
2018.

[13] 3GPP, “NR, Radio Link Control (RLC) specification,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 38.322, Jan.
2019, version 15.4.0.

[14] ——, “LTE, Radio Link Control (RLC) protocol specification,” 3rd Gen-
eration Partnership Project (3GPP), Technical Specification (TS) 36.322,
Jul. 2020, version 16.0.0.

[15] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez, “Multi-tenant
radio access network slicing: Statistical multiplexing of spatial loads,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3044–3058,
2017.

[16] F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allocation for
network slicing,” IEEE/ACM Transactions on Networking, vol. 28, no. 3,
pp. 1311–1324, 2020.

[17] L. Kleinrock, “Internet Congestion Control Using the Power Metric: Keep
the Pipe Just Full, But No Fuller,” Ad Hoc Networks, pp. 142–157,
November 2018.

[18] 3GPP, “Interface between the Control Plane and the User Plane nodes,”
3rd Generation Partnership Project (3GPP), Technical Specification (TS)
29.244, Jun. 2019, version 16.0.0.

[19] ——, “NR, Radio Resource Control (RRC) protocol specification,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
38.331, Apr. 2019, version 15.5.1.

[20] Open Air Interface Feature Set. [Online]. Available: https://gitlab.
eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md

[21] M. Irazabal, E. Lopez-Aguilera, and I. Demirkol, “Active Queue Manage-
ment as Quality of Service Enabler for 5G Networks,” in 2019 European
Conference on Networks and Communication (EuCNC), April 2019, pp.
1–5.

[22] R. Kumar, A. Francini, S. Panwar, and S. Sharma, “Dynamic control of
RLC buffer size for latency minimization in mobile RAN,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC), April
2018, pp. 1–6.

[23] R. Kumar, A. Francini, S. Panwar, and S. Sharma, “Design of an enhanced
bearer buffer for latency minimization in the mobile ran,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[24] M. Irazabal, E. Lopez-Aguilera, I. Demirkol, and N. Nikaein, “Dynamic
Buffer Sizing and Pacing as Enablers of 5G Low-Latency Services,” IEEE
Transactions on Mobile Computing, 2020.

[25] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management,” Internet Requests for Comments, RFC Editor, RFC,
Jul. 2015.

[26] S. Jung, J. Kim, and J. Kim, “Intelligent Active Queue Management
for Stabilized QoS Guarantees in 5G Mobile Networks,” IEEE Systems
Journal, pp. 1–10, 2020.

[27] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based Congestion Control,” Commun. ACM, vol. 60,
no. 2, pp. 58–66, Jan. 2017.

[28] P. Goyal, M. Alizadeh, and H. Balakrishnan, “Rethinking congestion
control for cellular networks,” in Proceedings of the 16th ACM Workshop
on Hot Topics in Networks, ser. HotNets-XVI. New York, NY,
USA: Association for Computing Machinery, 2017, p. 29–35. [Online].
Available: https://doi.org/10.1145/3152434.3152437

[29] P. E. McKenney, “Stochastic Fairness Queueing,” in Proc. of IEEE Int.
Conf. on Computer Communications, June 1990, pp. 733–740 vol.2.

[30] B. Briscoe, K. D. Schepper, M. B. Braun, and G. White, “Low
Latency, Low Loss, Scalable Throughput (L4S) Internet Service:,”
Internet Engineering Task Force, Internet-Draft draft-ietf-tsvwg-l4s-
arch-06, Mar. 2020, work in Progress. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-tsvwg-l4s-arch-06

[31] Voip bandwidth consume. [Online]. Available: https://www.cisco.com/c/
en/us/support/docs/voice/voice-quality/7934-bwidth-consume.html

[32] Google stadia. [Online]. Available: https://stadia.google.com/
[33] Open Air Interface. [Online]. Available: https://www.openairinterface.org/
[34] srslte. [Online]. Available: https://github.com/srsLTE/srsLTE
[35] 3GPP, “NR; Physical layer procedures for data,” 3rd Generation Part-

nership Project (3GPP), Technical Specification (TS) 38.214, Sep. 2019,
version 15.7.0.

[36] C. Chang and N. Nikaein, “Ran runtime slicing system for flexible and
dynamic service execution environment,” IEEE Access, vol. 6, pp. 34 018–
34 042, 2018.

[37] H. Halabian, “Distributed resource allocation optimization in 5g virtu-
alized networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 627–642, 2019.

[38] R. Schmidt, C. Chang, and N. Nikaein, “Flexvran: A flexible controller
for virtualized ran over heterogeneous deployments,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC), 2019, pp. 1–7.

[39] C. Hornig, “A Standard for the Transmission of IP Datagrams over
Ethernet Networks,” Internet Requests for Comments, RFC Editor, RFC,
Apr. 1984.

[40] IEEE, “IEEE Standard for Information technology—Telecommunications
and information exchange between systems Local and metropolitan area
networks—Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016.

[41] C. A. Grazia, N. Patriciello, T. Høiland-Jørgensen, M. Klapez, M. Ca-
soni, and J. Mangues-Bafalluy, “Adapting TCP Small Queues for IEEE
802.11 Networks,” in 2018 IEEE 29th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep.
2018, pp. 1–6.

22 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[42] 3GPP, “NR, Physical channels and modulation,” 3rd Generation Part-
nership Project (3GPP), Technical Specification (TS) 38.211, Jun. 2019,
version 15.6.0.

[43] ——, “Study on new radio access technology: Radio access architecture
and interfaces,” 3rd Generation Partnership Project (3GPP), Technical
report (TR) 38.801, Abr. 2017, version 14.0.0.

[44] M. Mondal, B. Roy, C. K. Roy, and K. A. Schneider, “Investigating the
relationship between evolutionary coupling and software bug-proneness,”
in Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, ser. CASCON ’19. USA: IBM Corp.,
2019, p. 173–182.

[45] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “Openairinterface: A flexible platform for 5g research,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, p. 33–38, Oct. 2014.

[46] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th edition.
Springer, 2016.

[47] D. S. Johnson and K. A. Niemi, “On knapsacks, partitions, and a new
dynamic programming technique for trees,” Mathematics of Operations
Research, vol. 8, no. 1, pp. 1–14, 1983.

[48] Dbs3900 huawei distributed base stations. [On-
line]. Available: https://e.huawei.com/en/products/wireless/elte-trunking/
network-element/dbs3900

[49] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using Deficit
Round Robin,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
ser. SIGCOMM ’95. New York, NY, USA: ACM, 1995, pp. 231–242.

[50] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344–357,
1993.

[51] M. H. Goldwasser, “A survey of buffer management policies for packet
switches,” SIGACT News, vol. 41, no. 1, p. 100–128, Mar. 2010. [Online].
Available: https://doi.org/10.1145/1753171.1753195

[52] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[53] W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén, “Competitive
queue policies for differentiated services,” Journal of Algorithms, vol. 55,
no. 2, pp. 113 – 141, 2005.

[54] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond Through-
put: A 4G LTE Dataset with Channel and Context Metrics,” in Proceedings
of the 9th ACM Multimedia Systems Conference, ser. MMSys ’18. New
York, NY, USA: ACM, 2018, pp. 460–465.

[55] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis,
“Flexran: A flexible and programmable platform for software-defined
radio access networks,” in Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 427–441. [Online]. Available: https://doi.org/10.
1145/2999572.2999599

[56] IRTT (Isochronous Round-Trip Tester). [Online]. Available: https:
//github.com/heistp/irtt

[57] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” Internet Requests for Comments, RFC Editor, RFC
7540, 2015.

MIKEL IRAZABAL received the M.Sc. degree
in telecommunications engineering from the Uni-
versitat Politècnica de Catalunya, BarcelonaT-
ech (UPC), in 2011. He is currently pursuing
the Ph.D. degree with the Department of Net-
work Engineering, UPC. He participated as an
Early Stage Researcher (ESR) in the European
funded Project Application-Aware User-Centric
Programmable Architectures for 5G multi-tenant
networks (5G-AuRA) and an Innovative Training

Network (ITN) of the Marie Skłodowska-Curie Actions (MSCA). His main
research interests include the areas of low-latency wireless communications
and programmable wireless communication systems.

ELENA LOPEZ-AGUILERA received the M.Sc.
and the Ph.D. degrees in telecommunications
engineering from the Universitat Politècnica de
Catalunya (UPC), in 2001 and 2008, respectively.
She is currently an Associate Professor and a
member with the Wireless Networks Group, Net-
works Engineering Dept., UPC. She has published
papers in journals and conferences in the area of
wireless communications and has been involved
in projects with public and private funding. Her

main research interests include the study of IoT enabling technologies and
5G networks. Her experience comprises QoS, radio resource management,
location mechanisms, and wake-up radio systems.

ILKER DEMIRKOL received the B.Sc., M.Sc.,
and Ph.D. degrees in Computer Engineering from
Bogazici University, Istanbul, Turkey. He is cur-
rently an Assoc. Prof. in Dept. of Mining, In-
dustrial and ICT Engineering with the Universi-
tat Politecnica de Catalunya, where he works on
wireless networks and wake-up radio systems. His
research targets communication protocol develop-
ment for the aforementioned networks, along with
performance evaluation and optimization of such

systems. He was a recipient of the 2010 Best Mentor Award from the
Electrical and Computer Engineering Department, University of Rochester,
NY.

ROBERT SCHMIDT obtained a diploma with
distinction in Information Systems Engineering
from Dresden University of Technology, Germany,
and a diploma in Engineering from Ecole Centrale
Paris/CentraleSupélec, France, in 2017. He cur-
rently pursues a Ph.D. in communications within
the Communication Systems Department of Eure-
com, France. Robert is involved in collaborative
research projects in the context of the EU H2020
framework programme and an active contributor

to the OpenAirInterface and Mosaic5G projects. His main research interests
include 4G and 5G wireless cellular networks, heterogeneous software-
defined (radio access) networks, network slicing and MAC layer scheduling.

NAVID NIKAEIN is a Professor in Communica-
tion System Department at Eurecom. He received
his Ph.D. degree in communication systems from
the Swiss Federal Institute of Technology EPFL
in 2003. Broadly, his research contributions are in
the areas of experimental 4G-5G system research
related to radio access, edge, and core networks
with a blend of communication, computing, and
data analysis with a particular focus on industry-
driven use-cases. He is a board member of Ope-

nAirInterface.org software alliance as well as the founder of the Mosaic-
5G.io initiative whose goal is to provide software-based 4G/5G service
delivery platforms.

VOLUME 4, 2016 23

