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Abstract

Variational inference techniques based on in-
ducing variables provide an elegant framework
for scalable posterior estimation in Gaussian
process (gp) models. Besides enabling scalab-
ility, one of their main advantages over sparse
approximations using direct marginal likeli-
hood maximization is that they provide a
robust alternative for point estimation of the
inducing inputs, i.e. the location of the in-
ducing variables. In this work we challenge
the common wisdom that optimizing the in-
ducing inputs in the variational framework
yields optimal performance. We show that,
by revisiting old model approximations such
as the fully-independent training conditionals
endowed with powerful sampling-based infer-
ence methods, treating both inducing loca-
tions and gp hyper-parameters in a Bayesian
way can improve performance significantly.
Based on stochastic gradient Hamiltonian
Monte Carlo, we develop a fully Bayesian
approach to scalable gp and deep gp mod-
els, and demonstrate its state-of-the-art per-
formance through an extensive experimental
campaign across several regression and classi-
fication problems.

1 INTRODUCTION

Bayesian kernel machines based on Gaussian processes
(gps) combine the modeling flexibility of kernel meth-
ods with the ability to carry out sound quantification
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of uncertainty (Rasmussen and Williams, 2006). Mod-
eling and inference with gps have evolved considerably
over the last few years with key contributions in the
direction of scalability to virtually any number of data-
points and generality within automatic differentiation
frameworks (Matthews et al., 2017; Krauth et al., 2017).
This has been possible thanks to the combination of
stochastic variational inference techniques with repres-
entations based on inducing variables (Titsias, 2009a;
Lázaro-Gredilla and Figueiras-Vidal, 2009; Hensman
et al., 2013), random features (Rahimi and Recht, 2008;
Cutajar et al., 2017; Gal and Ghahramani, 2016), and
structured approximations (Wilson and Nickisch, 2015;
Wilson et al., 2016b). These advancements have now
made gps attractive to a variety of applications and
likelihoods (Matthews et al., 2017; van der Wilk et al.,
2017; Bonilla et al., 2019).

In this work, we focus on the variationally sparse gp
framework originally formulated by Titsias (2009a) and
later developed by Hensman et al. (2013, 2015a) to scale
up to large datasets via stochastic optimization. In
these formulations, the gp prior is augmented with
inducing variables (drawn from the same prior) and
their posterior is approximated and estimated via vari-
ational inference. In contrast, the location of the in-
ducing variables, which we refer to as the inducing
inputs, are simply optimized along with covariance
hyper-parameters. In line with earlier evidence that
Bayesian treatments of gps are beneficial (Neal, 1997;
Barber and Williams, 1997; Murray and Adams, 2010;
Filippone and Girolami, 2014), posterior inference of
the inducing variables jointly with covariance hyper-
parameters has been shown to improve performance
(Hensman et al., 2015b).

Despite these significant insights with regards to the
benefits of full Bayesian inference over latent variables
in gp models, the common practice is to optimize
the inducing inputs, even in very recent gp develop-
ments (Havasi et al., 2018; Shi et al., 2020; Giraldo
and Álvarez, 2019). In fact, the original work of Tit-
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Table 1: A summary of previous works on inference methods for gps. θ, u, Z
refer to the gp hyper-parameters, inducing variables and inducing inputs,
respectively. (7) indicates that variables are optimized.

Inference

Model θ u Z Reference

mcmc-gp mcmc - - Neal (1997); Barber and Williams (1997)
( ) svgp 7 vb 7 Hensman et al. (2015a)
( ) fitc-svgp 7 vb (heterosk.) 7 Titsias (2009a)
( ) sghmc-dgp 7 mcmc 7 Havasi et al. (2018)
( ) ipvi-dgp 7 ip 7 Yu et al. (2019)
( ) mcmc-svgp mcmc mcmc 7 Hensman et al. (2015b)

( ) bsgp mcmc mcmc mcmc This work

zi

RBF kernel k(x, zi)
with fixed λ, σ

zi

Distribution on k(x, zi)
when sampling {λ, σ}

zi

Distribution on k(x, zi)
when sampling {Z}

zi

Distribution on k(x, zi)
when sampling {Z, λ, σ}

Figure 1: Representation of the in-
duced posterior distribution on the cov-
ariance function at location x.

sias (2009a) advocates for a treatment of the inducing
inputs as variational parameters to avoid overfitting.
Furthermore, later work concludes that point estima-
tion of the inducing inputs through optimization of the
variational objective is an ‘optimal’ treatment (Hens-
man et al., 2015b, §3). As we will see in § 2.1, the
justification for inducing-input optimization in Hens-
man et al. (2015b) relies on being able to optimize both
the prior and the posterior, and therefore, contradicts
the fundamental principles of Bayesian inference. We
summarize previous works on inference methods for
gps in Table 1, which we will use for comparison in
our experiments.

Thus, we revisit the role of the inducing inputs in gp
models and their treatment as variational parameters
or even hyper-parameters. Given their potential high
dimensionality and that the typical number of inducing
variables goes beyond hundreds/thousands (Shi et al.,
2020), we argue that they should be treated simply
as model variables and, therefore, having priors and
carrying out efficient posterior inference over them is
an important—although challenging—problem. An
illustration of the richer modeling capabilities offered
by treating inducing inputs in a Bayesian fashion is
given in Fig. 1.

Contributions. Firstly, we challenge the common
wisdom that optimizing the inducing inputs in the vari-
ational framework yields optimal performance. We
show that, by revisiting old model approximations such
as the fully independent training conditionals (fitc;
see Quiñonero-Candela and Rasmussen, 2005) endowed
with powerful sampling-based inference methods, treat-
ing both inducing locations and gp hyper-parameters
in a Bayesian way can improve performance signific-
antly. We describe the conceptual justification and
the mathematical details of our general formulation in
§ 2 and § 3. We then demonstrate that our approach
yields state-of-the-art performance across a wide range
of competitive benchmark methods, large-scale datasets
and a variety of gp and deep gp models (§ 4).

2 BAYESIAN SPARSE GAUSSIAN
PROCESSES

We are interested in supervised learning problems with
N input-label training pairs {X,y} def= {(xi, yi)}Ni=1 ,
where we consider a conditional likelihood p(y | f) and
f is drawn from a zero-mean gp prior with covariance
function k(x,x′;θ) with hyper-parameters θ. Thus, we
have that p(f) = N (0,Kxx|θ), where Kxx|θ is the N ×
N covariance matrix obtained by evaluating k(xi,xj ;θ)
over all input pairs {xi,xj}. Inference in these types of
models generally involves the costly O(N3) operations
to compute the inverse and log-determinant of the
covariance matrix Kxx|θ.

Full joint distribution of sparse approxima-
tions. Sparse gps are a family of approximate mod-
els that address the scalability issue by introducing
a set of M inducing variables u = (u1, . . . , uM ) at
corresponding inducing inputs Z = {z1, . . . , zM} such
that ui = f(zi) (see, e.g., Quiñonero-Candela and
Rasmussen, 2005). These inducing variables are as-
sumed to be drawn from the same gp as the original
process, yielding the joint prior p(f ,u) = p(u)p(f |u).
In the spirit of Bayesian modeling, any uncertainty
in the covariance should be accounted for. Thinking
of gp hyper-parameters and inducing inputs as para-
meters of the covariance function, a distribution over
these induces a distribution over the covariance func-
tion, which enriches the modeling capabilities of these
models (see, e.g., Jang et al. (2017)). We consider a
general formulation where we place priors pψ(θ) over
covariance hyper-parameters and pξ(Z) over inducing
inputs with hyper-parameters ψ, ξ,

p(θ,Z,u, f ,y |X) = (1)
= pψ(θ)pξ(Z)p(u |Z,θ)p(f |u,X,Z,θ)p(y | f),

where p(u |Z,θ) = N (0,Kzz|θ), p(f |u,X,Z,θ) =
N (Kxz|θK−1

zz|θu,Kxx|θ − Kxz|θK−1
zz|θK

>
xz|θ). The

matrices Kzz|θ,Kxz|θ denote the covariance matrices
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computed between points in Z and {X,Z}, respect-
ively. We assume a factorized likelihood p(y | f) =∏N
n=1 p(yn | fn) and make no assumptions about the

other distributions. In this general formulation, ap-
proaches that do not consider priors over covariance
hyper-parameters or inducing inputs correspond to
improper uniform priors in Eq. 1.

2.1 Scalable inference frameworks for GPs

Let Ψ def= {u,Z,θ} be the variables whose posterior
we wish to infer. Our main object of interest is
the log joint marginal obtained by integrating out
the latent variables f in Eq. 1, i.e., log p(y,Ψ |X) =
log
∫
f p(y | f)p(f |Ψ,X)df + log p(Ψ). In particular, we

are interested in discussing approximations to this
that decompose over observations, allowing the use
of stochastic optimization techniques to scale up to
large datasets. In the literature of sparse gps (see, e.g.,
Bauer et al., 2016; Bui et al., 2017), two of the most
influential methods for carrying out inference on such
models are based on the variational free energy (vfe)
framework (Titsias, 2009a) and the fully independent
training conditional (fitc) framework (Snelson and
Ghahramani, 2006).

VFE approximations. The key innovation in Tit-
sias (2009a) is the definition of the approximate pos-
terior q(f ,u) def= q(u)p(f |Ψ,X), where q(u) is the vari-
ational posterior, which yields the evidence lower bound
(elbo)

p(y |X,Z,θ) ≥ (2)

− kl [q(u) ‖ p(u |Z,θ)] + Eq(f ,u) log p(y | f) def= Lelbo .

We note that this approach does not incorporate priors
over inducing inputs or hyper-parameters. Inference
involves constraining q(u) to a parametric form and
finding its parameters to optimize the elbo. Titsias
(2009a) correctly argues that in the regression setting
the variational approach to inducing variable approx-
imations should be more robust to overfitting than a
direct marginal likelihood maximization approach of
traditional approximate models such as those described
in Quiñonero-Candela and Rasmussen (2005). Indeed,
if inducing inputs Z are optimized then the resulting
elbo provides an additional regularization term (see
Titsias, 2009a, §3 for details). However, as we shall see
later, the benefits of being Bayesian about the inducing
inputs and estimating their posterior distribution can
be superior to those obtained by this regularization.

Restricting the form of q(u) is suboptimal, and Hens-
man et al. (2015b) proposes to sample from the optimal
posterior approximation instead. By applying Jensen’s
inequality to bound the log joint marginal we obtain

the following formulation,

log p(y,Ψ |X) ≥ (3)

Ep(f |Ψ,X) log p(y | f) + log p(Ψ) def= log p̃vfe(y,Ψ |X).

This is the same expression derived in Hensman et al.
(2015b), although following a different derivation show-
ing that p̃vfe indeed yields the optimal distribution
under the vfe framework of Eq. 2. However, Hens-
man et al. (2015b) argues that a Bayesian treatment of
inducing inputs is unnecessary and concludes that the
optimal prior is p(Z) = q(Z) = δ(Z− Ẑ), where δ(·) is
Dirac’s delta function and Ẑ is the set of inducing in-
puts that maximizes the elbo (Hensman et al., 2015b,
§3). We find such a justification flawed as it contra-
dicts the fundamental principles of Bayesian inference.
Indeed, the derivation by Hensman et al. (2015b) relies
on minimizing both sides of the KL term in Eq. 2, al-
lowing for a ‘free-form’ optimization of the prior, which
ultimately negates the necessity of all prior choices and
defeats the purpose of a Bayesian treatment.

FITC approximations. As an alternative, we
can approximate the log joint of Eq. 1 by im-
posing independence in the conditional distribu-
tion (see Quiñonero-Candela and Rasmussen, 2005,
for details), i.e., parameterizing p(f |Ψ,X) =
N
(
Kxz|θK−1

zz|θu,diag
[
Kxx|θ −Kxz|θK−1

zz|θK
>
xz|θ

])
,

log p(y,Ψ |X) ≈∑N

n=1
logEp(fn |Ψ,X) [p(yn | fn)] + log p(Ψ)︸ ︷︷ ︸

def= log p̃fitc(y,Ψ |X)

. (4)

This same formulation of the fitc objective can be
also been obtain by modifying the likelihood or the
prior rather then the conditional distribution (Snelson
and Ghahramani, 2006; Titsias, 2009a; Bauer et al.,
2016).

We now see that, when considering i.i.d. conditional like-
lihoods, both approximations, log p̃VFE and log p̃FITC,
yield objectives that decompose on the observations,
enabling scalable inference methods. In particular, we
aim to sample from the posterior over all the latent vari-
ables using scalable approaches such as stochastic gradi-
ent Hamiltonian Monte Carlo (sghmc; Chen et al.,
2014). The main question is what approach should
be preferred and how they relate to their optimization
counterparts.

2.2 Sampling with VFE or FITC?

We will show in § 4 that our proposal that samples
from the posterior according to Eq. 4 consistently out-
performs that in Eq. 3. To understand why the fitc
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objective makes sense we need to go back to the ori-
ginal work of Titsias (2009a,b) and the seminal work
of Quiñonero-Candela and Rasmussen (2005). Indeed,
Titsias (2009b) shows that, in the standard regression
case with homoskedastic observation noise, vfe yields
exactly the same predictive posterior as the projec-
ted process (pp) approximation (Seeger et al., 2003),
which is referred to as the deterministic training condi-
tional (dtc) approximation. Despite this equivalence,
as highlighted in Titsias (2009a), the main difference
is that the vfe framework provides a more robust
approach to hyper-parameter estimation as the result-
ing elbo corresponds to a regularized marginal likeli-
hood of the dtc approach. Nevertheless, the dtc/pp,
and consequently the vfe, predictive distribution has
been shown to be less accurate than the fitc ap-
proximation (Titsias, 2009a; Quiñonero-Candela and
Rasmussen, 2005; Snelson, 2007). Effectively, as de-
scribed by Quiñonero-Candela and Rasmussen (2005),
the vfe’s solution (which is the same as dtc’s) can be
understood as considering a deterministic conditional
prior p(f |u), i.e. a conditional prior with zero variance.

Consequently, the main reason for the superior perform-
ance of vfe in earlier approaches, despite providing
a less accurate predictive posterior than fitc’s, was
that inducing input estimation was less prone to over-
fitting due to the use of the variational objective, which
provided an extra regularization term. However, by
placing priors over the inducing inputs Z as well as
over covariance hyper-parameters (as we propose in this
work), regularization over these parameters becomes
unnecessary. For this reason, we expect the log of the
expectation in Eq. 4 to provide more accurate results
than the expectation of the log in Eq. 3. Finally, it is
important to point out that a variational formulation
equivalent to fitc has also been proposed (see Titsias,
2009b, App. C). Our experimental evaluation, also as-
sesses the benefits of our method with respect to that
approach. Full details of this analysis can be found in
the supplement.

3 PRACTICAL CONSIDERATIONS
AND EXTENSION TO DEEP GPs

In this section we describe practical considerations in
our Bayesian sparse Gaussian process (bsgp) frame-
work, including inference techniques, prior choices and
extensions to deep Gaussian processes. Recalling that
Ψ = {θ,u,Z} represents the set of variables to infer
and, using Eq. 4, their posterior can be obtained as

log p(Ψ |y,X) = logEp(f |Ψ,X)p(y | f) + log p(u |θ,Z)+
log pξ(Z) + log pψ(θ)− logC. (5)
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Figure 2: Illustration of a binary classification task on the
banana dataset. Left: the decision bounds of the average
classifier. Right: the posterior marginals of the inducing
inputs.

We use Markov chain Monte Carlo (mcmc) techniques,
in particular stochastic gradient Hamiltonian Monte
Carlo (sghmc) (Chen et al., 2014; Havasi et al., 2018),
to obtain samples from the intractable p(Ψ |y,X). Un-
like Hamiltonian Monte Carlo (hmc), which requires
computing the exact gradient ∇ log p(Ψ |y,X) and the
exact unnormalized posterior to evaluate the accept-
ance (Neal, 2010), sghmc obtains samples from the
posterior with stochastic gradients and without evalu-
ating the Metropolis ratio (see supplement for details).
With a factorized likelihood p(y|f) and an energy func-
tion U(Ψ) = − log p(Ψ |y,X)+logC, we sample Eq. 5
over minibatches of data.

3.1 Choosing priors

Next, we discuss prior choices for the inducing inputs
and covariance hyper-parameters. The inducing inputs
Z support the sparse Gaussian process interpolation,
which motivates matching the inducing prior to the
data distribution p(X). We begin by proposing a simple
Normal (N) prior pN (Z) =

∏M
j=1N (zj |0, I), which

matches the mean and variance of the normalized data
distribution, and favors inducing inputs toward the
baricenter of the data inputs.

We also explore two priors based on point processes,
which consider distributions over point sets (González
et al., 2016). Point processes can induce repulsive ef-
fects penalizing configurations where inducing points
are clumped together. The determinantal point process
(dpp), defined through pD(Z) ∝ det Kzz|θ , relates the
probability of inducing inputs to the volume of space
spanned by the covariance (Lavancier et al., 2015).
dpp is a repulsive point process, which gives higher
probabilities to input diversity, controlled by the hyper-
parameters ξ ≡ θ. We then consider the Strauss
process (see e.g. Daley and Vere-Jones, 2003; Strauss,
1975), pS(Z) ∝ λMγ

∑
z,z′∈Z

δ(|z−z′|<r)
, where λ > 0 is
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Figure 3: Left: analysis of different priors on inducing locations for bsgp on the UCI benchmarks: determinantal
point process (dpp), Strauss process, uniform. Right: ablation study on the effect of performing posterior inference on
different sets of variables. From svgp, where the posterior is constrained to be Gaussian and the remaining parameters
are point-estimated, to our proposal bsgp, where we infer a free-form posterior for all Ψ = {u, θ, Z}. We refer the reader
to Table 1 for details on the methods (colors are matched).

the intensity, and 0 < γ ≤ 1 is the repulsion coefficient
which decays the prior as a function of the number of in-
put pairs that are within distance r. The Strauss prior
(S) tends to maintain the minimum distance between
inducing inputs, parameterized by ξ = (λ, γ, r). We
finally consider an uninformative uniform prior (U),
log pU (Z) = 0, which effectively provides no contribu-
tion to the evaluation of the posterior. To gain insights
on the choice of these priors, we set up a comparative
analysis on the banana dataset (Fig. 2). We observe
that the posterior densities on the inducing inputs are
multimodal and highly non-Gaussian, further confirm-
ing the necessity of free-form inference. Both Strauss
and dpp-based priors encourage configurations where
the inducing inputs are evenly spread. The Normal
and Uniform priors, instead, focus exclusively on align-
ing the inducing inputs in a way that is sensible to
accurately model the intricate classification boundary
between the classes. This insight is confirmed by our
the extensive experimental validation in § 4.

Prior on covariance hyper-parameters. Choos-
ing priors on the hyper-parameters has been discussed
in previous works on Bayesian inference for gps (see
e.g. Filippone and Girolami, 2014). Throughout this
paper, we use the RBF covariance with automatic rel-
evance determination (ard), marginal variance σ and
independent lengthscales λi per feature (Mackay, 1994).
On these two hyper-parameters we place a lognormal
prior with unit variance and means equal to 1 and 0.05
for λ and σ, respectively.

3.2 Extension to deep Gaussian processes

bsgp can be easily extended to deep Gaussian process
(dgp) models (Damianou and Lawrence, 2013), where
we compose L sparse gp layers. Each layer is associated

with a set of inducing inputs Z`, inducing variables u`
and hyper-parameters θ` (Salimbeni and Deisenroth,
2017). In our notation Ψ = {Ψ`}L`=1 = {Z`,u`,θ`}L`=`.
The joint distribution is

p (y,Ψ) = p (y | fL)
∏L

`=1
p (f ` | f `−1,Ψ`) p(Ψ`), (6)

where we omit dependency on X. In contrast to the
‘shallow’ joint distribution in Eq. 1 and posterior in
Eq. 5, the ‘hidden’ layers f ` are marginalized with
sampling and propagated up to the final layer L
(Salimbeni and Deisenroth, 2017), which can be mar-
ginalized exactly if the likelihood is Gaussian or by
quadrature (Hensman et al., 2015a). Full details and
derivations for this more general case can be found in
the supplement.

4 EXPERIMENTS

In this section, we provide empirical evidence that our
bsgp outperforms previous inference/optimization ap-
proaches on shallow and deep gps. We use eight of
the classic UCI benchmark datasets with standard-
ized features and split into eight folds with 0.8/0.2
train/test ratio. We train the competing models for
10,000 iterations with adam (Kingma and Ba, 2015),
step size of 0.01 and a minibatch of 1,000 samples. The
sampling methods are evaluated based on 256 samples
collected after optimization. Following previous works
(e.g. Rasmussen and Williams, 2006; Havasi et al., 2018;
Yu et al., 2019), in order to evaluate and compare the
full predictive posteriors we compute the mean negat-
ive loglikelihood (mnll) on the test set (rmses are
reported in the supplement for reference).
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4.1 Prior analysis and ablation study

We start our empirical analysis with a comparative
evaluation of the priors on inducing inputs described
in § 3.1: dpp, Normal, Strauss and Uniform. We run
our inference procedure on a shallow gp with 100 in-
ducing points and we report the results in Fig. 3 (left).
The results show that the Normal prior consistently
outperforms the others. The uniform and Strauss pri-
ors behave similarly, while the dpp prior is consistently
among the worst. We argue that the repulsive nature of
the point process priors (dpp, particularly), although
grounded on the intuition of covering the input space
more evenly, constrains the smoothness of the func-
tions up to the point that they become too simple to
accurately model the data. With this, we select the
Gaussian prior for the remaining experiments.

We now study the benefits of a Bayesian treatment
of the inducing variables, inducing inputs, and hyper-
parameters with an ablation study. Using the same
setup as before, we start with the baseline of svgp
(Hensman et al., 2013, 2015a), where the posterior on
u is approximated using a Gaussian and Z,θ are op-
timized. We then incrementally add parameters to the
list of variables that are sampled rather than optim-
ized: only u (equivalent to sghmc-dgp, (Havasi et al.,
2018)), then {u,θ} and finally, our proposal, {u,θ,Z}.
This experiment is repeated for different number of
inducing points (10, 50 and 100). Fig. 3 (right) re-
ports a summary of these results (full comparison in
the supplement). This plot shows that each time we
carry out free-form posterior inference on a bigger set
of parameters rather than optimization, performance
is enhanced, and our proposal outperforms previous
approaches.

4.2 Choosing the objective: VFE vs FITC

In § 2 we discussed the role of the marginal and the
variational free energy (vfe) objective when used for

optimization and for sampling. In Fig. 4 we support the
discussion with empirical results. The baseline is svgp,
for which the inference is approximate (Gaussian) and
performed on the variational objective. Titsias (2009b,
App. C) also considers a vfe formulation of fitc which
corresponds to a gp regression with heteroskedastic
noise variance. The likelihood needs to be augmen-
ted to handle heteroskedasticity, but inference can be
carried out exactly on the variational objective. For
these two methods, {θ,Z} are optimized. We also test
mcmc-svgp, the model proposed by Hensman et al.
(2015b), implemented in GPflow (Matthews et al., 2017)
with the same suggested experimental setup. This ex-
periment indicates that having a free-form posterior on
u,θ sampled from the variational objective does not
dramatically improve on the exact Gaussian approxim-
ation of the fitc model, with both of them delivering
superior performance with respect to svgp. In the
same setup of Hensman et al. (2015b) (u,θ sampled
and Z optimized), we look at the effect of swapping
the expectation of log with the log of expectation (which
effectively means moving from the vfe objective to
fitc); on the contrary, here we observe a significant
increase in performance when using the latter, further
confirming the discussion of the objectives in § 2.2.
We finally conclude this section with an experiment
where we try both objectives on our proposed bsgp
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Figure 6: bsgp with the two different objectives for the
sampler: fitc ( ) and vfe ( ).



Simone Rossi, Markus Heinonen, Edwin V. Bonilla, Zheyang Shen, Maurizio Filippone

2.5 3 3.5 4

DGP 1
DGP 2
DGP 3
DGP 4
DGP 5
DGP 1
DGP 2
DGP 3
DGP 4
DGP 5
DGP 1
DGP 2
DGP 3
DGP 4
DGP 5

SVGP

Boston

2.9 3 3.1 3.2

Concrete

1 1.5

Energy

−1.4 −1.3 −1.2 −1.1

Kin8NM

−8 −7 −6 −5

DGP 1
DGP 2
DGP 3
DGP 4
DGP 5
DGP 1
DGP 2
DGP 3
DGP 4
DGP 5
DGP 1
DGP 2
DGP 3
DGP 4
DGP 5

SVGP

Test MNLL

Naval

2.65 2.7 2.75 2.8

Test MNLL

Powerplant

2.6 2.8

Test MNLL

Protein

0 2

Test MNLL

Yacht

BSGP (This work)
IPVI-DGP
(Yu et al., 2019)
SGHMC-DGP
(Havasi et al., 2018)
SVGP
(Hensman et al., 2015a)

1st 5th 10th 15th

Rank

Rank Summary

Figure 7: Test mnll on UCI regression benchmarks (the error bars represent the 95%CI). The lower mnll (i.e. to the
left), the better. The number on the right of the method’s name refers to the depth of the dgp. Bottom right: Rank
summary of all methods.

and also different depths of the dgp (Fig. 6). Using
the Wilcoxon signed-rank test (Wilcoxon, 1945), we
test the null hypothesis of vfe objective being better
than the proposed fitc. Fig. 5 shows that, for the
majority of the cases, this can be rejected (p < 0.05).

4.3 Deep Gaussian processes on UCI
benchmarks

We now report results on dgps. We compare against
two current state-of-the-art deep gp methods, sghmc-
dgp (Havasi et al., 2018) and ipvi-dgp (Yu et al.,
2019), and against the shallow svgp baseline (Hens-
man et al., 2015a). For a faithful comparison with
ipvi-dgp we follow the recommended parameter con-
figurations1. Using a standard setup, all models share

1We use the ipvi-dgp implementation available at
github.com/HeroKillerEver/ipvi-dgp
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Figure 8: Comparison of test mnll as function of train-
ing time. The dashed line on the right hand side plot
corresponds to svgp with M = 1000 inducing points.

M = 100 inducing points, the same RBF covariance
with ard and, for dgp, the same hidden dimensions
(equal to the input dimension D). Fig. 7 shows the pre-
dictive test mnll mean and 95% CI over the different
folds over the UCI datasets, and also includes rank sum-
maries. The proposed method clearly outperforms com-
peting deep and shallow gps. The improvements are
particularly evident on naval, a dataset known to be
challenging to improve upon. Furthermore, the deeper
models perform consistently better or on par with the
shallow version, without incurring in any measurable
overfitting even on small or medium sized datasets (see
boston and yacht, for example).

Computational efficiency. Similarly to the baseline
algorithms, each training iteration of bsgp involves the
computation of the inverse covariance with complexity
O(M3). In Fig. 8 we compare the three main competit-
ors with bsgp trained for a fixed training time budget
of one hour for a shallow gp and a 2-layer dgp. The
experiment is repeated four times on the same fold and
the results are then averaged. Each run is performed
on an isolated instance in a cloud computing platform
with 8 CPU cores and 8 GB of reserved memory (Pace
et al., 2017). Inference on the test set is performed
every 250 iterations. This shows that bsgp converges
considerably faster in wall-clock time, even though a
single gradient step requires slightly more time.

Computing the predictive distribution, on the other
hand, is more challenging as it requires recomputing
the covariance matrices Kxz,Kzz for each posterior

https://github.com/HeroKillerEver/ipvi-dgp
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sample {Z,θ}, for an overall complexity linear in the
number of posterior samples. This operation can be
easily parallelized and implemented on gpus but it
could question the practicality of using a more involved
inference method. In particular, it is relevant to study
whether svgp could deliver superior performance with
a higher number of inducing points for less computa-
tional overhead. In Fig. 9 we study this trade-off on the
biggest dataset considered (Protein): while it is evident
that predictions with bsgp take more time (assuming
a serial computation of the covariance matrices), it is
also clear that the number of inducing points svgp
requires to (even marginally) improve upon bsgp is
significantly larger (up to 20 times).

Structured inducing points. Finally, we run one
last comparison with methods which exploit structure
in the inputs. These models allow one to scale the
number of inducing variables while maintaining compu-
tational tractability. Kernel Interpolation for Scalable
Structured Gaussian Processes (kiss-gp) (Wilson and
Nickisch, 2015) proposes to place the inducing inputs
on a fixed and equally-spaced grid and to exploit Toep-
litz/Kronecker structures with an iterative conjugate
gradient method to further enhance scalability. Des-
pite these benefits, kiss-gp is known to fall short with
high-dimensional data (D > 4). This shortcoming
was later addressed with Deep Kernel Learning (dkl)
(Wilson et al., 2016a): using a deep neural network
dkl projects the data in a lower dimensional manifold
by learning an useful feature representation, which is
then used as input to a kiss-gp. In Fig. 10 we have the
comparison of bsgp with these two methods. kiss-gp
could only run on Powerplant, with a 4-dimensional
grid of size 10 (for a total of 10,000 inducing points).
Here, bsgp delivers better performance despite having
less inducing points. For dkl we followed the sugges-
tion of Wilson et al. (2016a) to use a fully-connected
neural network with a [d− 1000− 1000− 500− 50− 2]
architecture as feature extractor and a grid size of 100
(for again a total of 10,000 inducing points). Training
is performed by alternating optimization of the neural
network weights and the kiss-gp parameters. Thanks
to the flexibility of the feature extractor, this configura-
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Figure 10: Comparison with structured inducing vari-
ables methods. kiss-gp could only run on the Powerplant
dataset (hence the 7 on Protein and Kin8NM).

tion is very competitive with our shallow bsgp, but it
yields lower performance compared to a 2-layer dgp.

4.4 Large scale classification

The airline dataset is a classic benchmark for large
scale classification. It collects delay information of all
commercial flights in USA during 2008, counting more
than 5 millions data points. The goal is to predict if a
flight will be delayed based on 8 features, namely month,
day of month, day of week, airtime, distance, arrival
time, departure time and age of the plane. We pre-
process the dataset following the guidelines provided
in (Hensman et al., 2015b; Wilson et al., 2016a).

After a burn-in phase of 10,000 iterations, we draw
200 samples with 1000 simulation steps in between.
We test on 100,000 randomly selected held-out points.
We fit three models with M = 100 inducing points.
Table 2 shows the predictive performance of three shal-
low GP models. The bsgp yields the best test error,
mnll, and test area under the curve (auc). We assess
the convergence of the predictive posterior by evalu-
ating the R̂-statistics (Gelman et al., 2004) over four
independent sghmc chains. This diagnostic yielded a
R̂ = 1.02 ± 0.045, which indicates good convergence.
We report further convergence analysis in the supple-
ment.

Table 2: airline dataset predictive test performance.

Model Error (↓) mnll (↓) auc (↑)
sghmc-gp 35.85% 0.646 0.671
svgp 31.26% 0.595 0.730
bsgp 30.46% 0.580 0.749

As a further large scale example, we use the higgs
dataset (Baldi et al., 2014), which has 11 millions data
points with 28 features. This dataset was created by
Monte Carlo simulations of particle dynamics in ac-
celerators to detect the Higgs boson. We select 90%
of the these points for training, while the rest is kept
for testing. Table 3 reports the final test performance,
showing that bsgp outperforms the competing meth-
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Table 3: higgs dataset predictive test performance.

Model Error (↓) mnll (↓) auc (↑)
sghmc-gp 35.39% 0.628 0.698
svgp 27.79% 0.544 0.796
bsgp 26.97% 0.530 0.808

ods. Interestingly, in both these large scale experiments,
sghmc-gp always falls back considerably w.r.t. bsgp
and even svgp. We argue that, with these large sized
datasets, the continuous alternation of optimization of
Z and θ and sampling of u used by the authors (called
Moving Window mcem, see Havasi et al. (2018) for
details) might have led to suboptimal solutions.

5 CONCLUSION & DISCUSSION

We have developed a fully Bayesian treatment of sparse
Gaussian process models that considers the inducing in-
puts, along with the inducing variables and covariance
hyper-parameters, as random variables, places suit-
able priors and carries out approximate inference over
them. Our approach, based on sghmc, investigated
two conventional priors (Gaussian and uniform) for
the inducing inputs as well as two point process based
priors (the Determinantal and the Strauss processes).

By challenging the standard belief of most previous
work on sparse gp inference that assumes the indu-
cing inputs can be estimated point-wisely, we have
developed a state-of-the-art inference method and have
demonstrated its outstanding performance on both
accuracy and running time on regression and classifica-
tion problems. We hope this work can have an impact
similar (or better) to other works in machine learning
that have adopted more elaborate Bayesian machinery
(e.g. Wallach et al., 2009) for long-standing inference
problems in commonly used probabilistic models.

Finally, we believe it is worth investigating further
more structured priors similar to those presented here
(e.g. exploring different hyper-parameter settings), in-
cluding a full joint treatment of inducing inputs and
their number, i.e. p(Z,M). We leave this for future
work. We are currently investigating ways to extend
bsgp to convolutional Gaussian process (van der Wilk
et al., 2017; Dutordoir et al., 2020; Blomqvist et al.,
2020).
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