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Abstract

Multicasting, where a base station (BS) wishes to convey the same message to several user equip-

ments (UEs), represents a common yet highly challenging wireless scenario. In fact, guaranteeing

decodability by the whole UE population proves to be a major performance bottleneck since the UEs

in poor channel conditions ultimately determine the achievable rate. To overcome this issue, two-phase

cooperative multicasting schemes, which use conventional multicasting in a first phase and leverage

device-to-device (D2D) communications in a second phase to effectively spread the message, have been

extensively studied. However, most works are limited either to the simple case of single-antenna BS or

to a specific channel state information at the transmitter (CSIT) setup. This paper proposes a general

two-phase framework that is applicable to the cases of perfect, statistical, and topological CSIT in the

presence of multiple antennas at the BS. The proposed method exploits the precoding capabilities at the

BS, which enable targeting specific UEs that can effectively serve as D2D relays towards the remaining

UEs, and maximize the multicast rate under some outage constraint. Numerical results show that our

schemes bring substantial gains over traditional single-phase multicasting and overcome the worst-UE

bottleneck behavior in all the considered CSIT configurations
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I. INTRODUCTION

Multicast services, where a base station (BS) needs to convey a common valuable message

to a set of user equipments (UEs), arise naturally in many wireless scenarios [3]–[8]. Notable

examples are wireless edge caching, where popular media are cached during off-peak hours

and subsequently streamed via multicasting [9], [10], and the broadcasting of mission-critical

messages in vehicular networks [11]. However, it is well known that multicasting over wireless

channels is hindered by the worst-user-kills-all effect, whereby the multicast capacity vanishes

as the number of UEs K increases for a fixed number of BS antennas [3], [4]. In fact, since

the message transmitted by the BS must be decoded by all the UEs, the multicast capacity is

limited by the UEs with the smallest fading gain and the latter tends to decrease with the system

dimension. In particular, for the case of i.i.d. Rayleigh fading channels, the multicast capacity

vanishes quickly as it scales inversely proportional to K [3].

To overcome this issue, different approaches have been considered in the literature (e.g.,

[3], [5]–[8], [12]–[18]), which can be roughly classified into three groups. In the first group, a

subset of UEs in good channel conditions is selected to be served, whereas the UEs in poor

channel conditions are neglected [12], [13]. However, not only does such an approach result

in limited network coverage, but it also implies solving a combinatorial problem to find the

best subset of UEs. The second group exploits multiple antennas at the transmitter and the

resulting channel hardening to mitigate the variance of the individual received signal power as

the number of UEs increases [3], [14]. However, such an approach is based on the assumption

of i.i.d. Rayleigh fading channels and requires that the number of BS antennas grows at least as

log(K). Lastly, the third group builds on the UE cooperation enabled by device-to-device (D2D)

links. Indeed, D2D communications hold the potential to counteract the performance limitations

of several emerging applications in fifth-generation (5G) wireless systems such as multicasting,

machine-to-machine communication, and cellular-offloading [19]–[23]. In the relevant case of

multicasting, D2D communications between the UEs can be leveraged to overcome the vanishing

behavior of the multicast capacity by dividing the total transmission time in two phases. Here,

conventional multicasting occurs only in the first phase, where the BS transmits at such a rate

that the common message is received by a subset of UEs in favorable channel conditions. Then,

these UEs act as opportunistic relays and cooperatively retransmit the message in the second

phase. This approach has been extensively studied in the literature under specific channel state
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information at the transmitter (CSIT) assumptions and by focusing on the simple case of single-

antenna transmitter [5]–[8], [15]–[18], as detailed next.

Theoretical analysis of two-phase cooperative multicasting can be found in [5]–[7], [15],

[18]. More specifically, [5] established the multicast capacity by using a two-phase cooperative

scheme for a simple network with i.i.d. Rayleigh fading channels. The multicast scaling was

analyzed in [6] for two different network models, where the multicast capacity was shown

to grow as log(log(K)) in the case of dense network (i.e., a scenario in which the number

of receivers increases over a fixed network area) with spatially i.i.d. channels. Recently, [18]

characterized the multicast scaling for a more general network topology (capturing the pathloss)

and showed that, with statistical CSIT, the average multicast rate increases as log(log(K)). A

similar analysis can be found in [7] for IEEE 802.16-based wireless metropolitan area networks.

Furthermore, [15] characterized the achievable multicast rate of an interactive scheme based on

full-duplex and non-orthogonal cooperation links. Another two-phase scheme was presented in

[8], which focused on minimizing the total power consumption while guaranteeing a certain

coverage under perfect CSIT. On the other hand, [16] considered a two-layer multicast message

structure with a high-priority, low-rate part and a low-priority, high-rate part, such that the UEs

who are able to decode the entire message assist the others by acting as opportunistic relays.

The time allocation between the two phases was investigated in [17], which showed that more

time should be dedicated to the second phase as the UEs move away from the BS. Finally, a

similar two-phase cooperative scheme with multiple antennas at the BS was proposed in [24] in

the context of broadcasting under perfect CSIT. By exploiting rate splitting, this scheme forms

a virtual common message to be multicast in the first phase and retransmitted via opportunistic

relaying in the second phase.

In summary, existing works have demonstrated the benefits of two-phase cooperative schemes

either for specific CSIT configurations or for the simple case of single-antenna BS. This motivates

us to study the two-phase cooperative multicasting by exploiting multiple antennas at the BS

under various CSIT configurations ranging from perfect CSIT to topological CSIT, where only

the map of the network area and the UE distribution are available at the BS.

A. Contribution

In this paper, we propose a general two-phase cooperative multicasting framework that lever-

ages both multi-antenna transmission at the BS and D2D communications between the UEs.
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In particular, we highlight how endowing the BS with multiple antennas radically transforms

the problem of cooperative multicasting. Indeed, the precoding capabilities at the BS introduce

additional degrees of freedom for spatial selectivity that, exploited together with the D2D links,

modify the nature and the performance of the two-phase schemes described in the previous

section. However, this implies the joint optimization of the precoding strategy at the BS and the

multicast rate, which is, at first glance, highly complex to tackle: to the best of our knowledge,

this is the first work that addresses such a scenario.

We consider a general system model (in terms of both channel model and network topology)

and explicitly optimize the precoding strategy at the BS and the multicast rate over the two phases.

More specifically, we propose several schemes to tackle different CSIT configurations, namely:

i) perfect CSIT, where the instantaneous channels are perfectly known; ii) statistical CSIT, where

only the long-term channel statistics are available; and iii) topological CSIT, where only the map

of the network area and the UE distribution are accessible. Note that statistical CSIT applies to

scenarios with a large number of UEs or limited feedback in frequency-division duplex mode,

while topological CSIT applies to scenarios where neither instantaneous nor statistical CSIT is

available and only the UE distribution across the network can be considered for the optimization

(see, e.g., [25]). In addition, following [18], we use the notion of target outage in the optimization

of the multicast service, by which the multicast rate is maximized while guaranteeing decodability

by most UEs up to the desired success level. In this way, we strategically avoid wasting resources

on a small amount of UEs with particularly unfavorable channel conditions [26]. Numerical

results show that the proposed schemes significantly outperform conventional single-phase multi-

antenna multicasting in all the considered CSIT configurations. Remarkably, they allow to

effectively overcome the vanishing behavior of the multicast rate and achieve an increasing

performance as the UE population grows large.

The contributions of this paper are summarized as follows:

• Assuming a general channel model and network topology, we propose a two-phase coop-

erative multicasting framework with multi-antenna transmission at the BS. We tackle the

joint optimization of the precoding strategy at the BS and the multicast rate subject to some

outage constraint. This framework is particularized to three different CSIT configurations,

i.e., perfect, statistical, and topological CSIT. An interesting feature of our algorithms is

to provide, as by-product, a selection of the UEs that are best positioned to serve as D2D

relays to the remaining UEs without the need for any explicit relay selection scheme.
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• For the case of perfect CSIT, we propose a low-complexity iterative algorithm that jointly

selects a subset of UEs to be served by the BS in the first phase and optimizes the multicast

rate while guaranteeing the desired success level. This algorithm, referred to as D2D-MAM,

is shown to converge to a locally optimal solution.

• For the case of statistical CSIT, we propose a low-complexity algorithm that relies on

long-term channel statistics without requiring costly instantaneous CSIT, which is a major

advantage in scenarios with a large number of UEs or limited feedback. For this algorithm,

referred to as D2D-SMAM, we study the scaling of the resulting multicast rate as a function

of the number of UEs and BS antennas and show that this is non-vanishing in the case of

dense network.

• For the case of topological CSIT, we propose an algorithm based on Monte Carlo sampling

that relies uniquely on the map of the network area and the probability density function (pdf)

of the UE locations. This approach is desirable in scenarios where neither instantaneous

nor statistical CSIT is available and only the UE distribution across the network can be

considered for the optimization. The proposed algorithm, referred to as D2D-TMAM, runs

the D2D-MAM algorithm on several sets of UE locations and channels generated according

to the UE distribution, and the outputs are averaged to obtain the actual precoding strategy

at the BS and multicast rate.

• We present a comprehensive numerical evaluation of the proposed schemes showing sub-

stantial gains compared to the reference single-phase multi-antenna multicasting in the three

different CSIT configurations.

B. Outline and Notation

The rest of the paper is organized as follows. Section II describes the system model. Section III

deals with the case of perfect CSIT and introduces the D2D-MAM algorithm. Section IV tackles

the case of statistical CSIT and presents the D2D-SMAM algorithm. Section V considers the case

of topological CSIT and proposes the D2D-TMAM algorithm. Then, Section VI provides numeri-

cal results assessing the performance of the proposed schemes in the various CSIT configurations.

Finally, Section VII summarizes our contributions and draws some concluding remarks.

Throughout the paper, scalars are denoted by italic letters, while (column) vectors and matrices

are denoted by boldface lowercase and uppercase letters, respectively. C represents the set of

complex numbers, whereas CN×M denotes the set of (N ×M)-dimensional complex matrices.
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Fig. 1: A BS equipped with M antennas multicasts a common message to a subset of UEs with a properly designed
precoding strategy in the first phase (solid lines). The UEs who successfully decode the message in the first phase
retransmit it in the second phase to the remaining UEs via D2D links (dashed lines).

(·)T, (·)H, and (·)∗ are the transpose, Hermitian transpose, and conjugate operators, respectively.

1 and 0 represent the all-one vector and the all-zero matrix, respectively, of proper dimensions.

The N -dimensional identity matrix is denoted by IN , whereas en indicates its nth column.

‖ · ‖ represents the Euclidean norm for vectors, whereas E[ · ] and and 1[ · ] are the expectation

operator and the indicator function, respectively. Furthermore, [a1, . . . , aN ] denotes horizontal

concatenation, whereas {a1, . . . , aN} or {an}n∈N denote the set of elements in the argument.

Lastly, X P→ X̄ denotes convergence in probability of the random variable X , whereas f(ε) ∼
ε→0

g(ε) means that limε→0
f(ε)
g(ε)

= 1.

II. SYSTEM MODEL

A. Two-Phase Cooperative Multicasting

We consider a wireless network where a BS equipped with M antennas aims at transmitting

a common valuable message to a set of single-antenna UEs K , {1, . . . , K}, where hk ∈ CM×1

denotes the downlink channel between the BS and UE k. The UEs are also connected to each

other via D2D links in half-duplex mode, where hjk ∈ C denotes the D2D channel between

UEs j and k. We adopt a dense network scenario, i.e., where the number of receivers increases

over a fixed network area, and we assume that K � M . For the sake of simplicity, we follow

[5], [6] and focus on a cooperative scheme divided into two phases of equal length. Such a

scheme is depicted in Fig. 1 and the two phases are described next.

1) First phase. The BS transmits the message x ∈ CM×1 at rate r, referred to as multicast
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rate, and with transmit covariance Γ , E[xxH], with tr(Γ) ≤ 1. The receive signal at UE k

in the first phase is given by

yk,1 ,
√
ξ0h

H
k x + nk ∈ C (1)

where ξ0 is the transmit power at the BS and, since we assume the additive white Gaussian

noise (AWGN) noise term nk to be distributed as CN (0, 1), it can be interpreted as the

transmit signal-to-noise-ratio (SNR) at the BS. The message is decoded by UE k if its

achievable rate in the first phase is greater than or equal to the multicast rate r, i.e., if

log2(1 + ξ0h
H
k Γhk) ≥ r. We define the subset of UEs whose achievable rate in the first

phase is at least r for a given transmit covariance as

U ,
{
k ∈ K : log2(1 + ξ0h

H
k Γhk) ≥ r

}
. (2)

2) Second phase. The UEs who were able to decode the message in the first phase jointly

retransmit the message in an isotropic fashion, thus acting as opportunistic relays.1 Hence,

the receive signal at UE k in the second phase is a non-coherent sum of the D2D transmit

signals and is given by

yk,2 =
∑
j∈U

√
ξjhjkxj + nk ∈ C, ∀k ∈ K \ U (3)

where ξj is the transmit power at UE j and can be interpreted as the transmit SNR at UE j

(cf. (1)); moreover, xj is the message transmitted by UE j, with E[|xj|2] = 1. The message

is successfully decoded by UE k if its achievable rate in the second phase is greater than

or equal to r, i.e., if log2

(
1 + |

∑
j∈U
√
ξjhjk|2

)
≥ r.

B. Single-Phase Multicasting

As a special case of the above, we describe a single-phase multicasting scheme, which we

refer to as baseline scheme. This will serve as a means to assess the benefits brought by adding a

second phase of D2D communications to traditional multi-antenna multicasting. In this scheme,

the BS simply transmits the common message aiming at reaching all the UEs. The receive signal

at UE k is the same as (1) and the multicast capacity is given by (see [3])

C(H) , max
Γ�0 : tr(Γ)≤1

min
k∈K

log2(1 + ξ0h
H
k Γhk) (4)

= log2

(
1 + ξ0 max

Γ�0 : tr(Γ)≤1
min
k∈K

hH
k Γhk

)
(5)

1We assume that the UEs retransmit the message with fixed power and do not perform any power control in the second phase.
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where H = [h1, . . . ,hK ] ∈ CM×K . Although a closed-form expression of the multicast capacity

is not available, C(H) is convex in Γ and, therefore, it can be computed via semidefinite

programming. The main drawback of this single-phase scheme is that the multicast capacity is

limited by the UE with the worst channel conditions. In particular, for the case of i.i.d. Rayleigh

fading channels and when the number of BS antennas M is fixed, the multicast capacity scales

as K−1/M [3].

C. Channel Model

Following the millimeter wave (mmWave) one-ring channel model (see, e.g., [27] and refer-

ences therein), let us express the direct channel to UE k as

hk , ηk
√
γkak ∈ CM×1 (6)

where ηk ∼ CN (0, 1) is the small-scale fading coefficient, γk is the average channel power

gain, and ak ∈ CM×1 is the array response vector at the BS for the steering angle θk, with

||ak||2 = M . Here, we have γk = d−αk in case of line-of-sight (LoS) conditions and γk = d−βk

in case of non-line-of-sight (NLoS) conditions, where dk denotes the distance between the BS

and UE k and α (resp. β) is the LoS (resp. NLoS) pathloss exponent. For simplicity, we assume

that the BS is equipped with a uniform linear array (ULA), such that

ak = [1, e−j2πδ cos(θk), . . . , e−j2πδ(M−1) cos(θk)]T ∈ CM×1 (7)

where δ = 0.5 is the ratio between the antenna spacing and the signal wavelength. On the other

hand, the D2D channel between UEs k and j is represented as

hjk , ηjk
√
γjk ∈ C (8)

where ηkj ∼ CN (0, 1) is the small-scale fading coefficient and γjk is the average channel power

gain. Here, we have γjk = d−αkj in case of LoS conditions and γjk = d−βkj in case of NLoS

conditions, where djk denotes the distance between UEs k and j (cf. (6)).

D. CSIT Configurations

In this paper, we consider several configurations of CSIT that may be available at the BS

under different application scenarios.

i) Perfect CSIT [Section III]. The knowledge of both the direct channels, i.e., {hk}k∈K, and

the D2D channels, i.e., {hjk}k,j∈K, is assumed.

ii) Statistical CSIT [Section IV]. The knowledge of the UE locations is assumed. From this
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information, the BS can extract long-term statistics such as the average channel power gains

of both the direct channels, i.e., {γk}k∈K, and the D2D channels, i.e., {γjk}k,j∈K, together

with the steering angles {θk}k∈K.

iii) Topological CSIT [Section V]. The knowledge of the map of the network area, i.e., the

location and size of the obstacles (such as buildings) within its coverage area, and of the

pdf of the UE locations is assumed.

The above configurations correspond to settings with decreasing requirements on the information

available at the BS. While configuration i) is relevant for the case of moderate (or finite) number

of UEs and low mobility, configuration iii) is relevant for the case of large number of UE and high

mobility: for instance, these features arise in vehicular networks, where the BS multi-antenna

beam pattern ought to be designed on the basis of a city map and road traffic distribution. Lastly,

configuration ii) can be considered as an intermediate case between i) and iii).

E. Performance Metrics

We propose two different performance metrics in terms of service reliability. In order to reflect

the inherent difficulty to guarantee a given data rate in a wireless setting with uncertainties on

the channel conditions across the UEs, we introduce the target outage ε ∈ [0, 1), which describes

the trade-off between the multicast rate and the reliability level at which we can maintain such

a rate. Furthermore, let Pk,1(r,Γ) and Pk,2(r,Γ) denote the probabilities that UE k successfully

decodes in the first and in the second phase, respectively.

a) Average multicast rate. We define the average success probability as the probability that

a randomly chosen UE successfully decodes over the two phases, which is given by

PA(r,Γ) ,
1

K

∑
k∈K

[
Pk,1(r,Γ) +

(
1− Pk,1(r,Γ)

)
Pk,2(r,Γ)

]
. (9)

Hence, the average multicast rate is defined as the maximum transmission rate at which

a randomly chosen UE successfully decodes with probability at least 1 − ε over the two

phases, which can be expressed as

RA(r,Γ) ,
1

2
r with r solution to PA(r,Γ) ≥ 1− ε. (10)

b) Outage multicast rate. Let us introduce the binary variables zk,1(r,Γ) and zk,2(r,Γ), which

are equal to 1 if UE k successfully decodes in the first and in the second phase, respectively,

and to 0 otherwise. Furthermore, let z1(r,Γ) , [z1,1(r,Γ) . . . zK,1(r,Γ)]. We define the joint

success probability as the probability that all the UEs successfully decode over the two
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phases, which is given by

PJ(r,Γ) , E
[∏
k∈K

P
[

log2

(
1 +

∣∣∣∣∑
j 6=k

ξjhkj

∣∣∣∣2) ≥ r
(
1− zk,1(r,Γ)

)∣∣∣∣z1(r,Γ)

]]
. (11)

Hence, the outage multicast rate is defined as the maximum transmission rate at which all

the UEs successfully decode with probability at least 1− ε over the two phases, which can

be expressed as

RO(r,Γ) ,
1

2
r with r solution to PJ(r,Γ) ≥ 1− ε. (12)

F. Problem Formulation

Our objective is to jointly optimize the multicast rate r and the transmit covariance Γ under

one of the above outage constraints over the two phases. Such a problem can be formalized as2

max
r>0,Γ�0

1

2
r

s.t. tr(Γ) ≤ 1,

PT(r,Γ) ≥ 1− ε

(13)

where T ∈ {A, J}. Hence, when T = A, we recover the average multicast rate RA(r,Γ) defined

in (10) and, when T = J, we recover the outage multicast rate RO(r,Γ) defined in (12). Note

that problem (13) is non-convex in both optimization variables due to the non-convex outage

constraint and is thus highly complex to solve. In the following, we detail our proposed methods

to tackle problem (13) in the three CSIT configurations described in Section II-D.

III. D2D-AIDED MULTI-ANTENNA MULTICASTING WITH PERFECT CSIT

In this section, we consider the case where all the direct channels, i.e., {hk}k∈K, and all the

D2D channels, i.e., {hjk}k,j∈K, are perfectly known at the BS. For each UE k, let us define the

binary variables

zk,1(r,Γ) , 1
[

log2(1 + ξ0h
H
k Γhk) ≥ r

]
, (14)

zk,2(r,Γ) , 1

[
log2

(
1 +

∣∣∣∣ ∑
j∈K\{k}

zj,1(r,Γ)
√
ξjhjk

∣∣∣∣2) ≥ r

]
(15)

which are equal to 1 if the UE successfully decodes in the first and in the second phase,

respectively, and to 0 otherwise. Hence, the probabilities that UE k successfully decodes in the

2The factor 1
2

in the objective describes the equal time division between the two phases and is irrelevant for the optimization.
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first and in the second phase are given by

Pk,1(r,Γ) = zk,1(r,Γ), (16)

Pk,2(r,Γ) = zk,2(r,Γ) (17)

respectively: these stem from the fact that, with perfect CSIT, the decodability of each UE in

each phase is deterministic. In this context, the average success probability in (9) can be written

as

PA(r,Γ) =
1

K

∑
k∈K

(
zk,1(r,Γ) +

(
1− zk,1(r,Γ)

)
zk,2(r,Γ)

)
. (18)

On the other hand, the joint success probability in (11) becomes a product of binary variables,

which is equal to 0 if even a single UE does not decode the message over the two phases: hence,

it is not suited to accommodate any target outage in the case of perfect CSIT. For this reason,

in the rest of the section, we focus on maximizing the average multicast rate in (10).

A. Multi-Antenna Multicasting (MAM) Algorithm

Considering the single-phase baseline scheme described in Section II-B, problem (13) with

T = A and perfect CSIT can be solved by selecting the best subset of K with size (1− ε)K to

be served by the BS and computing the transmit covariance that maximizes the multicast rate

over such a subset of UEs.3 Note that, in this case, the outage constraint in (13) can be simply

expressed as
∑

k∈K zk,1(r,Γ) ≥ (1−ε)K. While this problem formulation is also novel, it mainly

serves as a benchmark to demonstrate the gains obtained by the adding a second phase of UE

cooperation enabled by D2D links in Section VI. However, the problem of deriving the optimal

UE selection strategy is NP-hard since it requires to evaluate all possible subsets of K with size

(1− ε)K. To reduce the complexity, we build on the intuition described in the following lemma

to derive a suboptimal UE selection scheme.

Lemma 1. For a class of channels satisfying E[hkh
H
k ] = γkIM , ∀k ∈ K, which includes (6),

the optimal UE selection strategy with statistical channel knowledge is the one choosing the

(1− ε)K UEs with the highest average channel power gains among {γk}k∈K.

3Without loss of generality, one can assume that ε is chosen such that (1− ε)K is an integer number.
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Proof: If {γk > 0}k∈K are known at the BS, we have

max
U⊂K : |U|=(1−ε)K

E
[

max
Γ�0 : tr(Γ)≤1

min
k∈U

hH
k Γhk

]
≤ max
U⊂K : |U|=(1−ε)K

max
Γ�0 : tr(Γ)≤1

min
k∈U

E[hH
k Γhk] (19)

= max
U⊂K : |U|=(1−ε)K

max
Γ�0 : tr(Γ)≤1

min
k∈U

tr
(
ΓE[hkh

H
k ]
)

(20)

= max
U⊂K : |U|=(1−ε)K

min
k∈U

γk (21)

where (19) follows from the concavity of mink∈U hH
k Γhk and (21) is due to the fact that the

optimal Γ satisfies tr(Γ) = 1. Finally, the solution presented in the lemma readily follows from

(21).

Lemma 1 states that, if the channels can be ordered statistically based on the average channel

power gains {γk}k∈K, the exhaustive search over all possible subsets of K with size (1 − ε)K

reduces to choosing the (1 − ε)K UEs with the highest γk. Motivated by this observation, we

thus propose to apply such a UE selection strategy to the case of perfect CSIT and obtain the

multi-antenna multicasting (MAM) algorithm. More specifically, we build U ⊂ K by selecting the

(1− ε)K UEs with the highest channel power gain ‖hk‖2 and compute the transmit covariance

that achieves the multicast capacity over U , i.e.,

Γ1 = argmax
Γ�0 : tr(Γ)≤1

min
k∈U

hH
k Γhk. (22)

Since the whole time resource is dedicated to the first phase, the resulting average multicast rate

is given by

r1 = log2

(
1 + ξ0 min

k∈U
hH
k Γ1hk

)
. (23)

B. D2D-Aided Multi-Antenna Multicasting (D2D-MAM) Algorithm

To solve problem (13) with T = A and perfect CSIT, we resort to the alternating optimization

of the multicast rate r and the transmit covariance Γ. In this respect, we propose an efficient

iterative algorithm whose goal is to serve a subset of UEs (which are suitably selected by

means of precoding at the BS) in the first phase such that the multicast rate is maximized.

At each iteration n, the transmit covariance Γ(n) that achieves the multicast capacity over a

predetermined subset U (n−1) ⊂ K is computed (see (4)–(5)). Then, the multicast rate r(n) is

obtained as the maximum rate that guarantees the outage constraint over the two phases given

the transmit covariance computed in the previous step, i.e., such that PA(r(n),Γ(n)) ≥ 1− ε. The
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Algorithm 1 (D2D-MAM)

Data: Direct channels {hk}k∈K and D2D channels {hjk}k,j∈K. Fix U (0) = K and n = 1.
(S.1) Optimize the transmit covariance as

Γ(n) = argmax
Γ�0 : tr(Γ)≤1

min
k∈U(n−1)

hH
k Γhk.

(S.2) Maximize the multicast rate as

r(n) = max
{
r : PA(r,Γ(n)) = 1− ε

}
.

(S.3) Update the subset of UEs successfully decoding in the first phase as

U (n) =
{
k : log2(1 + ξ0h

H
k Γ(n)hk) ≥ r(n)

}
.

(S.4) If r(n) = r(n−1): fix Γ = Γ(n) and r = r(n); Stop.
Else: n← n+ 1; Go to (S.1).

new r(n) yields an updated U (n) of UEs that are able to decode in the first phase and, therefore,

an improved transmit covariance can be obtained by optimizing over U (n). This procedure is

iterated until the multicast rate converges. The proposed algorithm is referred to as D2D-aided

multi-antenna multicasting (D2D-MAM) algorithm and is formally described in Algorithm 1. The

D2D-MAM algorithm has the key advantage of not requiring any tuning parameter selection.

Furthermore, it converges to a local optimum of problem (13) with T = A, as formalized in the

following theorem.

Theorem 1. The D2D-MAM algorithm converges to a local optimum of problem (13) with

T = A.

Proof: Since step (S.1) of Algorithm 1 optimizes Γ(n) over U (n−1), we have

min
k∈U(n−1)

hH
k Γ(n)hk ≥ min

k∈U(n−1)
hH
k Γ(n−1)hk (24)

i.e., the minimum rate achievable by the UEs in U (n−1) increases with the new transmit covariance

Γ(n). Furthermore, at each iteration n of the D2D-MAM algorithm, the following holds:

r(n) ≥ log2

(
1 + ρ min

k∈U(n−1)
hH
k Γ(n)hk

)
(25)

≥ log2

(
1 + ρ min

k∈U(n−1)
hH
k Γ(n−1)hk

)
(26)

≥ r(n−1) (27)

where (25) follows from step (S.2) of Algorithm 1 (by which it is possible to increase the
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multicast rate as long as the outage constraint is guaranteed), (26) is a direct consequence of

(24), and (27) stems from the fact that U (n−1) contains the UEs whose achievable rate in the

first phase is at least r(n−1). Hence, the multicast rate cannot decrease between consecutive

iterations. Finally, if U (n) = U (n−1), then it is not possible to further increase the multicast rate,

i.e., r(n) = r(n−1), which implies that convergence is reached.

Regarding the optimization of the multicast rate in step (S.2) of Algorithm 1, we have

r(n) ∈
[
r(n−1), log2

(
1 + ρ max

k∈U(n−1)
hH
k Γ(n)hk

)]
(28)

where the lower bound follows from Theorem 1 and the upper bound is necessary to guarantee

that at least one UE is served in the first phase: thus, r(n) can be efficiently computed by means

of bisection over the above interval. Accordingly, every iteration of the D2D-MAM algorithm

requires the solution of a convex problem in step (S.1) and a linear search in step (S.2); in

addition, for the settings considered for our simulations in Section VI, convergence is reached

after a small number of iterations. Hence, the D2D-MAM algorithm provides a locally optimal

solution of problem (13) with T = A with very low complexity.

IV. D2D-AIDED MULTI-ANTENNA MULTICASTING WITH STATISTICAL CSIT

In this section, we consider the case where only the UE locations are known at the BS. From

this information, the BS can extract long-term statistics such as the average channel power gains

of both the direct channels, i.e., {γk}k∈K, and the D2D channels, i.e., {γjk}k,j∈K, together with the

steering angles {θk}k∈K. On the other hand, the BS has no knowledge of the small-scale fading

coefficients, i.e., {ηk}k∈K and {ηjk}k,j∈K. Under statistical CSIT, we characterize the service

reliability in terms of the joint success probability in (11) and, accordingly, we maximize the

outage multicast rate in (12). To alleviate the task of dealing with the involved expression of the

joint success probability, we derive its deterministic equivalent in the following proposition.

Proposition 1. Assuming that all (direct and D2D) channels are independent, we have

PJ(r,Γ)
P→

K→∞
P̄J(r,Γ) (29)

where

P̄J(r,Γ) , exp

(
−
∑
k∈K

(2r − 1)
(
1− Pk,1(r,Γ)

)∑
j∈K\{k} Pj,1(r,Γ)γjkξj

)
(30)

is the deterministic equivalent of PJ(r,Γ) in (11).

Proof: The proof follows similar steps as the proof of [18, Thm. 4] and is thus omitted.
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Note that, with statistical CSIT, the probability that UE k successfully decodes in the first phase

is given by

Pk,1(r,Γ) = P
[
zk,1(r,Γ) = 1

]
(31)

= P
[

log2(1 + ξ0γk|ηk|2aH
k Γak) ≥ r

]
(32)

= exp

(
− 2r − 1

ξ0γkaH
k Γak

)
. (33)

with zk,1(r,Γ) defined in (14) and where (33) follows from the exponential distribution of |ηk|2.

In the rest of the section, we replace PJ(r,Γ) with its deterministic equivalent P̄J(r,Γ) in (30).

A. Statistical Multi-Antenna Multicasting (SMAM) Algorithm

Considering the single-phase baseline scheme described in Section II-B, problem (13) with

T = J and statistical CSIT can be solved by computing the transmit covariance that maximizes

the outage multicast rate. Note that, in this case, the outage constraint in (13) can be simply

expressed as
∏

k∈K Pk,1(r,Γ) ≥ 1− ε. Since this problem is convex in Γ for a fixed r and vice

versa, we decouple the optimization over the two variables in the following way. For a given

transmit covariance Γ1, the outage multicast rate, denoted in this context by RO,1(r1,Γ1), is

maximized when the outage constraint is satisfied with equality, leading to

RO,1(r1,Γ1) = log2

(
1 + ξ0 log

(
1

1− ε

)(∑
k∈K

1

γkaH
k Γ1ak

)−1)
. (34)

Then, the optimal transmit covariance is obtained by solving

min
Γ1�0

∑
k∈K

1

γkaH
k Γ1ak

s.t. tr(Γ1) ≤ 1

(35)

by means of semidefinite programming. As in Section III-A, this problem formulation mainly

serves for the comparative purposes in Section VI. The resulting algorithm is referred to as

statistical multi-antenna multicasting (SMAM) algorithm.

The following proposition derives a tractable expression of Γ1 and will be useful in the next

section.

Proposition 2. Assume that K consists of M UEs exhibiting mutually orthogonal array re-

sponses, i.e., ∑
k∈K

aka
H
k = MIM . (36)
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Then, the optimal transmit covariance for problem (35) can be written in closed form as

Γ1 =
1

MνK

∑
k∈K

1
√
γk

aka
H
k (37)

with νK ,
∑

k∈K
1√
γk

.

Proof: See Appendix A.

A set of array response vectors satisfying (36) can be obtained as the columns of the M -

dimensional discrete Fourier transform (DFT) matrix or, alternatively, it can be constructed

along specific virtual angles as described in [28].

B. D2D-Aided Statistical Multi-Antenna Multicasting (D2D-SMAM) Algorithm

To solve problem (13) with T = J and statistical CSIT, we use the deterministic equivalent

derived in Proposition 1 and, to further reduce the complexity, we decouple the optimization

across the two phases in the following way. First, we carefully select a subset U ⊂ K of UEs with

favorable statistical properties to be served in the first phase by the BS. In particular, assuming

large K and uniform UE distribution in the angular domain, we build on Proposition 2 and

construct U by selecting M UEs satisfying the condition in (36):4 by doing so, the BS spreads

its transmit power along a set of orthogonal directions spanning the whole angular domain. In

this setting, the transmit covariance that maximizes the multicast rate over U is given by Γ1 in

(37). Next, we fix the joint success probability in the first phase over U to a given value 1− ε1
and obtain the corresponding multicast rate r(ε1) from (34). Finally, we optimize ε1 in order to

obtain the desired joint success probability 1− ε over the two phases.

Let us first focus on maximizing the outage multicast rate over U in the first phase, i.e.,

max
r(ε1)>0,Γ�0

r(ε1)

s.t. tr(Γ) ≤ 1,

exp

(
−
∑
k∈U

2r(ε1) − 1

ξ0γkaH
k Γak

)
≥ 1− ε1.

(38)

Since the outage constraint is convex in Γ, we can solve problem (38) by decoupling the

optimization of r(ε1) and Γ. Letting the outage constraint be satisfied with equality, we have

that the multicast rate becomes

r(ε1) = log2

(
1 + ξ0 log

(
1

1− ε1

)(∑
k∈U

1

γkaH
k Γak

)−1)
(39)

4Since K is large, we assume that it is always possible to select M UEs whose steering angles satisfy (41).
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Algorithm 2 (D2D-SMAM)

Data: Build U by selecting M UEs such that (41) holds.
(S.1) Compute the transmit covariance as in (42) with weights given in (43).
(S.2) Find ε1 by solving (45).
(S.3) Compute the multicast rate as in (44).

and problem (38) reduces to finding the transmit covariance Γ by solving

min
Γ�0

∑
k∈U

1

γkaH
k Γak

s.t. tr(Γ) ≤ 1.

(40)

From Proposition 2, the transmit covariance resulting from the above problem is known to have

a simple closed-form expression when |U| = M and the UEs in U exhibit orthogonal array

response vectors, i.e., ∑
k∈U

aka
H
k = MIM . (41)

Since K is large, we assume that it is always possible to build U by selecting M UEs satisfying

the condition in (41). In this case, the optimal transmit covariance is given by

Γ =
∑
j∈U

wjaja
H
j (42)

with weights given by

wj ,
1

Mγ̄U

1
√
γj
∀j ∈ U (43)

and where we have defined γ̄U ,
∑

k∈U
1√
γk

. Finally, plugging (42) and (43) into (39), we obtain

r(ε1) = log2

(
1 + ξ0 log

(
1

1− ε1

)
M

γ̄U 2

)
. (44)

Let us now focus on deriving ε1 that achieves the desired joint success probability 1− ε over

the two phases. This can be done by solving the following expression for ε1 ∈ [0, 1) (e.g., by

means of bisection):

(2r(ε1) − 1)
∑
k∈K

1− exp
(
− 2r(ε1)−1

ξ0γka
H
k Γak

)
∑

j∈K\{k} exp
(
− 2r(ε1)−1

ξ0γka
H
k Γak

)
γjkξj

≤ log

(
1

1− ε

)
. (45)

The proposed algorithm is referred to as D2D-aided statistical multi-antenna multicasting (D2D-

SMAM) algorithm and is formally described in Algorithm 2. In the next section, we illustrate a

possible way to derive an approximation of the optimal ε1.
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C. Asymptotic Behavior of the D2D-SMAM Algorithm

Let us assume that ε→ 0 and, consequently, that ε1 → 0. By applying the Taylor approxima-

tion exp
(
− 2r(ε1)−1

ξ0γka
H
k Γak

)
≈ 1− 2r(ε1)−1

ξ0γka
H
k Γak

to (45), we have

ε1 ∼
ε→0

1− exp

(
− γ̄2

U
Mξ0

√√√√ log
(

1
1−ε

)∑
k∈K

1
ξ0γka

H
k Γak

(∑
j∈K\{k} γjkξj

)−1

)
(46)

and, hence

r ∼
ε→0

1

2
log2

(
1 +

√√√√ ξ0 log
(

1
1−ε

)∑
k∈K

1
γka

H
k Γak

(∑
j∈K\{k} γjkξj

)−1

)
(47)

, r̃. (48)

Now, assume that dk ∈ [Rmin, Rmax], ∀k ∈ K, where Rmin and Rmax denote the minimum

and maximum distance, respectively, between each UE and the BS. It follows that the average

channel power gains can be bounded as

γk ∈ [R−βmax, R
−α
min], ∀k ∈ K, (49)

γjk ∈
[
(2Rmax)−β, (2Rmin)−α], ∀k, j ∈ K. (50)

In this setting, we have

aH
k Γak =

1

Mγ̄U

∑
j∈U

1
√
γj
|aH
k aj|2 (51)

≥ M

γ̄U
R
α/2
min (52)

where (52) follows from assuming that all the UEs in U are at distance Rmin from the BS, i.e.,

{γj = R−αmin}j∈U . Hence, we have that r̃ defined in (47)–(48) can be lower bounded as

r̃ ≥ log2

(
1 +

√√√√ ξ0ξUE(K − 1)M log
(

1
1−ε

)
R
α/2
min

γ̄2
U(2Rmax)βR

α/2
min + 2βγ̄UR

2β
max(K −M)

)
(53)

where, for simplicity, we have assumed that {ξk = ξUE}k∈K (i.e., all the UEs have the same

transmit SNR in the second phase). Finally, we consider the asymptotic behavior of r̃ in the

case where both K and M increase with fixed ratio c , K
M
> 1 as well as in the case where K
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increases for a fixed M . Hence, (53) behaves as

r̃ →
K→∞


log2

(
1 +

√
ξ0ξUEM log

(
1

1−ε

)
R
α/2
min

2β γ̄UR
2β
max

)
for fixed M

log2

(
1 +

√
ξ0ξUE log

(
1

1−ε

)
R
α/2
min

2β γ̄UR
2β
max(c−1)

K

)
for M = K

c
, with c > 1

(54)

which is non-vanishing in the first case as in [18] and increasing as log2

(
1+
√
K
)

in the second

case.

V. D2D-AIDED MULTI-ANTENNA MULTICASTING WITH TOPOLOGICAL CSIT

In this section, we consider the case where only the map of the network area, i.e., the location

and size of the obstacles (such as buildings) within its coverage area, and the pdf of the UE

locations are known at the BS. Such pdf can be obtained on the basis of the city map and long-

term information on the traffic distribution. This setting describes a scenario with a high density

of UEs (e.g, cars or terminals) where it may not be feasible to design a precoding solution that

adapts instantaneously to the channels or, in the longer term, to the channel statistics. In this

case, it is meaningful to derive the precoding strategy at the BS based solely on the network

topology and on the UE distribution.

First, we slightly adapt the channel model described in Section II-C to express all the parame-

ters as functions of the possible UE locations within the map. Let A ⊂ R2 denote the continuous

set of points representing the network area and let p = (θ, ρ) be a random variable denoting a

possible position within A in which a UE can be located, where θ and ρ represent the steering

angle and the distance from the BS, respectively. In this setting, we use f(p) to denote the pdf

of the UE locations, which describes the probability of finding a UE in the position identified

by p. Focusing on the first phase, let us write the direct channel to position p as (cf. (6))

h(p) = η
√
γ(p) a(θ) (55)

where η ∼ CN (0, 1) is the small-scale fading coefficient, γ(p) is the average channel power

gain at position p, and a(θ) is the array response vector at the BS for the steering angle θ. Here,

we have γ(p) = ρ−α in case of LoS conditions and γ(p) = ρ−β in case of NLoS conditions.

The receive SNR at position p in the first phase can be expressed as

SNR1(p,Γ) , |η|2γ(p)ξ0a
H(θ)Γa(θ). (56)

Note that, if position p falls within the area occupied by an obstacle (e.g., a building), the

corresponding receive SNR is zero. Hence, the probability that a UE located at position p
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successfully decodes in the first phase is given by

P1(p, r,Γ) , P
[

log2

(
1 + SNR1(p,Γ)

)
≥ r
]

(57)

= exp

(
− (2r − 1)

γ(p)ξ0aH(θ)Γa(θ)

)
. (58)

Focusing on the second phase, let us write the D2D channel between positions p and p′ as

(cf. (8))

h(p,p′) = η
√
γ(p,p′) (59)

where γ(p,p′) is the average channel power gain. Here, we have γ(p,p′) = d(p,p′)−α in case

of LoS conditions and γ(p,p′) = d(p,p′)−β in case of NLoS conditions, where d(p,p′) denotes

the distance between positions p and p′. For simplicity, let us assume that all the UEs in any

position within A have the same transmit SNR ξUE in the second phase. Furthermore, let U ⊂ A

be the subset of positions where a potential UE could successfully decode in the first phase.

Hence, the probability that a UE located at position p successfully decodes the message in the

second phase is given by

P2(p, r,Γ) , P

[
log2

(
1 +

∣∣∣∣∫
U

√
ξUEf(p′)h(p,p′)dp′

∣∣∣∣2) ≥ r

]
(60)

= E
[
exp

(
− 2r − 1

ξUE

∫
U
f(p′)γ(p,p′)dp′

)]
(61)

where the expectation is over all the possible combinations of U .

In the context of topological CSIT, the average success probability in (9) can be written as

PA(r,Γ) =

∫
A

f(p)
(
P1(p, r,Γ) + (1− P1(p, r,Γ))P2(p, r,Γ)

)
dp. (62)

On the other hand, the joint success probability in (11) turns out to be impractical when A is

connected, i.e., when the network area contains infinite points. For this reason, in the rest of the

section, we focus on maximizing the average multicast rate in (10). Since (62) is quite difficult

to handle even for simple UE distribution models (e.g., uniform), in the next section, we detail

a heuristic approach to maximize the average multicast rate based on the Monte Carlo sampling

of f(p).

A. D2D-Aided Topological Multi-Antenna Multicasting (D2D-TMAM) Algorithm

To solve problem (13) with T = A and topological CSIT, we resort to the Monte Carlo

sampling of the pdf of the UE locations to generate a set of test points within the map and the
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Algorithm 3 (D2D-TMAM)

Data: Map of the network area and pdf of the UE locations f(p). Fix l = 1.
For l = 1, . . . , L:
(S.1) Generate T test points together with the corresponding direct and D2D channels

according to (55) and (59), respectively.
(S.2) Execute Algorithm 1 with the channels generated in step (S.1) as input data and

obtain the multicast rate r(`) and the transmit covariance Γ(`) as output data.
End

(S.3) Fix r = 1
L

∑L
`=1 r

(`) and Γ = 1
L

∑L
`=1 Γ(`).

corresponding artificial channels, which are subsequently used to run the D2D-MAM algorithm

described in Algorithm 1 (see Section III-B). More specifically, we produce L batches of T test

points each, where T is a random variable that describes the number of UEs and whose distribu-

tion depends on f(p). For each batch `, we artificially generate the direct channels for each test

point according to (55) as well as the D2D channels for each pair of test points according to (59).

Then, such channels are used as input data to Algorithm 1, which produces the multicast rate

r(`) and the transmit covariance Γ(`) as output data. Finally, the final multicast rate and transmit

covariance are obtained by averaging the output data of the L batches, i.e., r = 1
L

∑L
`=1 r

(`) and

Γ = 1
L

∑L
`=1 Γ(`), which provides an approximate solutions to problem (13) with T = A. The

proposed algorithm is referred to as D2D-aided topological multi-antenna multicasting (D2D-

TMAM) algorithm and is formally described in Algorithm 3. Evidently, evaluating more batches

of test points allows to achieve a more precise representation of the long-term network statistics,

which produces a more accurate result in terms of average success probability. Since the D2D-

TMAM algorithm involves L instances of Algorithm 1, its computational complexity may be

quite high. However, it is worth observing that this procedure is based on slowly varying network

statistics and needs to be updated only when the UE distribution changes significantly. Therefore,

it can be conveniently executed offline using a large value of L.

VI. NUMERICAL RESULTS

In this section, we present numerical results to validate the proposed algorithms in the three

different CSIT configurations, i.e., perfect CSIT (described in Section III), imperfect CSIT

(described in Section IV), and topological CSIT (described in Section V). Unless otherwise

stated, the considered network topology consists of a semicircular area with radius Rmax = 100 m
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Fig. 2: Evaluation scenario: the white area and the dotted areas are in LoS and NLoS conditions, respectively,
whereas the UEs are not admitted in the regions occupied by the buildings.

where four rectangular buildings are positioned in a Manhattan-like grid, as shown in Fig. 2. We

assume that the UEs are distributed uniformly within the network area with the exception of the

regions occupied by the buildings and with a minimum distance from the BS of Rmin = 5 m. The

direct and D2D links whose line of sight is obstructed by one or more buildings are considered

to be in NLoS conditions both in the first and in the second phase. The LoS and NLoS pathloss

exponents are fixed to α = 2 and β = 4, respectively. For simplicity, we assume that all the UEs

have the same transmit SNR in the second phase, i.e., {ξk = ξUE}k∈K, and we set ξ0 = 30 dB and

ξUE = 20 dB. Moreover, unless otherwise stated, the BS is equipped with M = 32 antennas and

the target outage is fixed to ε = 0.1. Lastly, all the numerical results are averaged over 5× 103

independent UE drops.

A. Perfect CSIT

In the case of perfect CSIT, we evaluate the performance of the proposed D2D-MAM algorithm

in Algorithm 1 versus the single-phase MAM algorithm described in Section III-A. Interestingly,

the D2D-MAM algorithm converges in very few iterations (typically between 3 and 10) even

for large values of K. Fig. 3(a) plots the average multicast rate against the number of UEs for

different values of ε. Indeed, the second phase of D2D communications brings substantial gains

with respect to traditional multi-antenna multicasting. In particular, the average multicast rate

obtained with the D2D-MAM algorithm increases with K, whereas that resulting from the MAM

algorithm quickly vanishes. Hence, the D2D-MAM algorithm effectively overcomes the worst-

UE bottleneck behavior of conventional single-phase multicasting and remarkably achieves an

increasing trend of the multicast rate. In the same setting of Fig. 3(a), Fig. 3(b) shows that the

average number of UEs who are able to decode in the first phase varies between 35% and 50%

of the total UEs depending on the target outage. Lastly, Fig. 3(c) illustrates the average multicast
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(a) Average multicast rate against the number of UEs with
M = 32 and for different values of ε.
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(c) Average multicast rate against the number of BS antennas
with ε = 0.1 and for different values of K.

Fig. 3: Perfect CSIT: D2D-MAM algorithm versus MAM algorithm.

rate against the number of BS antennas for different values of K. Evidently, the BS can better

focus its transmit power as M increases, which results in an overall improved performance.

Here, the lowest value corresponds to M = 1, i.e., when the BS has no beamforming capability

and can only transmit in an isotropic fashion in the first phase.

B. Statistical CSIT

In the case of statistical CSIT, we evaluate the performance of the proposed D2D-SMAM

algorithm in Algorithm 2 versus the single-phase SMAM described in Section IV-A. In addition,

we compare the asymptotic expressions obtained in Section IV-C with numerical simulations.

For the D2D-SMAM algorithm, we build the set U by identifying M UEs whose steering angles

satisfy the condition in (36), while their distance from the BS is uniformly distributed. We
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Fig. 4: Statistical CSIT: D2D-SMAM algorithm versus SMAM algorithm.

consider two cases of interest, i.e., where both the number of UEs K and the number of BS

antennas M increase with a fixed ratio c = K
M
> 1 and where K increases for a fixed M . The

first case is depicted in Fig. 4(a), which shows that the outage multicast rate always grows as

long as M grows together with K. The second case is illustrated in Fig. 4(b), which shows how

increasing M is always beneficial for any given number of UEs K. Here, the outage multicast

rate obtained with the D2D-SMAM algorithm grows with K and reaches a constant value for

large K: this is confirmed by its asymptotic behavior, which is constant with K. On the contrary,

the SMAM algorithm produces a vanishing outage multicast rate and even increasing M does

not fundamentally solve this issue. Lastly, Fig. 4(c) compares the joint success probability in

(11) with its deterministic equivalent in (30) for different values of c. Here, the approximation

is tight for sufficiently large values of K.
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(b) Antenna diagram of the transmit covariance with M = 32.

Fig. 5: Toy example with topological CSIT: the UEs are admitted only in the two white sectors.

C. Topological CSIT

In the case of topological CSIT, we evaluate the performance of the proposed D2D-TMAM

algorithm in Algorithm 3 versus the D2D-MAM algorithm in Algorithm 1, where the latter

is based on the assumption of perfect CSIT. Although unfair to the D2D-TMAM algorithm,

this comparison demonstrates how the proposed approach with topological CSIT can accurately

sample the long-term network statistics. In turn, this enables to effectively design the precoding

strategy at the BS with minimal CSIT requirements and no training overhead without excessively

compromising the performance. Let A denote the area of the network excluding the regions

occupied by the buildings (expressed in m2) and let us consider a uniform UE distribution with

density λ (expressed in UEs/m2). In this setting, we assume that each UE drop consists of K UEs,

where K is a Poisson random variable with mean K̄ = λA. Recall that, for the D2D-TMAM

algorithm, the transmit covariance and the multicast rate are computed offline by averaging the

output of the D2D-MAM algorithm over L batches of T test points, where we fix L = 103; on

the other hand, the D2D-MAM algorithm is executed for each UE drop.

• Toy example. As a first experiment to verify the effectiveness of the proposed method,

we consider the simplified network topology depicted in Fig. 5(a), with Rmax = 20 m and

where only two sectors admit the presence of UEs. In this setting, we have A = 100 m2

and, fixing λ = 0.5 UEs/m2, the average number of UEs in the network is K̄ = 50;

moreover, we assume that all the links are in LoS conditions. Fig. 5(b) shows the antenna

diagram of the transmit covariance obtained with the D2D-TMAM algorithm with T = K̄

test points for each batch: as expected, the multi-antenna beam pattern uniformly covers

the two sectors in which the UEs are concentrated. Now, we evaluate the average multicast

rate and the average success probability as T varies in order to verify which value gives



26

20 30 40 50 60 70 80
2.5

3

3.5

4

4.5

5

5.5

(a) Average multicast rate against number of test points with
M = 32.

20 30 40 50 60 70 80
7

7.5

8

8.5

9

9.5

10
10

-1

(b) Average success probability against number of test points
with M = 32.

Fig. 6: Topological CSIT applied to the toy example in Fig. 5(a): D2D-TMAM algorithm versus D2D-MAM
algorithm, where the latter relies on perfect CSIT.

the best performance. Fig. 6 shows that, when T is too small, the algorithm is overcautious

and selects a low multicast rate corresponding to an average success probability above the

target; on the other hand, when T is too large, the algorithm is overaggressive and selects

a high multicast rate corresponding to an average success probability below the target. As

expected, the target outage is reached for T = K̄ and the corresponding mean value of the

average multicast rate is very close to that obtained with the D2D-MAM algorithm (which

relies on perfect CSIT).

Now, let us go back to the original evaluation scenario depicted in Fig. 2 and compare the

proposed D2D-TMAM algorithm with the D2D-MAM algorithm. Fig. 7(a) illustrates the average

multicast rate against the UE density for different values of ε. First of all, we observe that both

schemes benefit from increasing the number of UEs, thus effectively overcoming the worst-UE

bottleneck behavior of conventional single-phase multicasting. Furthermore, the performance gap

between the D2D-TMAM algorithm and the D2D-MAM algorithm is remarkably small despite

the huge difference in the CSIT requirements of the two schemes. Lastly, Fig. 7(b) plots the

average success probability against the UE density for different values of ε, showing that the

target success probability is achieved more accurately by the D2D-TMAM algorithm as the UE

density increases.

VII. CONCLUSION

This paper proposes a general two-phase cooperative multicasting framework that leverages

both multi-antenna transmission at the BS and D2D communications between the UEs. We
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Fig. 7: Topological CSIT applied to the evaluation scenario in Fig. 2: D2D-TMAM algorithm versus D2D-MAM
algorithm, where the latter relies on perfect CSIT.

explicitly optimize the precoding strategy at the BS and the multicast rate over the two phases

subject to some outage constraint. In particular, we devise efficient algorithms to tackle three

different CSIT configurations, i.e., perfect CSIT, statistical CSIT, and topological CSIT. Numer-

ical results show that the proposed schemes significantly outperform conventional single-phase

multi-antenna multicasting in all the considered CSIT configurations. Remarkably, they allow

to effectively overcome the vanishing behavior of the multicast rate and achieve an increasing

performance as the UE population grows large.

APPENDIX A

PROOF OF PROPOSITION 2

Since problem (35) is convex, a given Γ1 is optimal if and only if it satisfies the Karush–Kuhn–

Tucker (KKT) conditions. Let us define the Lagrangian and its gradient as

L(Γ1, µ,Ψ) ,
∑
k∈K

1

γkaH
k Γ1ak

+ µ
(
tr(Γ1)− 1

)
− tr(ΨΓ1), (63)

∇L(Γ1, µ,Ψ) , −
∑
k∈K

1

γk(aH
k Γ1ak)2

aka
H
k + µIM −Ψ (64)
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respectively, where we have introduced the dual variables µ ∈ R and Ψ ∈ CM×M . The KKT

conditions of problem (35) can be written as∑
k∈K

1

γk(aH
k Γ1ak)2

aka
H
k = µIM −Ψ, (65a)

tr(Γ1) ≤ 1, Γ1 � 0, (65b)

µ ≥ 0, Ψ � 0, (65c)

µ
(
tr(Γ1)− 1

)
= 0, ΨΓ1 = 0. (65d)

The condition in (65a) suggests that the transmit covariance has the structure

Γ1 =
∑
k∈K

wkaka
H
k (66)

where
∑

k∈K wk = 1/M implies tr(Γ1) = 1 and {wk ≥ 0}k∈K implies Γ1 � 0. From (66), we

can write

aH
k Γ1ak =

∑
j∈K

wjφkj (67)

where we have defined φkj , |aH
k aj|2, with Φ , [φkj]k,j∈K ∈ CK×K being a symmetric matrix

with diagonal elements equal to M2. Plugging (66) into (65), the KKT conditions become∑
k∈K

1

γk
(∑

j∈K wjφkj
)2 aka

H
k = µIM −Ψ, (68a)

∑
k∈K

wk =
1

M
, {wk ≥ 0}k∈K, (68b)

µ ≥ 0, Ψ � 0, (68c)

µ

(∑
k∈K

wk −
1

M

)
= 0, Ψ

∑
k

wkaka
H
k = 0. (68d)

Let us define w , [w1, . . . , wK ]T ∈ RK×1. Choosing the weights that satisfy (68b) allows us to

set Ψ = 0 and, from (68a), we can show that

w =
1√
µM

Φ−1b (69)

where we have defined

b ,

[
1√

γ11TΦ−1e1

, . . . ,
1√

γK1TΦ−1eK

]T

. (70)

On the other hand, µ can be obtained by plugging (69) into the first condition in (68d), i.e.,

µ = M(1TΦ−1b)2 (71)
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and, by plugging (71) into (69), we obtain

wk =
eT
kΦ−1b

M1TΦ−1b
, ∀k ∈ K. (72)

Finally, choosing {wk}k∈K as in (72), µ as in (71), and Ψ = 0 readily satisfies (68b)–(68d),

whereas (68a) yields ∑
k∈K

(1TΦ−1ek)aka
H
k =

1

M
IM . (73)

The latter is satisfied when Φ = M2IK , i.e., when K = M and the steering angles of the UEs

are such that aH
k aj = 0, ∀k 6= j (see, e.g., [28] for more details). In this setting, it follows from

(72) that wk = 1/(M
√
γkνK), from which we obtain the expression of the optimal transmit

covariance in (37).
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