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ARTICLE INFO ABSTRACT
Article history: Deep learning techniques for 3D brain vessel image segmentation have not been as
Received 29 January 2021 successful as in the segmentation of other organs and tissues. This can be explained

by two factors. First, deep learning techniques tend to show poor performances at the
segmentation of relatively small objects compared to the size of the full image. Second,
due to the complexity of vascular trees and the small size of vessels, it is challenging to

Keywords: Efficient Annotation, Weak obtain the amount of annotated training data typically needed by deep learning methods.
Supervised Learning, ~Segmentation, To address these problems, we propose a novel annotation-efficient deep learning vessel
Deep learning, Cerebrovascular Tree segmentation framework. The framework avoids pixel-wise annotations, only requiring

weak patch-level labels to discriminate between vessel and non-vessel 2D patches in
the training set, in a setup similar to the CAPTCHAs used to differentiate humans from
bots in web applications. The user-provided weak annotations are used for two tasks:
1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch,
which are used to train a segmentation network, and 2) to train a classifier network.
The classifier network allows to generate additional weak patch labels, further reducing
the annotation burden, and it acts as a second opinion for poor quality images. We
use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight
angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that
the framework achieves state-of-the-art accuracy, while reducing the annotation time by
~T7% w.r.t. learning-based segmentation methods using pixel-wise labels for training.
© 2021 Elsevier B. V. All rights reserved.

1. Introduction wide range of conditions with a vast population-level impact
(World Health Organization, 2020). Due to the high complex-
ity of the cerebrovascular tree, its automatic extraction is a chal-
lenging task. Despite decades of research (Lesage et al., 2009
Moccia et al.,|2018)), the problem remains open.

The segmentation of the 3D brain vessel tree is a crucial task
to the diagnosis, management, treatment and intervention of a
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2017; |ILundervold and Lundervold, 2019), image segmentation
of organs, organs substructures, and lesions has reached state-
of-the-art performance. This progress, however, has not been
as fast in 3D brain vessel segmentation. Differently from the
segmentation of other organs, there is no consolidated deep
learning method which has reached human performance, and
a vast majority of methods (Bernier et al., 2018;Li et al., 2014,
2019; Morrison et al., [2018)) still rely on more classical tech-
niques. This lag can be explained by two factors. First, deep
learning techniques often assume that the object to segment oc-
cupies an important part of the image (Deng et al., 2009 [Shel-
hamer et al.,[2017)). On the opposite, vessels are relatively small
objects within a large image volume (Livne et al., 2019; (Tet-
teh et al.| 2020). Secondly, deep learning techniques are well-
known for being data greedy, as they require large annotated
training datasets to avoid poor generalization. Due to the com-
plexity of vascular trees and the small size of vessels, it is chal-
lenging to obtain sufficiently large high-quality annotated sets.

This work presents a novel framework to address the chal-
lenges faced by deep learning-based 3D vessel segmentation.
Taking inspiration from Completely Automated Public Turing
Test To Tell Computers and Humans Apart, better known as
CAPTCHA (von Ahn and Dabbishl [2004), we initially divide the
image volume into 2D image patches and we subsequently re-
quest the user to identify the patches containing a vessel or part
of it. This task is common on websites to differentiate humans
from bots, using image CAPTCHAs (von Ahn and Dabbish,[2004;
Elson et al.| 2007) of natural images. This procedure, which
we denote Vessel-CAPTCHA, simplifies the annotation process
by requiring 2D patch tags indicating the presence of a vessel (a
part of it, or multiple vessels) and, thus, avoiding pixel-wise an-
notations. The user-provided patch tags are subsequently used
to synthesize a pixel-wise pseudo-labeled training set in a self-
supervised manner using a clustering technique. These two sets
are used to train the framework.

The proposed framework is composed of two networks: a
segmentation network and a classification network. The seg-
mentation network extracts vessels on a patch basis to tackle
the limitations of deep nets in the segmentation of small objects.
The final volumetric segmentation is obtained by concatenating
the 2D segmented patches. The classification network is used
for two tasks. First, it allows to enlarge the labeled data with-
out the need for further user-provided annotations. Second, it
may act as a second opinion (Leibig et al., 2017; |[Vrugt and
Robinson, |2007) that provides a measure of uncertainty in low
quality or complex images. We evaluate the role of the classi-
fication network as an expert opinion, where only the segmen-
tations from patches identified as vessel patches are kept and
those classified as non-vessel patches are masked out.

1.1. Related Work

1.1.1. 3D Brain Vessel Segmentation

A comprehensive collection of methods and techniques for
general vascular image segmentation is reviewed in (Lesage
et al., 2009; Moccia et al., 2018)), where they classify differ-
ent segmentation frameworks according to their characteristic
strategies. Classical approaches typically rely on hand-crafted

features, with image intensity-derived (Taher et al., 2020), and
first (Law and Chung, 2008)), second (Frangi et al.| |1998; |Sato
et al., [1997) or higher order (Cetin and Unal, 2015} tensor-
derived features among the most common. Feature extraction
is followed by a vessel extraction scheme, which performs the
final segmentation. Notable extraction schemes include de-
formable models (Klepaczko et al.l 2016} |[Zhao et al., 2015),
voting (Zuluaga et all 2014b), tracking algorithms (Rempfler
et al., 2015 [Robben et al., 2016) and statistical approaches
(Hassouna et al., 2006). Their main drawbacks are two. First,
these methods rely on hand-crafted features that need to be
tuned, requiring high expertise to find a good set of parame-
ters. Second, extraction schemes are not fully automatic: many
need manual initialization, and the final results typically call for
manual correction, specially when images are noisy.

Deep learning techniques have emerged as an alternative
to circumvent the difficulties of classical approaches. Exist-
ing methods have tried to explicitly address the brain vessel
tree complexity by designing shallow convolutional neural net-
works (CNNs) architectures to avoid possible over-fitting (Phel-
lan et al. 2017), or by partitioning the input image volume,
while still relying on deeper and more powerful architectures
(Kamnitsas et al.| 2017; Ronneberger et al., 2015). Different
partitioning strategies include anatomical regions (Kandil et al.}
2018)), 2D slices (N1 et al., [2020), 3D (Phellan et al.,[2017; [Tet-
teh et al., |2020) and 2D patches (Livne et al., 2019). Despite
achieving accuracies similar to those of classical approaches,
the main limitation towards the broader use of deep learning
techniques remains to be the burden linked to pixel-wise data
annotation, including multi-plane annotations (Phellan et al.,
2017) or further pre-processing (Phellan et al.l |2017; |[Kandil
et al.,[2018; |Livne et al., 2019)).

Patch-based approaches (Livne et al.l 2019; [Tetteh et al.,
2020) not only aim at reducing the vessel tree’s complexity, but
they also try to mitigate the limitations of neural nets in the seg-
mentation of objects occupying small portions of an image. Our
work adopts a similar strategy and it builds upon the advantages
of 2D patch-based approaches (Livne et al.l | 2019), thus making
vessels cover a significant portion of the patch, while avoiding
pixel-wise annotations.

1.1.2. Limited Supervision for Image Segmentation

Different strategies have been explored as an alternative to
pixel-wise annotation (Cheplygina et al., 2019; @rting et al.,
2020; [Tajbakhsh et al., 2020), a tedious and time consuming
task requiring a high level of expertise. These strategies can
be roughly classified, according to the type of labels they use,
as partial pixel-wise labels, which include incomplete, sparse
or noisy pixel-wise labels (Tajbakhsh et al.l [2020); or as weak
labels, which refer to high-level labels and drawing primitives
(Cheplygina et al.l 2019).

Partial pixel-wise labels refer to annotations where only a
fraction of the pixels of the object of interest are provided (Bai
et al.| [2018; |(Cicek et all, [2016; [Liang et al., |2019; Ke et al.|
2020). These labels can be provided by the user or generated by
simpler methods to produce rough segmentation masks. Semi-
supervised methods follow different strategies to exploit par-
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tially labeled data under the assumption that it is enough to train
a segmentation model. [Bai et al.|(2018) used image registra-
tion to propagate user-provided labels over some image slices
containing the aorta. |Cicek et al.| (2016) designed the 3D-Unet
to account for sparse and incomplete pixel-wise labels. Other
methods resort to iterative stages of refinement (Liang et al.,
2019; |[Ke et al., 2020). Although these methods have reported
good performances in medical image segmentation (Cheply-
gina et al., 2019), the complexity of the 3D brain vessel tree
makes pixel-wise annotation, even if partial, highly time con-
suming. As one of our aims is to minimize the annotation effort,
our work focuses on the use of weak labels.

1.1.3. Weakly Supervised Learning

Weak Labels for Medical Image Segmentation. We consider
two forms of weak labels for medical image segmentation tasks:
image-level labels and drawing primitives. Image-level labels
(Feng et al., 2017; Jia et al., 2017; |Raza et al., 2019; Schlegl
et al.l 2015 Xu et al., 2019; [Zhao et al.l [2019) assign a tag
or rating to an image under the assumption that images con-
tain cluttered scenes with enough information from which a
model can learn (Q1 et al., 2017). In medical tasks, they have
been mainly used with 2D images/slices to segment patholo-
gies, i.e. lung nodules (Feng et all 2017), damaged retinal
tissue (Schlegl et al., [2015), brain tumors (Izadyyazdanabadi
et al.| 2018)) or cancerous tissue (Jia et al.| 2017} |[Kraus et al.|
20165 Lerousseau et al., 2020;[Xu et al.,2014,2019). To a lesser
extent they have been used for organ structures segmentation,
i.e. the optic disc (Zhao et al.,[2019). Despite the good reported
performances and the annotation time savings they represent,
image tags have not been used for 3D vessel segmentation.
Drawing primitives include bounding boxes and contouring
shapes (Cheplygina et al., 2016} |Gao et al., 2012} |Dai et al.
2015; L1 et al 2018} Rajchl et al., 2017} [Wang et al.l 2018),
scribbles and lines (Can et al., 2018} [Lin et al., 2016} Ma-
tuszewski and Sintorn, 2018; Wang et al.l 2015) and clicks
(Bruggemann et al., [2018). In 3D vessel segmentation, bound-
ing boxes have been used for aortic segmentation, with the as-
sumption that the aorta is a compact structure, which can be
enclosed within a bounding box (Pepe et al.l 2020). This as-
sumption does not hold for highly sparse bifurcated trees, as
the brain vascular tree, where a 3D bounding box would nearly
cover the full brain. Moreover, if an image is analyzed in 2D,
the vessel tree appears as a series of disconnected blobs or elon-
gated structures, which challenges the use of 2D contouring
shapes. |Kozinski et al.| (2020) address this limitation by us-
ing 2D annotations in Maximum Intensity Projections of 3D
vascular images. To some extent, these can be considered 2D
image scribbles of varying density for the original 3D volume.
The framework, however, requires full 2D pixel-wise annota-
tions. Although the scheme significantly reduces the labeling
time, more than four hours are needed to generate sufficiently
dense 2D annotations that do not compromise performance. Fi-
nally, clicks are common in classical 3D vessel segmentation
approaches (Benmansour and Cohen, 2009; Moriconi et al.,
2019) to provide seed-points, but no works yet integrate them
in a weakly supervised learning framework. This may be due to

the complexity of the 3D brain vessel tree, where a single click
might not carry sufficient information to train a model.

Our work relies on image tags. To cope with the granularity
and sparse appearance of vessels, we use 2D patch-level tags,
in the form of clicks over a grid. A click selects the patches
containing at least one vessel or a part of it. We denote this
annotation scheme the Vessel-CAPTCHA.

Weakly Supervised Learning with Image Tags. Our weakly su-
pervised vessel segmentation framework using image tags can
be cast as a multi-instance learning (MIL) problem (Dietterich
et al.| [1997; Maron and Lozano-Pérez, |1997; Cheplygina et al.}
2019), where a bag corresponds to an image patch and the in-
stances are the image pixels. A bag is considered positive (a
vessel patch) if at least one instance within the bag is positive
(a vessel pixel). The goal is then to infer the key instances (Liu
et al.| 2012), i.e. the vessel pixels, that activate the bag label.
Standard MIL segmentation approaches, which have been
less studied than the classification counterpart (Campanella
et al., 2019; Hou et al., 2016; [Quellec et al., [2012), follow a
multi-stage strategy. In a first stage common to MIL segmenta-
tion and classification, they train a model to learn instance-level
probabilities of belonging to the positive class. At a second
stage, these probabilities are used to obtain pixel-wise labels,
which can be considered as the segmentation output (Xu et al.,
2014; |Kraus et al.,|2016) or as pseudo-labels to train a segmen-
tation model in supervised way (Lerousseau et all [2020; Xu
et al.. 2019). A main limitation is that the instance-level proba-
bilities are not originally conceived to generate segmentations,
but to serve as inputs for bag classification. Therefore, the seg-
mentation results may be poor. Mitigation strategies rely on
area constraints (Jia et al., 2017} |Lerousseau et al., [2020); ro-
bust instance selection operations (Kraus et al.|[2016; Xu et al.}
2019); post-processing (Kraus et al., 2016)); or enriched infor-
mation, such as supplementary instance-level inputs (Shin et al.,
2019) or image landmarks (Schlegl et al., [2015). However,
these strategies often come at the cost of further required user
inputs (Jia et al., |2017; |Schlegl et al., 2015} [Shin et al.| [2019).
Attention-based MIL (Ilse et al.,|2018)), an alternative to stan-
dard MIL, uses attention mechanisms (Niu et al., 2021}, such
as class activation maps (CAM) (Zhou et al., 2016), under the
assumption that the discriminative regions identified by a net-
work correspond to the key instances, i.e. the pixels to seg-
ment (Ahn and Kwakl 2018} [Feng et al., 2017; [Hong et al.
2017;/Izadyyazdanabadi et al., 2018} Ouyang et al.,[2019;Shen
et al.l [2021;Zhao et al.,|2019)). Since attention mechanisms fo-
cus on the localization of the most discriminative regions, they
suffer from the same limitations as standard MIL, which lead
to inaccurate segmentation masks. For instance, some works
(Shen et al.l [2021) consider the resulting mask as a localiza-
tion/detection mask and not as a segmentation one. Others have
attempted to refine the attention maps through pixel similarity
propagation (Ahn and Kwakl 2018} Zhao et al., 2019), feature
assembling (Izadyyazdanabadi et al.| | 2018)) and post-processing
stages (Kriahenbiihl and Koltun, 2011}, which all lead to in-
creased model complexity. To avoid the increased complexity,
other works propose manual intervention (Feng et al., [2017)) or
the use of some pixel-wise annotated data (Ouyang et al., 2019
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Zou et al.,2021), leading to more user-required inputs.

A last set of methods favors the use of simpler techniques
to generate an initial pseudo-labeled set that can be then refined
using a learning-based approach. [Luo et al.|(2020) relied on tra-
ditional saliency methods along with a quality control step for
object detection from videos. Hou et al.| (2016) used a mixture
of Gaussians in cancer tissue classification. [Lu et al.| (2021)
used a simple threshold to segment tissue regions, which are
refined with a CAM to classify cancerous tissue.

While the cerebrovascular tree is a highly complex structure,
the typical available dataset size for training a model to segment
it is relatively small. Therefore, avoiding high model complex-
ity is critical in 3D brain vessel segmentation (Phellan et al.,
2017). Our work favors simplicity and minimal user interac-
tion. Thus, similarly to (Hou et al.| 2016} Luo et al., 2020} |Lu
et al., 2021), we use a simpler self-supervised technique, such
as the K-means, to generate pixel-wise pseudo-labels. As other
weakly supervised approaches (Feng et al., 2017; [Lerousseau
et al., 2020; [Luo et al., [2020; Xu et al., 2019), we use the
pseudo-labeled set as input of a supervised training phase that
learns to segment the brain vessel tree, without the need for any
additional user inputs.

1.1.4. Biomedical Image Classification

Our work explores the use of the Unet (Ronneberger et al.|
2015)) and the Pnet (Wang et al.,2019), two networks originally
conceived for medical image segmentation, for the classifica-
tion tasks of our framework. These two networks have been
originally designed for image segmentation. Their adaptation
to a classification task can be considered as a MIL formula-
tion, where instance-level information, i.e. pixels, are used to
predict a bag label, i.e. the patch tag. Similar to most biomed-
ical classification tasks, previous MIL-based biomedical image
classification works (Campanella et al., |2019; Q1 et al.| [2017)
rely on customized versions of VGG-16 (Simonyan and Zisser-
man| 2015) and ResNet (He et al., 2016)), the most popular ar-
chitectures for natural image classification. Others (Hou et al.|
2016) use task-specific architectures adapted from general pur-
pose networks such as end-to-end CNNs. However, no major
performance differences are currently found among them (Lun-
dervold and Lundervold,2019).

1.2. Contributions
The contributions of this work are four-fold:

1. we introduce an annotation and segmentation scheme, the
Vessel-CAPTCHA, to reduce the labeling burden of 3D brain
vascular images, consisting of two phases: a first phase
where the user provides tags at the 2D image patch-level,
and a second stage where pixel-wise pseudo-labels are ob-
tained, in a self-supervised fashion, using only the user-
provided patch tags as input.

2. We propose a weakly supervised learning framework on
2D image patches to achieve 3D brain vessel segmenta-
tion. To circumvent the problems faced by deep neural
networks when segmenting small objects, the framework
uses a 2D patch-based segmentation network trained with
2D pixel-wise pseudo-labeled patches synthesized by the

Vessel-CAPTCHA annotation scheme using the weak user-
provided patch tags as input.

3. We investigate the use of network architectures specifi-
cally designed for medical imaging tasks to classify 2D
image patches (vessel vs. non-vessel). The classifier net-
works are used to pseudo-label a potential training set
without further user effort, and it may act as a second opin-
ion for segmentation masks obtained from low quality im-
ages.

4. Using two different image modalities, we demonstrate that
the proposed framework achieves state-of-the-art perfor-
mance for 3D brain vessel segmentation, while signifi-
cantly reducing the annotation burden by ~77% compared
to the annotation time required in other deep learning-
based methods.

To foster reproducibility and encourage other researchers to
build upon our results, the source code of our framework is pub-
licly available on a Github repositoryﬂ

2. Method

The proposed Vessel-CAPTCHA framework algorithm for 3D
vessel segmentation is depicted in Fig. [} In the following,
we introduce the Vessel-CAPTCHA annotation scheme and we
describe how pixel-wise pseudo-labels are synthesized from
the user-provided weak patch labels in a self-supervised way
(Sec.[2.1). In Sec.[2.2] we present the two networks conforming
the proposed framework: a classifier network and a segmenta-
tion network. Sec. 2.3 explains how the classifier network can
be used to enlarge the set of weak pixel-wise annotations, allow-
ing to have a larger set to train 2D-WnetSeg. Finally, Sec. [2.4]
briefly explains how to segment unseen images using the pro-
posed framework.

2.1. The Vessel-CAPTCHA Annotation Scheme

We consider a dataset J of training images. Given an image
I € 7 of size HXx W x §, for each slice X, s € [1,...,5],
we consider a partition in P; non-overlapping patches: X; =
{)A(k},fil. Each patch is here considered as a function X : Dy —
R, where Dy, is a subset of the slice domain Dy C [1, H]X[1, W].
User annotations on a given patch Xj are defined through a
function U, : Dy — {0, 1}, assigning a binary label to each
coordinate (i, j) € Dy. The set of annotations for a given patch
is summarized by an indicator function f : Uy — {0, 1} which
takes value 1 if at least one pixel in the patch was labeled with
1:
fWUy) =1 33, j) € Dy s.t. Up(i, j) = 1. 1)

Fig. []illustrates examples of equivalent user annotations. The
set of indicators for the slice X is denoted by Y = {f (Uk)}:iy
The training set of patch-level labels for the image I is defined
by the set: 75 = {X,,Y,}5_,. This set is therefore composed
by patches and associated indicators/tags of the presence of a
vessel according to the user’s annotation. Based on the training

“https://github.com/robustml-eurecom/Vessel-Captcha
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Training Subset: STAGE 1: VESSEL-CAPTCHA WEAK LABEL ANNOTATION

Training Set I, Vessel-CAPTCHA o mmm e . AND PSEUDO-LABEL GENERATION

| |
BN |
I T | K-means on Vessel Patches ¥ |
—> :
! 1
! ! 1
T | ' Pseudo-labeled
P | 0-Mask on Non-Vessel Patches | mask
OPTIONAL STAGE: STAGE 2: NETWORK TRAINING
DATA AUGMENTATION
2D-PnetCI 2D-WnetSeg
Unlabeled Tu
training set

Unseen image Image Patches TESTING: SEGMENTING UNSEEN IMAGES

2D-PnetCl ﬁ>
: 2D-WnetSeg ]—)

! Final Segmentation

Fig. 1. The Vessel-CAPTCHA framework. At Stage 1, an image grid with patch size 32x32 covering the brain tissue is presented to the user for annotation.
The user selects the patches which contain at least one vessel or a part of it. The process, which we denote the Vessel-CAPTCHA annotation scheme, is done
for every axial slice in an image volume. This weakly annotated set 7p is used to synthetize pixel-wise pseudo-labels for every patch using the K-means
algorithm. The resulting pseudo-labeled set is denoted 7). At stage 2, 7p is used to train a classification network (2D-PnetCl) and 7, is used to train a
segmentation network (2D-WnetSeg). In the segmentation network training, it is possible to enlarge the set of pseudo-labeled data through an optional data
augmentation step. For an unseen image, the final volumetric segmentation is obtained by concatenating the 2D segmentations obtained from 2D-WnetSeg.
Optionally, the classification network can be used as a second opinion to refine the segmentation results. In that case, only 2D segmentations from patches
classified as vessel ones are considered in the final volume segmentation.

Dy — {0, 1}, which assigns to each pixel’s coordinate a label
according to the following scheme:

if f(Uy) =0,

M@, j) = A
(i) KM(X,(i, j)) otherwise,

(@)

where KM is a K-means predictor trained on the intensity val-
ues of the patch {Xi(i, ), (i, j) € Dy}. By specifying K = 2
clusters we therefore obtain a rough estimate of the low-high
intensity partitioning of the patch. The ensemble of estimated
partitions across patches is denoted as M; = {Mk}/f;p and we
define the pixel-wise pseudo-labeled training set for the image
Las 7, = {(X;, M)5_,.

Finally, for the full image training set 1, the user-provided
patch-level set and the pixel-wise pseudo-labeled one are de-
Fig. 2. Example of equivalent CAPTCHA annotations. (a) Image slice X noted by

with patch grid, (b) zoomed region corresponding to the highlighted red T, = {TI} 3)
box in (a), (c) resulting 7p obtained through equivalent annotations (d-g). P pPIIel>

and
. . . T = {Tyher (4)
set 7 p, we estimate vessel pseudo-labeled masks via a model
fitting procedure. For every patch we define a function M : respectively.
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2.2. Image Segmentation and Patch Classification Networks

2.2.1. Segmentation Network

The segmentation network learns from the input training set
7 m how to segment 2D image patches using the Dice similar-
ity coeflicient, as proposed by |[Milletari et al.| (2016), which is
specifically tailored for segmentation tasks in medical images.
The segmented 2D patches are concatenated to reconstruct the
original segmented 3D image volume. For this task, we use
a segmentation network connecting two 2D-Unets in cascade
(Daas et al.,|2019). We denote it 2D-WnetSeg (Fig. . The net-
work is trained on 7, the set of 2D image patches with pixel-
wise pseudo-labels to tackle the neural networks limitations in
the segmentation of objects with a small object-to-image ratio.

The human cerebrovascular system has an intricate shape
with large and smaller blood vessels which mainly differ in the
spatial scale, but which share similar shapes. The selected self-
supervised method, the K-means, favors over-segmentation of
larger vessels. Thanks to a set of max pooling layers, the first
2D-Unet allows to learn spatial scaling features from the in-
put training data. Thus, it can recover rough-mask labels from
smaller vessels not initially extracted by K-means. This means
that the first Unet acts as a refinement module to correct the
initial masks by inferring missing vessels based on the struc-
tural redundancy of the cerebrovascular tree. The second Unet,
with a similar architecture as the first one, receives as input the
output of the first Unet with the recovered labels from small
vessels. As a result, the 2D-WnetSeg learns vessels even with a
pseudo-labeled training set with imperfect labels or noise.

The smaller vessels in the brain vessel tree may disappear in
very deep networks due to the subsampling layers. To tackle
this, the 2D-WnetSeg has 14 blocks with convolutional layers
structured into 4 levels. In this, it differs from previously pro-
posed cascaded networks (Dias et al., 2019) or the Unet-based
vessel segmentation from (Livne et al., 2019). This also con-
tributes to reduce the number of trainable parameters. Specifi-
cally, the number of trainable parameters in (Livne et al.,2019)
is about 3.1e7, whereas the WnetSeg has only about 1.6e7 pa-
rameters.

In our architecture, the first 7 blocks form the first Unet and
the second 7 blocks belong to the second one. Each block con-
sists of 2 convolutional layers with kernel size 3 X 3 pixels, each
followed by a rectified linear unit (ReLU). They are both added
to the padding to ensure that the output has the same shape as
the input. A dropout layer is applied between them. As the in-
put proceeds through different levels along the contracting path,
its resolution is reduced by half. This is performed through a
2 x 2 max-pooling operation with stride 2 on 3 levels except
for the bottom level. We double the number of feature chan-
nels at each level of the contracting path. The right portion
of a half-network (Unet), i.e. the expansive path, consists of
blocks with concatenation and up-sampling for each level to ex-
tract low-features and it expands the spatial support of the lower
resolution feature maps to assemble the necessary information
and recover the original input size. Finally, we employ skip-
connections from the shallow layers to deeper layers between
the two 2D-Unets, at the same levels, to ease the training of the
network.

16464 1926464 1 6464 2356 6464 1

2D 27
input x|+ ==
patch 2

2D
NN === segmentation

128128 331128 & I

x[+] =

12x 1
4
4
12x 12
] k=)
P
cmm
4
.

=5 conv 3x3 ReLU Dropout = conv 3x3+RelLU W max-pooling 2x2 A up-sampling 2x2

= final conv 1x1 =» concatenation I feature maps

Fig. 3. Illustration of the 2D-WnetSeg architecture.

2.2.2. Networks for vessel vs. non-vessel patch classification

The classification network is trained on 7p to discriminate
between vessel and non-vessel patches in unseen data. This
discrimination serves two purposes: 1) to synthesize patch tags
without the need of user interventions and 2) to act as a sec-
ond opinion for segmentations. In the latter case, the segmen-
tation network serves as a first expert predicting pixel-wise la-
bels, whereas the classifier network provides a concept on a
per-patch basis. This can be considered an ensemble approach
to uncertainty (Vrugt and Robinson, [2007)), where a disagree-
ment among the two networks/opinions indicates uncertainty on
the predictions of a given patch.

Most works in the literature rely on customized versions
of VGG-16 (Simonyan and Zisserman, 2015) and ResNet (He
et al., [2016), the most popular architectures for natural image
classification, or on task-specific architectures adapted from
general purpose networks (Chen et al., 2016} |Setio et al.|[2016).
In this work, we investigate the use of networks specifically de-
signed for medical imaging applications for our classification
task: the Unet (Ronneberger et al., 2015) and the Pnet (Wang
et al., 2019). As these two networks have been designed for
image segmentation, we hereby describe how they have been
modified to achieve classification.

We denote the modified 2D Pnet architecture (Wang et al.,
2019) 2D-PnetCl. It consists of 7 convolution layers, 2 dropout
layers, and a sigmoid layer. The first 5 convolution layers are
concatenated. Each convolutional layer contains 64 filters with
3x3 pixels receptive fields in a 1 pixel stride sliding with dif-
ferent dilation factors. The dilations are 1, 2, 4, 8 and 16, re-
spectively. The last two convolutional layers are the 1 X 1 con-
volutions, the output feature map is flattened and fed to a fully
connected layer for interpretation with 128 hidden units and the
final prediction layer uses a sigmoid function with one unit to
classify patches with and without vessels. The adapted 2D-Unet
architecture, denoted 2D-UnetCl, uses the network from (Livne
et al.| 2019) as a starting point. Similarly to the 2D-PnetCl,
the output feature map is flattened and fed to a fully connected
layer for interpretation with 128 hidden units and a final pre-
diction layer with one unit to classify patches with and without
vessels.

2.3. Data Augmentation for Segmentation Network Training

The set T, consisting of pseudo-labels is used to train the
2D-WnetSeg. To augment its size without increasing the an-
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Fig. 4. Data Augmentation procedure. The trained classifier is used as the
starting point to enlarge the initial pixel-wise labeled training set 7, with-
out requiring further user inputs. The resulting training set 7),,, is a
combination of both the pseudo-labels and those obtained via the Vessel-
CAPTCHA annotation.

notation burden, we make use of the classification network to
generate a larger set with pixel-wise pseudo-labels. The proce-
dure is depicted in Fig.[d]

Assuming that there is an initial set of unlabeled images I*
that can be used for training, we consider the joint image dataset
of labeled and unlabeled images 747, = 7 |JZ*. The subset 1
of these images is used to generate Vessel-CAPTCHAs, which are
presented to the user for annotation. This results in the training
set 7p (Eq. @), which is used to both train the classification
network and to synthesize the pixel-wise pseudo-labeled set 7,
(Eq.A).

Using the trained classification network, a set of patches { X}
is obtained in the remaining set of images J*. Rather than pre-
senting another Vessel-CAPTCHA to the user for annotation, the
{X} are inputted to the classification network to estimate patch
labels {V7}. The paired set of patches and estimated labels con-
form a new set 7 = {7 ther-

The set 7, is used to synthesize pixel-wise pseudo-label
masks M* following the same procedure applied to 7p
(Sec. @) This leads to a new pseudo-labeled set 7;,. The
extended set of pixel-wise pseudo-labels is formed by the union
of the two sets Tu,,, = 7u U T,;, and is subsequently used to
train the 2D-WnetSeg architecture.

2.4. Inference Phase

Unseen 3D images are segmented by extracting 2D image
patches that are then segmented by the 2D-WnetSeg and con-
catenated to build back the original volume (Fig. [I). In low
quality or noisy images, the resulting segmentation can often
present a large set of pixels erroneously segmented as vessels.
To avoid this problem, the trained classifier network may act

as an expert providing a second opinion to the results from the
segmentation network. In such case, only those patches which
have been classified as vessels are taken into account to recon-
struct the final volume. All the pixels of the remaining patches
are set to zero.

2.5. Implementation Details

We used the Keras library to implement 2D-PnetCl, 2D-
UnetCl and 2D-WnetSeg. The networks were trained on a GPU
workstation with 4-core Intel(R) Xeon(R) CPU @ 2.30GHz,
a NVIDIA Tesla P100-PCIE-16GB, and 25GB memory. For
both 2D-UnetCl and 2D-PnetCl we optimized the binary cross-
entropy loss function with a minibatch stochastic gradient de-
scent and a conservative learning rate of 0.01 and momentum
of 0.9. The weights of the 2D-WnetSet were optimized using
an Adam optimizer with learning rate Ir = le—4, §; = 0.9,
and B> = 0.999. All networks were trained from scratch using
mini-batches of 64 patches. All input patches were normal-
ized by the mean and standard deviation of the whole training
data. A dropout of 0.5 for 2D-PnetCl and 2D-UnetCl, and of
0.1 for 2D-WnetSeg was added to prevent overfitting during
the training. For 2D-PnetCl, the dropout is applied before and
after the second to last convolutional layer. For 2D-UnetCl and
2D-WnetSeg, the droput is applied after a convolutional layer
and the ReLU (Fig.3). The image input sizes of 2D-PnetCl and
2D-WnetSeg were 32x32 and 96x96, respectively. We imple-
mented a zero-padding technique to preserve output size as in-
put size at each convolution layer in both networks. Therefore,
the feature map size at each level in the 2D-PnetCl is 32x32.

3. Experimental Setup

In this section, we describe the experimental setup. First,
we present the datasets used in our experiments (3.1) and the
baselines used for comparison (Sec. @ Then, we describe
the training setup (3.3). Finally, we present the performance
evaluation metrics used in our experiments (Sec. [3.4).

3.1. Data

Three different types of data were used in this study: syn-
thetic, Time-of-Flight (TOF) angiography and Susceptibility-
Weighted Images (SWI). The latter two correspond to two mag-
netic resonance imaging (MRI) sequences commonly used to
image and assess the cerebrovascular tree (Radbruch et al.l
2013)), although blood vessels present different appearances in
each modality. In TOF, vessels are hyper-intense structures,
whereas they are hypo-intense in SWI. Table[T] summarizes the
main properties of each data type and the datasets used.

Synthetic Data. We use the synthetic data generated and made
public by Tetteh et al. (2020ﬂ The dataset consists of 136 vol-
umes of size 325 x 304 x 600 with corresponding labels for ves-
sel segmentation, which were generated following the method
proposed in (Schneider et al., 2012). The vessel labels occupy
2.1% of total intensities, highlighting the problem of vessels
being relatively small objects within a large image volume.

3https://github.com/giesekow/deepvesselnet/wiki/Datasets
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Table 1. Main properties of data used and training and validation test sizes per data type

Synthetic

TOF SWI

Dataset size 136
Volume dimensions 325 x 304 x 600
Voxel spacing 1x1x1mm’

|7p| (patch size 32 x 32)
|7 M| (patch size 96 X 96)

7.18M
1.04M

0.3 x 0.3 x 0.6 mm?>(Set 2)

100 33

560 x 560 x 117 (Set 1) | 480 x 480 x 288
576 x 768 x 232 (Set 2)
Ix1x1mm?Setl)| 1x1xI1mm’
770K
110K

30.6K
10.2K

TOF Data. We use 100 TOF scans coming from two differ-
ent sources. Forty-two TOF subject scans, from retrospective
studies previously conducted at the UCL Queen Square In-
stitute of Neurology, were available with volume dimensions
560 x 560 x 117 and isotropic voxel size 1 x 1 x 1 mm?>(Set
1). The remaining 68 scans were obtained from the OASIS-
3 database (LaMontagne et al.| 2019) with volume dimensions
576 x 768 x 232 and voxel size 0.3 x 0.3 x 0.6 mm?> (Set 2).

SWI Data. We use 33 different subject scans with image di-
mensions 480 x 480 x 288 and isotropic image resolution
1 x 1 x Imm?, from retrospective studies previously conducted
at the UCL Queen Square Institute of Neurology, Queen Square
MS Centre, University College London. Due to poor image
quality, three SWI scans were discarded for the experiments.

3.2. Baselines

We compare our segmentation framework with several al-
ternatives, including state-of-the art deep learning-based vessel
segmentation (Livne et al.| 2019} Tetteh et al., [2020) and clas-
sical approaches (Frangi et al., [1998; |Sato et al.| [1997; [Zulu-
aga et al.| 2014b), and weakly supervised learning frameworks
(Ahn and Kwakl, 2018 |[Lerousseau et al., [2020). Specifically,
we evaluate:

1. Classical 3D Vessel Segmentation Methods: We con-
sider three classical non-learning based approaches, which
use the 3D image volume as input. These are: the Frangi
filter (Frangi et al.,|1998)) (Frangi) and the Sato filter (Sato
et al.| [1997)) (Sato), two references for vessel segmenta-
tion, and a tensor voting framework for 3D brain vessel
segmentation (Zuluaga et al., 2014b) (TV).

2. Deep Leaning-based 3D Vessel Segmentation Methods:
We consider the deep learning-based brain vessel segmen-
tation framework from |Livne et al. (2019) (Vessel 2D-
Unet), which relies on the 2D-Unet (Ronneberger et al.,
2015) as backbone architecture, and uses 2D patches as in-
put; and Deep VesselNet, the framework from [Tetteh et al.
(2020), which uses the 3D image volume as input, but op-
erates on 3D patches using a fully convolutional architec-
ture to extract the 3D vessel tree.

3. Weakly Supervised Methods: We compare our weakly
supervised strategy with one standard MIL and a CAM-
based approach. Concretely, we use a MIL framework for
whole slice (WS-MIL) histopathology segmentation (Ler-
ousseau et al., 2020) and the CAM-based approach pro-
posed by|/Ahn and Kwak|(2018)) for natural image segmen-

Table 2. Hyper-parameter setup for baseline networks

Network Hyper-parameters

Vessel 2D-Unet | batch size: 64, Ir: 1e-4, dropout: 0.0

DeepVesselNet | batch size: 10, Ir: 1e-3, decay: 0.99, cube size:
64

WS-MIL batch size: 100, Ir: 1le-4, decay: 10e-5,
co=c=1, a=[le-2,...,0.1], 5=[0.9,...,0.99]

AffinityNet batch size: 16, Ir: le-1

3D-Unet Ir: le-4, reduced by 0.5 every 10 epochs.
Stopped at 50 epochs if no improvements in the
validation error

VGG-16 batch size: 64, Ir: le-4

ResNet batch size: 64, Ir: le-3

tation (AffinityNet). Both methods work with 2D image
patches with size 32x32 and 96x96, respectively.

4. Other Limited Supervision Strategies: We consider two
semi-supervised strategies using partial labels: the 3D-
Unet, which can be trained using sparsely annotated train-
ing data (Cicek et al.,[2016)), and a Pseudo-labeling strat-
egy, where we use rough masks as labels. The label masks
are generated with the Sato filter (Sato et al., |[1997) and
they are used to train a 2D-Unet network with 2D image
slices.

We compare the classification networks, 2D-PnetCl and 2D-
UnetCl, with two baselines, VGG-16 (Simonyan and Zisser-
manl |2015) and ResNet (He et al.,2016), as they are among the
most common networks for classification (Litjens et al.,[2017).
Table [2] summarizes the hyperparameter setup for every base-
line network.

3.3. Setup

Pre-processing and Annotation. We used the available ground
truth from the synthetic images to generate Vessel-CAPTCHA an-
notations. Since the in-plane dimensions of the images are not
a multiple of the patch size (Table[I)), we overlap the last two
rows/columns of patches.

Both TOF and SWI were skull-stripped using a standard tool
and we generated the Vessel-CAPTCHA annotation grid only over
the brain tissue (Fig[2). Where the minimum-sized rectangle
mask covering the brain tissue was not a multiple of the patch
size in a given dimension, we dilated the mask in that dimension
until the condition was met and generate the annotation grid.
If the minimum-sized rectangle mask touched the image slice
borders and the in-plane dimensions of the images were not a
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multiple of the patch size, we generated the annotation grid by
overlapping the last two rows or columns of patches. Three
users annotated the images using the Vessel-CAPTCHA annota-
tion scheme: a trainee, an experienced rater and a neurologist.
In addition to this, TOF data was pixel-wise annotated. Finally,
no pixel-wise labels were obtained for SWI, since it is difficult
to obtain a sufficiently robust ground truth. All annotation times
were recorded.

For the Vessel 2D-Unet, further data pre-processing for syn-
thetic and TOF data was performed as described in (Livne et al.,
2019). All datasets where normalized (within modality). For
TOF, where two different sources were used, we follow the
intensity and spacing normalization strategy from (Full et al.,
2021)).

Training Setup. Table [T] displays the number of available 2D
patches for training and validation per dataset. For every
dataset, we performed data splitting at the image volume level,
using a split ratio 70/10/20% for training, validation and test-
ing, respectively. The training sets were augmented through
the use of different random rotations, flips and shears at every
epoch for every 2D patch. Models are chosen based on the best
performance in the validation set.

Two different rules are used to synthesize pseudo-labels for
the annotated training set 7 with the K-means algorithm. In
synthetic data and TOF, vessels are associated to the cluster
with the highest mean value, whereas the vessel class is asso-
ciated to the cluster with the lowest mean value in SWI. The
training sets, 7p and 7, are used to separately train a classifi-
cation and a segmentation network per modality.

3.4. Evaluation Metrics

Vessel Segmentation. We estimate the Dice Similarity Coeffi-
cient (DSC), the Hausdorff Distance (HD), the 95% Hausdorff
Distance (95HD) and the mean surface distance error (uD) be-
tween the segmentation and the annotated ground truth to quan-
titatively assess the segmentation accuracy in TOF and the syn-
thetic dataset. We measure HD, 95HD and uD in voxels.

In SWI, the segmentations are assessed qualitatively. Based
on a visual inspection by two raters (an expert rater and a neu-
rologist), the segmented images are classified as good (3), av-
erage (2) or low quality (1). A segmented image is considered
good, if it segments the large and medium vessels, and avoids
the segmentation of noisy regions, with an elongated appear-
ance similar to a vessel, and sulci. It might miss some small
vessels. A segmented image is considered of average quality if
it segments large and medium vessels, it misses small ones, it
may segment noisy areas in a small proportion (less than 50%),
specially in the anterior part of the brain, and often segments
sulci. All other cases are considered as low quality ones. We
use the Cohen’s Kappa coefficient (k) to measure the level of
agreement among raters.

Patch Classification. We measured precision (P), recall (R) and
the F-score (F;), using a vessel patch as the positive class to
assess the quality of the classification results obtained by the
classifier networks.

4. Experiments and Results

We assess the performance of the Vessel-CAPTCHA in terms
of vessel segmentation accuracy and required annotation time
(Sec.[.I)). In Section[4.2] we compare our weak learning strat-
egy with other limited supervision techniques. Section4.3|stud-
ies the proposed classification networks and their performance
as a data augmentation strategy. Next, we perform an ablation
study to understand how the different components of the frame-
work contribute to performance (Sec. and we present a
brief summary of all the obtained results in Section[4.5]

4.1. 3D Brain Vessel Segmentation Performance

We evaluate the performance of the Vessel-CAPTCHA frame-
work in terms of segmentation accuracy and required annota-
tion time using all available datasets. We compare it against
the 3D brain vessel segmentation, i.e. the deep learning vessel
segmentation frameworks and the classical techniques.

Synthetic Data. We use the synthetic data to provide a con-
trolled setup, where the ground truth is fully reliable, to assess
the learning-based vessel segmentation strategies. In addition
to the required fully supervised training, Vessel 2D-Unet and
DeepVesselNet are trained using weak labels from the Vessel-
CAPTCHA annotation scheme.

Figure [5|summarizes the segmentation accuracy results from
the different networks. The Vessel 2D-Unet and Deep VesselNet
present the best performances when they are trained using fully
labeled and reliable ground truth data. DeepVesselNet reports a
minor drop in performance (1 — 2%) w.r.t. the values reported
in (Tetteh et al.,2020), which we consider related to implemen-
tation details. As it could be expected, the Vessel-CAPTCHA has
a slightly lower performance than Vessel 2D-Unet and Deep-
VesselNet trained with full precision labels. However, it sur-
passes the performance of both architectures trained with weak
labels, indicating that Vessel-CAPTCHA is better suited for the
weak learning setup.

TOF images. We use real clinical data from the TOF images
to evaluate the Vessel-CAPTCHA and to compare it against the
3D vessel segmentation baselines in terms of segmentation ac-
curacy and training set annotation time.

Among classical 3D vessel segmentation methods, the Frangi
(Frangi et al., [1998)) and Sato (Sato et al.,|1997) filters produce
real-valued maps that need to be thresholded to get a binary
segmentation. The TV (Zuluaga et al.,[2014b) provides a prob-
ability map, which may produce small spurious segmentations
that need to be filtered out. The three methods allow to identify
vessels at different spatial resolutions. In our experiments, we
set 10 scales in the range [0.5,2] mm. We obtain final binary
segmentations for the classical methods in two ways:

1. No post-processing (NP): the real-valued masks obtained
with the Frangi and Sato filter are normalized to the range
[0,1]. We set a fixed threshold (¢ > 0.6) to binarize the
three maps, and we do no filter out potential small spurious
objects.



10 Dang, Galati et al. / Medical Image Analysis (2021)

DSC (%)
HD (vox)

2.01
12
% 10 _ 159
o X
= g
o ° a
n 11'0_
o 61
4 0.5
24
0- 0.0

Vessel 2D-Unet
(Full)
DeepVesselNet
(Full)
Vessel 2D-Unet
(Weak)
DeepVesselNet
(Weak)
Vessel 2D-Unet
(Full)
DeepVesselNet
(Full)
Vessel 2D-Unet
(Weak)
DeepVesselNet
(Weak)

<
5
Ew
35
Q3
g’
2
3
>

Fig. 5. Segmentation performance in synthetic data. Vessel 2D-Unet and
DeepVesselNet are trained with full pixel-wise annotations (Full) and with
weak labels (Weak). A higher value is better for DSC, lower is better for
HD, 95HD and uD, indicatin that our Vessel-CAPTCHA is the best method
among the weakly supervised ones.

Vessel-CAPTCHA
(ours)

2. Post-processing (PP): Every (real-valued and probability)
map is inspected by overlaying it on the original testing
image, to define and apply a per-image threshold. The re-
sulting binary maps are filtered by masking out any con-
nected component with a size equal or smaller than 4.
Through visual inspection of every binary segmentation
overlaid in the original image, the minimum connected
component size could be modified. Where the results are
yet not satisfactory, the base method can be re-run using
a different set of scales, followed by a new round of post-
processing operations. We record the time required to ob-
tain a visually satisfactory segmentation.

Table[3]summarizes the segmentation performance. Classical
vessel segmentation methods show a poor performance when
no manual post-processing is done. This is expected, as it is a
well-known limitation of such approaches. The manual post-
processing step allows an important jump in performance. In
particular, it allows to remove spurious and disconnected false
positives, which is reflected on their low HD, the best among all
methods, and an important drop of the 95HD, while maintaining
1D relatively constant. However, post-processing requires high
level of expertise and it is time consuming.

With the exception of the HD, learning-based methods con-
sistently show a better performance across measures, with no
statistical differences among them, and the Vessel-CAPTCHA re-
porting the best results among all methods. This demonstrates
that the proposed framework can reach state-of-the-art perfor-
mance despite the use of less accurate annotations (Fig.[6). We

Fig. 6. Segmentation results in TOF images. From left to right: ground
truth, Vessel-CAPTCHA (ours), Vessel 2D-Unet and Deep VesselNet.

bring attention to the fact that Vessel 2D-Unet and DeepVessel-
Net report lower DSC (77.66 vs. 89.0 and 76.13 vs. 81.0, re-
spectively) than the reported in (Livne et al., 2019} [Tetteh et al.}
2020). However, for Vessel 2D-Unet our results show a bet-
ter 95SHD (12.6 vs 47.27) and a comparable sub-voxel uD (0.60
vs 0.38). The better distance-based measures suggest that the
differences in the DSC might come from the ground truth an-
notation protocol, in which our data might include more distal,
hence thinner vessels that are more prone to be unsegmented.
This is confirmed by DeepVesselNet’s DSC on synthetic data.
In the controlled setup, the reported results are comparable to

(Tetteh et al., 2020).

Figure [7] presents segmentation accuracy measured with the
DSC as a function of the required average user intervention time
per image. For the proposed framework, the user intervention
time corresponds to the average time required to obtain weak
labels using the Vessel-CAPTCHA annotation scheme. We report
the average from the time measurements from the three raters
(75.5£12.5 min). For 2D Vessel-Unet and Deep VesselNet, the
user intervention time corresponds to the average time to fully
pixel-wise annotate TOF images (327.5+20.5 min). The 2D-
Unet framework (Livne et al) 2019) requires additional data
pre-processing to obtain patches with vessels located at the cen-
ter of the patch, which is not considered in the reported num-
bers. While this operation could represent a further increase
in the time needed to prepare the training set, we consider it
marginal in comparison with the time required to do the pixel-
wise annotation. Finally, for the classical methods, the user
intervention time corresponds to the average time required to
segment and post-process one image. We observe that, on aver-
age, the Vessel-CAPTCHA reduces the annotation time by 77%,
w.r.t. pixel-wise annotations in the same image, while achiev-
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Table 3. 3D brain vessel segmentation methods accuracy in TOF. The bold font denotes best value, with underlined values not significantly different from
it (@ = 0.05). Classical methods and DeepVesselNet use 3D volumes as input. Vessel 2D-Unet and our framework use 2D patches as inputs. HD, 95SHD and

uD are reported in voxels.

Method DSC () HD (1) 95HD (1) | wD ()
Frangi-NP 54.16+8.81 | 81.04+18.48 | 14.78+13.83 | 2.47+2.22
Sato-NP 55.75+7.15 | 78.60+16.37 | 11.53+12.01 | 2.17+1.07
NL | TV-NP 68.41+5.01 | 60.23+10.08 | 10.97+11.72 | 2.10£1.00
Frangi-PP 68.44+3.15 | 20.60+10.91 | 9.01+10.38 | 2.36+2.01
Sato-PP 69.01+3.67 | 21.53+9.11 | 8.86+10.09 | 2.10+1.01
TV-PP 70.74+3.38 | 20.11+8.45 | 8.31+8.23 | 2.07+1.02
pg | Vessel 2D-Unet 77.66+4.32 | 74.78+16.73 | 12.60=18.16 | 0.600.11
Deep VesselNet 76.13+5.51 | 75.32+12.94 |  4.32+1.16 | 1.65+0.26
Vessel-CAPTCHA (ours) | 79.32+3.02 | 51.70+5.92 | 4.06=1.50 | 0.50=0.09

NL: No labels, FS: Fully supervised, NP: No post-processing, PP: Post-processing
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Fig. 7. Segmentation accuracy (DSC) vs. User intervention time.

ing a higher segmentation accuracy.

Susceptibility-Weighted Images (SWI). We study the capacity
of the Vessel-CAPTCHA to segment different image modalities
by qualitatively assessing the segmentation results obtained in
SWI. The framework was trained and visually assessed on the
validation set. The model visually judged as best was used to
segment the test set.

Figure [§]illustrates some segmentation results. Overall, SWI
is more complex than TOF, thus further errors are observed. As
a general pattern, the SWI segmentations tend to miss small
vessels, while there is also a high incidence of false positives
due to erroneously segmented sulci and noise. Nevertheless,
the raters judged more that 50% of the segmentations as good
and only one image was considered poor by one of them. Their
visual judgment an average rating score of 2.57 with an agree-
ment «k=0.75.

SWI Vessel-CAPTCHA annotation requires 38% more time
than in TOF (94.5+11.5). This is expected given the increased
complexity of SWI scans: small vessels require more effort to
be identified and vessels often present an appearance similar
to sulci (Fig [8). These factors have a direct incidence in the

I Eela

Fig. 8. Segmentation results in SWI images. Top: Original image. Bottom:
Overlaid segmentation. From left to right the first three cases present good
segmentation results. The rightmost example shows a sulci that has been
segmented as if it was a vessel (green arrow).

time needed by a rater to discriminate vessel from non-vessel
patches. Nevertheless, SWI Vessel-CAPTCHA accounts for 71%
less time than the pixel-wise annotation baseline (327.5+20.5
min, see Fig.[7).

4.2. Alternative Limited Supervision Strategies

Using the TOF dataset, we choose to do a separate compari-
son of the Vessel-CAPTCHA and other limited supervision strate-
gies, which excludes fully supervised 3D brain vessel segmen-
tation approaches. As there are no works using limited supervi-
sion addressing 3D brain vessel segmentation we consider that
a direct comparison between the two families of methods (i.e.
limited vs. full supervision) is advantageous towards the fully
supervised techniques.

Partial Labeling Techniques. Table[d]compares our framework
with the partial labeling techniques, 3D-Unet, and Pseudo-
labeling. The 3D-Unet is trained with the pixel-wise annota-
tions. Given that 3D pixel-wise vessel annotations are highly
prone to error, given the difficulties that the brain vessel tree
poses, the resulting annotated dataset is likely to present miss-
ing labels (i.e. sparsity), which the 3D-Unet handles seam-
lessly. Pseudo-labeling uses rough segmentation masks ob-
tained using the Sato filter (Sato et al [I997) to the image
volumes, thus avoiding user annotations. Despite being de-
signed to handle sparse pixel-wise annotations and being the




Table 4. Comparison with partial labeling methods using TOF images. The
bold font denotes best value. Our framework uses 2D patches, Pseudo-
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labeling uses image slices and 3D-Unet image volumes as input.

3D-Unet | Pseudo-labeling | Vessel-CAPTCHA

(ours)
DSC(T) | 68.50+3.37 54.99+5.86 79.32+3.02
HD () 76.12+8.47 68.50+9.58 51.70+5.92
95HD () | 15.72+2.23 24.19+5.25 4.06+1.50
uD () 2.56+1.44 4.48+1.67 0.50+0.09

only method directly processing the image volume, the 3D-
Unet does not achieve the best performance. The results are
lower than those reported by other frameworks requiring pre-
cise pixel-wise annotations, i.e. Vessel 2D-Unet and DeepVes-
selNet (Table 3). These results are consistent with other works
in the literature (Livne et al., 2019; [Kozinski et al., [2020; N1
et al.l 2020; |[Phellan et al., 2017} [Tetteh et al., 2020), which
avoid the use of end-to-end 3D networks and favor the use of
networks relying on smaller input spaces, e.g. 3D subvolumes
(Phellan et al., [2017} [Tetteh et al., 2020), 2D images (Kozinski
et al., [2020; N1 et al., 2020) or patches (Livne et al., 2019).
Pseudo-labeling results suggest that, in isolation, this approach
cannot reach a good accuracy, which explains why it is often
coupled with a refinement stage (Liang et al., 2019} [Ke et al.
2020).

Weakly Supervised Strategies. In our experiments, we were
not able to achieve sufficiently good results with WS-MIL and
AffinityNet that could allow a quantitative comparison with the
other baselines. In this section, we perform a qualitative analy-
sis of the obtained results to gain understanding about the lim-
itations of standard MIL- and CAM-based segmentation tech-
niques for brain vessel tree segmentation.

We adapt WS-MIL to address 3D brain vessel segmentation
by using the Vessel-CAPTCHA patches as input rather than an im-
age slice (Lerousseau et al.,[2020). WS-MIL splits its input into
sub-patches and it ranks them according to their predicted prob-
ability of containing a vessel. We consider two sub-patch sizes,
16x16 and 8x8. The final sub-patch labeling is achieved by us-
ing the ranked patches along with two hyper-parameters, @ and
B, which control the minimum number of pixels belonging to
the foreground (e) and the background class () (Table [2). We
observe two limitations in the obtained results (Fig. E[) First,
the resulting masks correspond to vessel localization masks, not
segmentations, due to the granularity of the patches. The orig-
inal WS-MIL formulation (Lerousseau et al.l 2020) has been
conceived for super resolution histology images, where the re-
sulting labeled sub-patches can be considered a segmentation
mask. Standard brain images have a much lower resolution.
Therefore, the final result lacks the necessary specificity to be
considered a segmentation. Second, we observe that it is diffi-
cult to set a value for @ and S that works well for all the slices
in an image volume. As shown in Figure[9] while a low « value
works well in image slices with larger vessels, the same value
fails to detect smaller vessels, hence it is necessary to train a
new model with different «, 8 values.

The architecture of AffinityNet does not allow images below

Fig. 9. Vessel localization results with WS-MIL using sub-patch resolution
8x8 (top) and 16x16 (bottom). The first two columns use @ = 0.01, 8 = 0.99.
The right-most column uses @ = 0.07, 8 = 0.93 on the middle column
images.

Fig. 10. Vessel patches of size 96x96 (top) with overlaid CAMs (bottom)
from the AffinityNet framework.

a certain size to be fed into it. Therefore, we had to enlarge
the patch used from 32x32 to 96x96, similar to the one we use
as input of 2D-WnetSeg. The larger patches were obtained by
grouping 32x32 patches. A vessel label was assigned if at least
one sub-patch was originally labeled as a vessel patch. Other-
wise, the patch was labeled as non-vessel.

Despite the larger field of view of the new input patches,
our experiments did not achieve good results with AffinityNet.
A visual inspection of the CAMs showed that, although they
activate consequently with the class associated to the patch,
these did not contain discriminative information about vessels
(Fig.[T0). Let us recall that AffinityNet (Ahn and Kwak] 2018)
uses the input image and the CAMs (Zhou et al., [2016) to syn-
thesize pseudo-labels, which are then used to train a segmenta-
tion model. However, CAMs are rough approximations of the
object of interest (Ahn and Kwakl 2018} [Bae et al., 2020} |[Zou
et al., 2021). In the past, CAM-based methods have been used
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to segment relatively large objects in natural scenes
[Kwak,, 2018}, [Hong et al., 2017} Zou et all,[2021]), damaged tis-
sue (Izadyyazdanabadi et al, [2018) or blob-like structures oc-
cupying an important part of the image, such as the optic disc
2019). In our case, as vessels are relatively small
objects, it seems that the network requires to use much more
information from the scene to discriminate between vessel and
non-vessel patches, as reflected by the CAMs (Fig. [I0). The
information, however, is to broad to locate the vessels and thus
AffinityNet fails.

4.3. Classification Networks

Classification Networks Performance. We study the perfor-
mance of the two classification networks, 2D-UnetCl and 2D-
PnetCl, to determine if they are well-suited as discriminators
within our framework. Table [5|compares the classification per-
formance of 2D-UnetCl and 2D-PnetCl in TOF and SWI im-
ages with VGG-16 and the ResNet. For each network, two
models were trained, one for TOF and one for SWI. Results
are reported on the best performing model in the validation set.

The two proposed networks, derived from medical imaging
task-specific networks, present a higher overall performance (F-
score) than VGG-16 and the ResNet, suggesting that the net-
works specifically designed for medical imaging tasks can con-
tribute to an increased performance. All methods report a drop
in performance from TOF to SWI, which is expected given that
SWIs are more challenging to classify and segment due to sev-
eral factors. First, vessels in SWI are hypo-intense, being sim-
ilar in appearance to the image background. As such, vessels
close to the brain surface are prone to misclassification. Sec-
ond, SWI is capable of imaging very small vessels that can be
difficult to identify within a patch, as they can have an appear-
ance similar to the one of brain tissue inhomogeneities or sulci,
this leading to misclassification.

Among the proposed networks, 2D-PnetCl presents the high-
est performance in both modalities. This reflects a good balance
in the network’s capability to discriminate among vessel and
non-vessel patches, which is key for its use within the Vessel-
CAPTCHA framework. In the remaining, we rely on 2D-PnetCl
as a classification network.

Classification Network as a Weak Pseudo-label Generator. 'We
use a percentage (25%, 50% and 100%) of the weakly anno-
tated training set 7,. Where applicable, we enlarge it with a
fixed set of 10 images automatically labeled through the data
augmentation process, i.e. |7 /=10, (Fig.@). Figure@reports
DSC in the different scenarios. The results show that the data
augmentation step improves performance w.r.t. using the same
annotated training set with no augmentation, while reaching a
comparable performance to that one of using a dataset entirely
annotated by the user. The comparable performances come as
a result of the high classification accuracy of the 2D-PnetCl (F-
score=94.71%), which sits close to the performance of a human
rater.

Classification Network as a Second Opinion. The results ob-
tained by post-processed classical methods (Table [3) suggest
that a revision of the segmentation results and their refinement

82.5 - BN original
W augmented

25% 50%
[Tm| %

100%

Fig. 11. Segmentation performance with varying training set size with (aug-
mented) and without (original) data augmentation.
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Fig. 12. Threshold (th) calibration of the 2D-PnetCl output. Precision, re-
call and F-score measure patch classification accuracy, wehereas DSC mea-
sures pixel-wise segmentation performance.

through post-processing can lead to a significant improvement
in performance. We investigate if the classification network can
act as an expert providing a second opinion on the segmenta-
tion results obtained by the 2D-WnetSeg, on a per-patch basis.
If the classification network labels a patch as vessel patch, the
segmented pixels in the patch will be preserved. Instead, if the
classification network classifies the patch as a non-vessel one,
any segmented pixels are masked out. To this end, we calibrate
the 2D-PnetCl output by choosing the classification threshold of
the final prediction layer, which maximizes the DSC (Fig. [12).
Figure [I3] reports vessel segmentation DSC, using Set 1 of
the TOF images, in the following scenarios: 1) on all the test-
ing set (ALL); 2) on 4 images identified as of low quality by
the raters (LQ); 3) using a second opinion on the testing set
(CI(ALL)); 4) using a second opinion on the low quality data
(CI(LQ)); and 5) in all the testing set with the a second opinion
only on the low quality data (ALL+CI(LQ)). The results sug-
gest that using the classifier network as a second opinion has
a significant impact in the segmentations’ accuracy and vari-
ability for low quality (LQ) images (p-value<0.05), although
when applied to the full test set there is a slight drop in accu-
racy (~1.9%), indicating a negative impact on the segmentation
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Table 5. Classification network comparison in TOF and SWI. For each row, bold font denotes the best value, with underlined values not significantly
different from it (¢ = 0.05). An asterisk (*) denotes a network proposed in this work.

VGG-16 ResNet 2D-UnetCl* | 2D-PnetCl*
Precision | 92.48+1.54 | 93.66+1.48 | 94.82+0.48 | 94.91+1.04
TOF | Recall 87.39+4.60 | 93.27+1.73 | 94.04+0.65 | 94.94+1.09
F-score | 88.68+3.81 | 93.34+1.62 | 94.27+0.54 | 94.71+1.23
Precision | 82.34+1.15 | 80.14+1.13 | 82.44+1.18 | 82.97+1.55
SWI Recall 77.45+4.17 | 79.39+3.35 | 74.35+5.35 | 79.30+4.07
F-score | 78.76+3.39 | 79.17+2.31 | 76.42+4.63 | 80.31+3.31
704 *T
? $
68 ¢
66 : , . ; .
ALL LQ CI(ALL)  CI(LQ) ALL+CI(LQ)

Fig. 13. Classification network as a second opinion in TOF. Vessel segmen-
tation DSC for all the test set (ALL), low quality test images (LQ), full test
set after second opinion (CI(ALL)), low quality images after second opinion
(CI(LQ)) and full test with only the low quality subject to a second opinion
(ALL+CI(LQ)) using 2D-WnetSeg trained on original training set 1.

accuracy in high quality images. As a result, one could con-
sider the classifier as a second opinion and not the main expert.
In images were there is a discrepancy between the segmenta-
tion network and the classifier, the user may inspect them and
decide what to do. As an example, the second opinion could be
used only on those images identified as of low quality by the
raters. The results from Figﬁ;glindicate that, in such scenario, a
higher overall performance is achieved.

We follow the same procedure using SWI segmentations and
present the revised segmentation masks to the raters for visual
judgement. The average rating score achieved was 2.30 with
an agreement k=0.57, which is lower than that one achieved
without using a second opinion (i.e. 2.57, see Sec@). This
lower rating score is explained by the fact the classification net-
work allows to correct segmentations containing large regions
of false positives caused by noise in the image, mostly in the
boundaries of the brain tissue, at the cost of removing true posi-
tives (Fig.[T4). One rater considered this as less critical than the
other, which explains the lower agreement among them. The
results suggest that the classifier network should not be consid-
ered as an expert, i.e. it acts as a mask, but as a second opinion
providing a heuristic measure of uncertainty on patches where
the two networks disagree. The mismatching and uncertain re-
gions should be thus validated by an external user.

4.4. Ablation Study

We study the properties of the different components of the
proposed annotation and segmentation framework through a set

Fig. 14. Classification network as a second expert opinion in two SWI slices.
From left to right, original image, segmentation from 2D-WnetSeg, seg-
mentation after filtering. The yellow boxes highlight areas with image noise
that are first segmented as vessel, but corrected with the filter. The green
dashed boxes, highlight areas with segmented vessels that are removed.

of ablation studies. We investigate the incidence of the K-means
as and we investigate the role of the 2D-WnetSeg network.

4.4.1. K-means as a Pseudo-label Generation Strategy

We study how the pixel-wise pseudo-labeled dataset 7, syn-
thesized from user-provided weak patch tags affects the frame-
work’s performance in TOF. We achieve this in two ways.
First, we investigate if the pixel-wise pseudo-labels synthesized
by K-means represent a good rough approximation of pixel-
wise user-annotated labels. Second, we assess how the size
of the patches used as input of the segmentation network in-
fluences the latter’s performance. In our experiments, we com-
pare with Gaussian mixture models (GMM), an alternative self-
supervised approach to obtain pixel-wise pseudo-labels from
image tags 2020). Two components (vessel and
background) are used for the GMM to be comparable with K-
means. For both cases, patches with more than 30% pixels
marked as vessel are fully masked out and considered as non-
vessel. These correspond to highly noisy patches containing
only brain tissue.

The role of the self-supervised method, i.e. the K-means
in our case, is to synthesize pixel-wise pseudo-label masks



Dang, Galati et al. / Medical Image Analysis (2021) 15

80
mm K-Means
601 GMM
@ 40
[a)
20
o I
FV IS 96x96  64x64  32x32
80
—— K-Means
701 GMM
b
Q60
50
40

20 30 40 50 60 70 80 90 100

Fig. 15. Top: Similarity between user-provided pixel-wise annotations and
weak pixel-wise labels obtained through K-means and GMM, measured
through the DSC in TOF. K-means and GMM are applied on the full vol-
ume (FV), on a per slice basis (IS) and on different patch sizes. Bottom:
2D-WhnetSeg performance using pixel-wise pseudo-labels by K-means and
GMM for different input patch sizes (16, 32, 64 and 96).

{/V(s}f:1 which are sufficiently good to train the segmentation
network. In other words, the pseudo-labels should be as close as
possible to hypothetically pixel-wise annotations provided by a
user. We thus measure the similarity between the pixel-wise
pseudo-labeled masks { Ms}le and the available pixel-wise an-
notations of the TOF training set. The K-means (and GMM)
are applied on different input sizes, namely directly on the full
image volume, or on subsets of it that are then concatenated.
For this we use image slices and patches of varying sizes: 96,
64 and 32. For the patches, K-means and GMM are only ap-
plied to vessel patches. We set 32 as the smallest patch size,
which corresponds to the size set for the Vessel-CAPTCHA, i.e.
the user-input. Larger patches are obtained by concatenating
the user input into a 2 X 2 and 3 X 3 grid.

Smaller Patches are Best for Pseudo-label Generation. Fig-
ure [T5[top) shows the similarity between the training set pixel-
wise annotations and the weak pixel-wise label masks measured
with the DSC. The performance of both methods is inverse to
the size of the input sample. As it would be expected, when
applied to large extents of the image volume, i.e. the full im-
age volume (FV) or on a per image slice basis (IS), the DSC is
very low (< 40%), with GMM reporting slightly higher values.
As the extent of the input sample decreases, i.e using patches,
K-means performs better, which could be justified by the fact
that smaller regions tend to be more homogeneous. Two as-
pects should be highlighted from the obtained results. Firstly,
we observe that GMMs lead to thinner vessel masks than those
synthesized by K-means (Fig.[I6), which is consistent with the
higher DSC, as over-segmentations tend to be less penalized
than mis-segmentations. Given the way that the 2D-WnetSeg
learns, it is better to have overestimated masks from K-means
than the finer ones. However, being K-means a simpler algo-

Fig. 16. Examples of the generated training set 7,. From left to right orig-
inal TOF image, ground truth, GMM pseudo-labels and K-means pseudo-
labels.

rithm, the patch size used as the input plays an important role.
Our results suggest that smaller patch sizes lead to better results.
Secondly, we shall recall that both self-supervised methods are
only applied to vessel patches. This is a necessary condition
to obtain pseudo-labels of a minimum quality using these two
algorithms. The condition is guaranteed by the patch tags dis-
criminating vessel from non-vessel patches, which are obtained
through the Vessel-CAPTCHA. Based on these results, for the re-
maining experiments we set the patch size input to the K-means
to 32 x 32, which corresponds to the same value used in the
Vessel-CAPTCHA.

Larger Patches are Best for Segmentation. Figure|15|(bottom)
shows the 2D-WnetSeg accuracy with varying input patch sizes
over the validation set. The patches are obtained by rebuild-
ing the rough mask volume from the 32x32 patches and re-
cropping the volume into different patch sizes. It should be
noted that the segmentation network’s input patch size does not
have to match that one of the Vessel-CAPTCHA. Coherently with
the previous results showing that K-means pseudo-labels are
more similar to true annotations, their use consistently leads to
higher DSCs. The Vessel-CAPTCHA patch size, 32 X 32, seems
too small for the 2D-WnetSeg to capture the features that al-
low to discriminate vessel pixels from non-vessel ones. Instead,
larger patches lead to higher DSCs. However, we avoid the use
of larger patch sizes to avoid the problem of vessels becoming a
small portion of the full image/patch, leading to drops in perfor-
mance. For instance, we set the segmentation network’s input
patch size to 96 x 96.
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Fig. 17. 2D-WnetSeg (ours) vs single Unet performance (DSC) for varying
training set size, |7 |.

Table 6. 2D-WnetSeg (ours) vs single Unet performance using synthetic
data.

Measure | 2D-WnetSeg | One 2D-Unet
DSC (1) 88.77£0.90 | 86.61+1.05
HD () 40.31+2.95 | 41.18+4.32
95HD ({) 6.74+0.48 7.96+0.52
uD () 0.91+0.06 1.08+0.07

4.4.2. The Role of the Segmentation Network

We perform an ablation study to explore the effectiveness
of the 2D-WnetSeg. Figure [17| compares the performance of
2D-WnetSeg with its ablated version consisting its first Unet
(2D-Unet), while varying the size of the training set. The 2D-
WhetSeg reports a higher DSC across datasets. The better per-
formance of the 2D-WnetSeg is explained by the fact that the
deep networks are trained on rough segmentation maps. The
first Unet works as a refinement module to correct the mask
by inferring potentially missing vessels based on the structural
redundancy of the cerebrovascular tree. The second Unet can
learn from the raw brain image and the previously improved
segmentation mask, leading to an increased segmentation per-
formance. The single Unet, instead, is faced directly with the
rough masks. We further investigate this behavior using the
synthetic dataset, which provides a controlled setup for com-
parison (Table [6). The higher reported DSC of 2D-WnetSeg
indicates it is better at detecting vessel pixels. Moreover, the
lower 95HD and uD are a sign of the more refined results that
the 2D-WnetSeg can achieve w.r.t. its ablated version.

4.5. Summary

Table [7] summarizes the performance of the different base-
lines compared in this work, along with their computational
costs, in terms of model size, FLOPs, training and inference
time, and user intervention time. Training time denotes the time
required to train a learning-based model, except for Pseudo-
labeling, where it refers to the time to train the model and to ob-
tain sequentially the pseudo-labels for each image in our train-

ing and validation sets using the Sato filter. User intervention
time represents the time to annotate the training set in learning-
based approaches, or to post-process the segmentation results
for classical methods. It should be noted that for the latter user
intervention occurs every time an image is segmented, whereas
for learning-based methods this only happens once during train-
ing. In addition to the considered baselines, we include two fur-
ther methods for reference: the 2D-WnetSeg trained with pixel-
wise annotations and the combination of the classifier network
with K-means (no segmentation network). Overall, the Vessel-
CAPTCHA has a performance comparable to the best fully super-
vised methods 2019), it avoids any post-processing
steps and it provides an important speed-up for training data an-
notation.

5. Discussion and Conclusions

Context and Proposed Solution. Deep convolutional networks
have achieved state-of-the-art performance in many medical
image segmentation tasks. However, their success has not been
as wide for 3D brain vessel segmentation. This can be ex-
plained by two factors. First, deep learning techniques are less
performing when the object of interest occupies a small por-
tion of the image, as it is is the case for brain vessels
2019). Second, manual pixel-wise annotation of ves-
sels is highly time consuming and complex (Moccia et al.
[2018). In this work, we introduced the Vessel-CAPTCHA, an
efficient learning framework for vessel annotation and segmen-
tation. The framework formulates the Vessel-CAPTCHA annota-
tion scheme, which allows users to annotate a dataset through
simple clicks on patches containing vessels, similarly to the
commonly used image-CAPTCHAs of web applications
[Ahn and Dabbish|, [2004). As such, our work can be considered
a multi-instance learning problem where a bag corresponds to
an image patch and the instances are the image pixels to be seg-
mented.

User-provided patch-level tags are used to synthesize pixel-
wise pseudo-labels that serve as input to train a 2D patch-based
segmentation network. In particular, we use the K-means algo-
rithm to synthesize the pixel-wise pseudo-labels along with the
proposed 2D-WnetSeg network, concatenating two 2D-Unets,
as backbone architecture. The use of a 2D patch-based seg-
mentation network instead of more complex end-to-end 3D or
hybrid architectures, is motivated by the need to increase the
object-of-interest to image size ratio, as a way to mitigate the
reduced performance of deep learning-based methods when the
object of interest does not occupy an important portion of the in-
put image. Furthermore, this simplifies the learning process: at
a larger scale, the complexity and uniqueness of each brain ves-
sel tree makes it difficult to learn common underlying patterns
(Moriconi et al., 2019), whereas, at a local scale, the character-
istic patterns of vessels are similar between each other, allowing
the network to learn them. Reducing the input size is a common
strategy in learning-based vessel segmentation, beyond brain
vessel tree segmentation (Kitrungrotsakul et al., 2019} [Kozifiskil
2020). The lower results obtained by 3D networks vali-
date our choice of a 2D patch-based segmentation network.
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Table 7. Performance summary considering segmentation accuracy, model complexity (Params, GFLOPs), and computational (training and prediction)
and user intervention time in minutes. In classical models (NL), user intervention time is measured during inference. In learning-based models, it refers
to the time used during training set annotation. For accuracy measures, the bold font denotes best value, with underlined values not significantly different

from it (o = 0.05).

Method Accuracy Complexity () Time ({)
DSC (1) HD (}) 95HD (]) uD (]) Params x10° | GFLOPs | Train | Predict | User

Frangi-NP 54.16+8.81 | 81.04+18.48 | 14.78+13.83 | 2.47+2.22 25 0
Sato-NP 55.75+7.15 | 78.60+16.37 | 11.53+12.01 | 2.17+1.07 25 0

NL TV-NP 68.41+5.01 | 60.23+10.08 | 10.97+11.72 | 2.10+1.00 <1 <1 0 35 0
Frangi-PP 68.44+3.15 | 20.60+10.91 | 9.01+10.38 | 2.36+2.01 25 25
Sato-PP 69.01+£3.67 | 21.53+£9.11 | 8.86+10.09 | 2.10+1.01 25 25
TV-PP 70.74+3.38 | 20.11+8.45 8.31+£8.23 | 2.07+1.02 35 25
Vessel 2D-Unet 77.66+4.32 | 74.78+16.73 | 12.60+18.16 | 0.60+0.11 31.38 15.6 90

FS | DeepVesselNet 76.13+5.51 | 75.32+12.94 4.32+1.16 | 1.65+0.26 0.05 NA 960 <1 327
2D-WnetSeg 76.63+£4.26 | 80.69+23.20 | 13.15+£19.67 | 2.13+2.37 16.34 25.90 90

LS 3D-Unet 68.50+3.37 | 76.12+8.47 15.72+2.23 | 2.56+1.44 16.21 | 1669.53 60 <1 327
Pseudo-labeling 54.90+5.86 | 68.50+9.58 | 24.19+£5.25 | 4.48+1.67 31.38 15.6 910 0
PnetCl + K-means 64.96+4.76 | 65.82+7.99 | 16.66+3.85 | 2.62+0.65 0.62 0.993 60 ~1 755
Vessel-CAPTCHA (ours) | 79.32+3.02 | 51.70+5.92 4.06+1.50 | 0.50+0.09 16.34 25.90 90 <1 ’

NL: No labels, FS: Fully supervised, LS: Limited supervision, NP: No post-processing, PP: Post-processing, NA: Not Available

Fig. 18. 3D renderings of obtained segmentations in two TOF images (left) and two SWI (right).

To further ease the annotation process, our framework in-
cludes a classification network that can label training data with-
out further user effort. This network is trained using the same
user-provided patch tags and it allows to classify image patches
from unseen images that can be used to enlarge the original
training set without the need for further user annotations.

Framework Evaluation. We evaluated the proposed framework
in terms of its accuracy and required annotation time, using
a synthetic dataset and two image modalities, TOF and SWIL.
Our framework achieved performances comparable to those of
current state-of-the-art deep learning approaches for brain ves-
sel segmentation (Livne et al., [2019; Tetteh et al., [2020), while
reducing the annotation burden by 77% on average. A visual
inspection of the extracted trees showed a good continuity of
the extracted vessel trees across image slices (Fig. [I8). When
compared to other approaches subject of limited supervision,
our simple yet effective framework demonstrated its superior-
ity. Our promising results, with competitive accuracies and a
significant reduction of the user-required effort, should enable
the wider use of deep learning techniques for vessel segmenta-
tion.

Our results show that the classifier network not only allows
to enlarge the training dataset, but it can act as a second opin-
ion to assess the segmentations. This concept could be further

extended to guide a user in the manual correction of a segmen-
tation mask. In this work, we used the classification network
as an expert. However, the disagreements between the segmen-
tation and classification network (i.e. 2D-WnetSeg segments a
vessel in a patch classified as non-vessel or vice versa) could be
used as a measure of uncertainty. Since WnetSeg and PnetCl
architectures are significantly different, they extract low-level
and high-level features differently. As such, they are comple-
mentary to each other: if both agree on a prediction over a
patch, the prediction can be considered as one of high confi-
dence, whereas when there is a disagreement the patch can be
suggested to the rater for revision.

Limitations and Perspectives. Although our work focuses on
the brain vessel tree, we consider that the proposed framework
is general enough that it can be easily extended to other vascu-
lar structures (Aughwane et al., [2019), other tubular structures
with complex networks to annotate (Zuluaga et al., 2014a), or
different image modalities. However, for some modalities the
K-means algorithm used to obtain pixel-wise pseudo-labels can
be limited. As an example, the coronary vessel tree imaged with
computed tomography angiography is likely to present calci-
fied or lipid plaques that appear as hyper and hypo-intense ob-
jects, respectively (Zuluaga et al., 2011). In the current setup,
they would be segmented as a vessel (calcified plaques) or the
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background (lipid plaques). A natural extension of this work
would be to develop novel self-supervised methods, beyond
those studied in this work, which can cope with the characteris-
tics of different vessel/tubular trees and image modalities.

Our main effort in this work has been directed towards a sim-
plified annotation process and the development of mechanisms
that can mitigate the negative effects of ‘simpler’ annotations to
achieve performances comparable to the state-of-the-art. Nev-
ertheless, we consider that there are different ways that could
be explored to achieve a higher performance and 3D vessel
continuity. For instance, similarly to what has been proposed
by (Kozinski et al., [2020; |[Phellan et al., [2017)), the annotations
could be performed in different image planes. The use of mul-
tiple planes could contribute to improve the 3D consistency of
the extracted vessel tree and its continuity. Currently, these are
done in the axial plane. In addition, the Vessel-CAPTCHA al-
lows for flexible annotations as, for some users, it is simpler to
label vessels by following their trajectory. Now, all this infor-
mation is discarded (see Fig. Eke) and (g)), when in some cases
it may have relevant content. The challenge here would be to
identify when the patch annotations contain relevant informa-
tion beyond the mere identification of the patch. Finally, one
last limitation of the current framework is related to the selec-
tion of the patch grid scheme. While it is convenient to present
non-overlapping patches to the user, in some cases, this may
degrade the framework’s performance. This is particularly true
when the grid partition results in the split of vessels, in particu-
lar the smaller ones, across two or more patches causing them to
lose their characteristic shape. The use of overlapping patches
is a straightforward extension of this work that could reduce the
number of misclassified vessels.
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