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Abstract—Service Function Chaining (SFC) has gained mo-
mentum in the wake of the emergence of promising technologies
such as Network Function Virtualization (NFV), and Software
Defined Networking (SDN). Many research works have explored
Service Function Chaining under different aspects: composition,
resource allocation, as well as placement and chaining. However,
SFC mapping in a multi-domain context with limited visibility
on the underlying infrastructure is still a challenging research
topic. In this work, we model the multi-domain SFC placement
problem as a multi-objective ILP, then propose a scalable
memetic algorithm. The efficiency of our solution is evaluated
by comparing its results to the ones obtained from the exact
solution with full visibility on the network topology.

Index Terms—SFC, Multi-domain, NFV, SDN

I. INTRODUCTION

New generations of networks, including 5G, rely mainly
on two network softwarization technologies: Network Func-
tion Virtualization (NFV), and Software Defined Networking
(SDN) [1]. SDN decouples the control plane from the data
plane to enable dynamic network programming; on the other
hand, NFV aims at running Network Functions on top of
a virtualized environment (i.e. VMs or containers) hosted
in the Cloud (central or edge) in order to reduce Capital
and Operational Expenditures, and improve service flexibility.
Along with NFV emerged the concept of micro-services,
which is the decomposition of services in small blocks that
perform simple functions, thus creating the need for steering
traffic between those functions in a certain order so that
services are delivered properly; this process is referred to as
Service Function Chaining (SFC), it leverages on SDN and
NFV, and brings out many orchestration challenges such as
service composition, placement, or traffic steering [2]. More
specifically, one challenging research topic in SFC is multi-
domain placement and chaining, which occurs in scenarios
where a service requires its components to be deployed on
multiple domains; this task gets more difficult if the domains
belong to different administrative entities that are reluctant to
disclose detailed information on their topology; indeed, the
lack of sufficient information leads to sub-optimal placement
decisions. In this paper, we devise a novel solution for SFC
mapping on multiple administrative domains, with a limited
view on the network topology, which aims to optimize the cost
and end-to-end latency according to the users’ Service Level
Agreement (SLA). We first model an exact solution using a
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multi-objective Integer Linear Program (ILP), then introduce
a heuristic that ensures scalability.

The contributions of this paper are twofold: i) We present
a hierarchical placement scheme with limited visibility over
multiple domains that supports complex non-linear SFCs, with
a backtracking mechanism to handle local placement failure.
ii)  We model multi-domain SFC placement as a multi-
objective ILP, then propose a scalable and efficient memetic
algorithm that performs SFC mapping according to the client’s
SLAs.

The remaining of this paper is organized as follows: Section
IT discusses previous works; Section III presents an overview
of the adopted architecture for multi-domain orchestration, as
well as the ILP formulation of the problem, and the proposed
memetic algorithm; Section IV provides the methodology
for our experimental evaluation, and discusses the obtained
results; finally, we conclude the paper in Section V.

II. RELATED WORKS

A large set of works have tackled the SFC placement issue,
with different optimization parameters such as cost, energy,
or latency (refer to [2] for a comprehensive survey); however,
most of these works assume that the orchestrator has full
visibility and control on the underlying network infrastructure.
As previously outlined, deploying service chains on multiple
administrative domains adds more constraints to the placement
problem. Indeed, for security reasons, the Infrastructure as a
Service (IaaS) providers withhold details on their local in-
frastructure, which makes it difficult to determine the optimal
end-to-end placement and chaining of services due to the lack
of information. A few works have addressed the multi-domain
SFC deployment issue with limited visibility on the network;
two main architectural approaches have been proposed:

a) Distributed: 1t supposes that the infrastructure
providers don’t share any details on their network; in that case,
a distributed algorithm is executed on all of the domains, and
messages are exchanged in order to determine the best option
without disclosing information to external parties. However,
this approach falls short in terms of scalability, as communica-
tion and convergence time and cost are considerable. The work
in [3] details a policy-based, distributed, asynchronous election
protocol based on hosting capabilities; the solution allows edge
and core cloud providers to cooperatively instantiate wide-area
chains; however, the proposed solution does not support more



complex, non-linear SFCs, and its placement evaluation only
considers CPU and bandwidth constraints. Zhang et al. [4] also
propose a distributed vertex-centric algorithm that supports
SFC flexibility in order, the request is relayed between the
orchestrators in order to determine the optimal placement
combination.

b) Centralized: In this approach, a broker/coordinator
collects the information disclosed by different IaaS providers,
and reconstitutes an abstract global view of the network, the
centralized broker performs an initial placement using this
abstract view, then partitions the request and relays the sub-
requests to the local domains; however, this approach leads
to sub-optimal orchestration decisions due to the lack of
sufficient information on the infrastructure state. Figueira et al.
[5], and Guerzoni et al. [6] propose hierarchical architectures
for multi-domain SFC orchestration, where a centralized main
orchestrator interfaces with lower-level domain orchestrators.
Dietrich et al. [7] leverage on this architectural approach and
detail a solution for SFC mapping across datacenters that are
operated by multiple Network Function Providers (NFP). The
proposed solution allows NFPs to disclose minimal informa-
tion about their infrastructure and constructs an abstract view
of the network topology. The placement is then performed
in two stages: graph partitioning and sub-graph mapping;
however, the solution doesn’t take latency into account, which
is a critical requirement for the upcoming 5G use cases
(i.e. Ultra Reliable Low Latency services); furthermore, the
solution is formulated as a Linear Program and therefore lacks
scalability, which makes it unsuitable for bigger instances of
the problem. Similarly, Xu et al. [8] propose a multi-domain
service chain partition and embedding scheme using a Hidden
Markov Model and a Viterbi-based heuristic. The proposed
solution only considers latency during the graph partitioning
phase, and only aims to minimize cost during the sub-graph
mapping phase while discarding latency; which leads to sub-
optimal solutions.

III. PROPOSED SOLUTION
A. Architecture

As stated earlier, we adopt a hierarchical approach where a
logically centralized multi-domain orchestrator establishes an
abstract view of the network using the information disclosed
by each domain, and interacts with the different local domain
orchestrators as well as the WAN domain operators in order
to provide an end-to-end visibility and control of the different
SFCs; as in [9], we suppose that the local domains disclose
the following information on their infrastructure:

o The total available computing capacity, as well as the
average cost per unit for each resource type.

o The vertices of their inter-domain links, their available
capacity, latency, and cost per bandwidth unit.

We assume that the amount of computing and link resources
made available by each domain/WAN operator is defined by
pre-established mutual agreements. Upon receiving a SFC
request, the multi-domain orchestrator performs an initial

placement of the request using the abstracted view of the
network; the placement takes into account the request’s link
and resource requirements, as well as affinity and anti-affinity
constraints between Virtual Network Functions (VNFs), their
allowed placement locations, and the level of priority of each
optimization objective obtained from the client’s SLA. The
broker then proceeds to partition the request according to the
initial abstract placement, and adds dummy boundary nodes
at the sub-chain’s extremities. These boundary nodes would
require to be placed on the border routers of the domain,
which serves to direct the traffic out of the domain and to
the next sub-chain. The sub-requests are then transferred to
the selected domains, and placed by their respective local
orchestrators with full knowledge of the topology. In case
the placement of a sub-request on a local domain fails, a
backtracking mechanism is triggered if possible, in order
to re-run the abstract placement operation while ruling out
the previous solution, and the graph-partitioning operation is
performed again; otherwise, if all of the solutions have been
ruled out, the placement request is rejected. After receiving
the placement results of the different sub-requests, the end-
to-end cost and latency are computed, and a confirmation is
sent to the local domain orchestrators in order to trigger SFC
deployment. The pseudo code of the abstract placement and
request partition scheme is provided in Algorithm 1.

B. Problem Formulation

We present in this section our ILP formulation of the
placement problem. The network infrastructure is modeled as
a weighted undirected graph G = (V, £), where N' = NGjUN
is the set of vertices representing the forwarding devices
(switches and routers) N, and the Data Center nodes Ny
with associated computation, memory and storage capacities;
the vertices are connected by edges representing physical links
from the set £, that are characterized by bandwidth capacity,
as well as the induced latency. We will also denote by P the set
of pre-determined physical paths between the physical nodes.
We denote by S the set of SFCs, and by V; the set of VNFs
in the SFC 1.

Each SFC request is modeled as a directed weighted graph,
VNFs are represented by the vertices with associated resource
requirements as well as a set of authorized nodes M, ;
on which the VNFs can be placed, they are connected by
the graph’s edges, with associated link requirements. We
specify bandwidth requirements for each individual link, as
some VNFs may change SFC’s traffic volumes; the requests
also specify the user’s preferences regarding the optimization
objectives (i.e. cost and latency) according to their SLA.
Further, our model supports more complex non-linear SFCs
where traffic flows through certain VNFs more than once
using dummy nodes that are bound to the original VNFs using
affinity constraints in order to route the traffic back to these
particular VNFs; we assume that the amount of computing
resources allocated to each VNF has been adjusted to the
volume of processed traffic during the resource allocation
phase, which is out of the scope of this work.



Algorithm 1: Multi-Domain Placement Algorithm

Input : Abstract Topology Gups , Request req
Set of Authorized Domains M

Output: Vector containing the placement result
absractP]l < abstractPlacement(req,Gaps,/M);
if abstract placement failed then

| return False, null, null
end

// Perform request partitioning

AW N =

5 partReqs <— requestPartitioning(req,abstractPl);
6 for p < 0 to |partReqs|-1 do
7 partialPl[p] < localPlacement(partReqs[p]);
8 if local placement fails then

// Perform backtracking
9 if Jvnf € Jj partRegs(n], | Mynys| > 1 then
10 Find one vnf for which [M,,f| > 1 ;
11 Moyng — Myns — {abstractPl[vnf]};
12 Go to Step 1;
13 else
14 | return False, null, null
15 end
16 end
17 end

// Compute EZ2E cost & latency
18 for i € ['Cost’,Latency’] do

|partReqs|—1

19 evalli] = > partialPl[p][i] +
il

20 >~ Gabs|absPl[n-1]][absPI[n]][7];
n=1

21 end

22 Send placement confirmation to local domains;
23 Update Gups ;

24 return True,cost,latency

1) Constraints:
a) Placement Constraints.:
Node Mapping: The boolean variable X;"; expresses
whether the j™ VNF of the SFC i has been mapped to the
physical node n.

yn — 1 If VNF j of SFC ¢ is placed on node n
&3 7 10 Otherwise
oA =1, i€ S,VjeV (D
neEM; ; ’
X, — &, =0, ieS,j,keV,necNg ()

AL+ XN <1, ieS,jkevV,neN; (3)

1€S,VjeV;,Vn € Mj,Vm € Mj.:,_ll
Xn

i Xililj+] < Pin,m> @
Constraint 1 ensures that each VNF is mapped to only one
physical node, which is an authorized node for this specific

VNE. Constraints 2 and 3 express affinity/co-location (i.e. two

VNFs must be placed on the same node) and anti-affinity/anti-
location requirements. We denote by p; ,,, the number of
physical paths between the nodes n and m that are allowed
for SFC i, constraint 4 ensures that two successive VNFs are
mapped to two nodes if and only if there is at least one allowed
physical path between these nodes. Constraint 4 is quadratic,
it can be linearized by introducing a new boolean variable
Xl"Jm] 41 Which is the product of A}, and &},

Xn,m

— n m
gl = Yig A ®)

Constraint 4 is therefore translated to the following:

X < XL (©6)
A S Al )
AP 2 A+ A, — 1 ®)
A1 < Pinm ©)

Link Mapping: We will denote by P™™¢ the ¢
physical path between nodes n and m. The boolean variable
2™, determines whether the logical link between the 4t
VNF and its successor in the SFC ¢ has been mapped to the
¢™ physical path between nodes n and m.

Zmd

i G = is mapped to the ¢ physical path between nodes n and m

1 If logical link between VNFs j and j + 1 of SFC ¢
0 Otherwise

Vie S,V eV, Vn e M;,Vm e My :

Pn,m

n,m,q __
2 Zijge = i A (10)
=

Constraint 10 ensures that a logical link between two VNFs
is mapped to a physical path if and only if the corresponding
VNFs are mapped to the nodes that the path interconnects,
and vice versa; it also ensures that not more than one physical
path is allocated to a logical link. Similarly to 4, the constraint
can be linearized as follows:

Pn,m

n,m,q __ qnm
E Zz',j,j+1 = Xi,j,j+1

an

b) Capacity Constraints:

Computing resources: We will denote by R the set of
computing resource types of physical nodes (CPU, RAM,
disk space...), by V,; ; the required amount of the resource
r for the jth VNF of the ith SFC, and by R, , each node
n’s remaining capacity for the resource type r. Constraint 12
ensures that the total amount of allocated resources on each
node for each resource type does not exceed the amount of
available resources remaining on the node.

> Vg AL < R, Yne Ny Vre®R (12)

JEV;



Link resources: We will denote by W; ; ;11 the required
bandwidth for the virtual link between the jth VNF and its
successor, and by R, ; each link [’s capacity; we will also
use the boolean 7, to express whether the link [ is part
of the gth path between the nodes n and m. Constraint 13
ensures that the total allocated bandwidth on each physical link
of an end-to-end physical path does not exceed its remaining

capacity.
VieSVieL:
Prm
> X X Wit 2 ™ < Rey (13)

JeVineM; meM; i1 q=1

2) Objective Function: The objective of our model is to
minimize the overall cost, as well as the end-to-end latency.
However, these objectives are contradictory: physical links’
cost is inversely proportional to their latency (i.e. lower latency
links are more expensive). A trade-off is then obtained by
setting weights to both objectives in order to set optimization
priorities according to the user’s preferences as specified in the
SLAs (uRLLC, best effort, etc.). Therefore, our optimization
objective function is a weighted sum of normalized values of
the overall cost and the end-to-end latency for each SFC.

Ccomputing = Z Z Z Cr,n . vr,i,j . XZ'I:]' (14)

neEN, reR JEV;

Pn,m

Cik= 3 8 3 3 X G W 2

JEVileELnEM; mEM;1 q=1

. Tl‘an,q (1 5)

Pn,m

¢ = Z\f} o > X b 2, Tt 16)
JEV:

leLneM; meM,;, g=1

Equations 14 and 15 express computational and link costs for
the SFC i respectively, with (., being the cost of using the
resource r on node n per unit, and ¢; the cost of using the link
[ per bandwidth unit. Equation 16 expresses the end-to-end
latency for the SFC ¢, with ¢; being the link [I’s latency. The
optimization objective is to minimize the following objective
function while satisfying the aforementioned constraints.

Ccomputing + Clinlc ¢
>\C + Qg >\¢

minimize ac -

subject to

Constraints 1 - 3
Constraints 6 - 9
Constraints 11 - 13

With ac and o4 being the associated weights to cost and
latency respectively, which are determined from the users’
SLAs; and A¢ and Ay the normalization coefficients for cost
and latency, which are determined by computing the mean cost
and latency for the topology.

C. Heuristic Approach

Although the previously detailed ILP model ensures an
optimal placement of SFC requests considering the provided
information, it lacks scalability; indeed, SFC placement has
been proven to be an NP-Hard problem [10], which means
that computation time increases exponentially using large
problem instances as will be illustrated in our evaluation
results in Section IV, thus making this solution impractical for
operational use; however, the ILP model’s results can be used
as a reference in order to evaluate the efficiency of alternative
solutions. As an alternative, and in order to support bigger
instances of the problem, we propose a memetic heuristic
based on a genetic algorithm, combined to a local search
method for solution improvement. At first, a set of initial
solutions is generated and classified; the set is then updated
at each generation by introducing new individuals obtained
through solution generation, mutation, crossover, or local
search improvement; the set of solutions is then evaluated and
classified using the objective function previously expressed
in the ILP, and the best individuals are selected for the next
generation . The process is repeated until a fixed number of
generations is reached, the best solution is then returned; note
that all of the operators use intervals in order to reduce request
fragmentation. The main steps of our heuristic are:

a) Solution Generation: New individuals are generated
as follows : the placement of the first VNF is randomly
determined from the list of allowed locations, then each
subsequent VNF is also placed on the same location as long as
the VNFs’ affinity, placement constraints, and node’s capacity
allow it; which reduces link-associated cost and latency. Route
mapping is performed by choosing the best available path
according to the request’s optimization objectives’ weights.

b) Mutation: During the mutation phase, a solution is
randomly selected, then the placement and chaining of a ran-
dom interval of successive VNFs is changed while respecting
the aforementioned constraints.

c) Crossover: Two solutions are selected at random, and
are crossed at a random interval in order to generate a new
solution, VNF chaining is also updated.

d) Local Search Improvement: In this phase, a random
solution is selected, and its neighbor solutions are explored in
order to operate local improvements (e.g. move one or more
VNFs to a nearby node).

IV. EVALUATION
A. Simulation Environment

We evaluated our solution by conducting simulations on the
hardware and software configuration outlined in Table 1.

Component Configuration

CPU Intel Xeon E5-2640 v3 (32 Cores), 2.60GH z
RAM 128G B

oS Ubuntu 16.04, 64 bits

TABLE I: Testbed Hardware and Software Configuration



The simulation program and heuristic were developed using
the Python programming language; we also used the Gurobi
[11] optimizer in order to solve our ILP model.

For the test environment, we generated multi-domain
topologies using the networkx [12] library, each domain com-
prises massively connected nodes via intra-domain links, and
is able to communicate with the other domains via edge routers
connected through WAN links. We also pre-computed the set
of paths between nodes for each domain, with a path length
limited to 3 hops. After each placement iteration, the graph’s
resource capacity values are updated. We evaluate our solution
using 3 network topologies of different sizes, as detailed in
Table II.

Topology Small Medium  Large
Number of Domains 4 6 8
Number of Nodes per Domain 10 15 30
Number of Links 166 603 3388

TABLE II: Topology Information

Requests are generated and placed sequentially, each request
specifies the amount of required resources and a set of allowed
placement locations for each VNF and link, as well as the
dependencies between VNFs, and optimization objective’s
associated weights (cost and latency) obtained from the SLA
class of the client. In our simulations, we consider 5 VNF types
(small, medium, large, dummy, boundary) with corresponding
resource and placement requirements, and 5 SLA classes
(ultra low latency, low latency, fair trade-off between cost and
latency, low cost, best effort), with different levels of priority
for our optimization objectives. The solution is evaluated for
SFC lengths ranging from 4 to 10 in the small and medium
topologies, and from 4 to 8 in the large topology.

B. Methodology

The simulations for each configuration are run 20 times,
at each iteration, the placement algorithms are run for 150
successive requests for the small and medium topologies,
and 50 requests for the large one. In this evaluation, SFC
placement is performed using the ILP with full knowledge
of the network topology, as well as the proposed heuristic
combined to the multi-domain hierarchical scheme with a
limited view on the infrastructure; we vary the number of
generations (iterations) of our heuristic in order to evaluate
its effect on efficiency and computational time, the number
of generations depends on each configuration’s parameters,
namely the topology size and SFC length : Ny = |reg| = |G|,
Ny = %, N3 = %. The placement results of the different
solutions are evaluated using two key metrics: placement
efficiency, which can be computed using the aforementioned
objective function; and scalability, which can be quantified by
measuring the algorithm’s computational time.

C. Efficiency

Figure 1 illustrates the mean values and 95% Confidence
Interval (CI) of the efficiency of our heuristic compared to
the exact solution using different topologies and SFC sizes.

Efficiency is measured by computing the average ratio between
the results of the evaluation of the ILP placement and those
obtained from the heuristic placement for each request. We
can observe that although the heuristic does not dispose of
the full view of the network, nor does it explore the full set
of solutions; it displays an accuracy of 94.3 — 89.1% with
a 95% CI of 0.8 — 1% in the small network as illustrated
in Figure la, and 96.5 — 92.2% with a CI of 0.6 — 0.9% in
the medium network as shown in Figure 1b when the number
of generations is fixed to N;. Whereas in the large topology
(Figure 1c), the heuristic’s efficiency decreases to 96.9—89.8%
with a CI of 1 — 3%. Increasing SFC length also causes a
decrease in efficiency, we can notice a reduction of 4 — 6%
when increasing SFC length for numbers of generations Ny
and N, regardless of the topology size; indeed, efficiency
merely decreases from 94.3% and 93.6% to 89.1% and 87.3%
respectively in the small topology; from 96.5% and 96% to
92.2% and 89.9% respectively in the medium topology, and
from 96.9% and 96.6% to 90.1% and 87.4% in the large
topology. When setting the number of generations to Ns,
we notice that increasing SFC length has a more significant
impact on efficiency as it is reduced by 7 — 11%, reaching
a ratio of 84.4% with a CI of 1.2% in the small network,
84.5% with a CI of 1.1% in the medium topology, and 81.7%
with a CI of 3.2% in the large one. In contrast, for small
SFC lengths, decreasing the number of generations does not
have a significant effect on efficiency as it remains above 90%
regardless of the topology.

D. Scalability

Table IIT features the mean computation times for the ILP
and the heuristic solutions when varying topology size and
SEC length, as well as the number of generations for the
heuristic. The exact solution demonstrates its lack of scalabil-
ity as it takes up to many hours in order to produce a solution
in the large network as well as the medium-sized network
when SFC length is increased, which makes it impractical for
operational deployment. In contrast, the heuristic proves its
scalability as it provides solutions in realistic times regardless
of the topology and SFC size: 81ms and up to a second in the
small topology, 422ms to less than 4 seconds in the medium
network, and 2.94s to 65s in the large network when the
number of generations is fixed to [N, which is an improvement
of up to 600 times compared to the ILP. When setting the
number of generations to Ny, execution time increases to
a range between 241ms and 3.46s in the small topology,
between 1.32s and 13s in the medium topology, and between
10s and 222s in the large one. Computational time can be
further reduced by setting the number of generations of the
heuristic to N3; indeed, it ranges between 37ms and 429ms
in the small topology, 166ms and 1440ms in the medium
topology, and between 994ms and 19s in the large topology
depending on SFC length.
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Fig. 1: Relative efficiency of the heuristic solution according to the number of generations and topology size

SFC Length

Topology | Method | 4 5 6 7 8 9 10
ILP 148 214 309 538 768 1159 17.05

Sl N1 0241 0350 0.631 1.03 125 222 346
a N2 0.081 0.113 0201 0322 0391 0678 1.06
N3 0.037 0.052 0.088 0.138 0.167 0278 0.429
ILP 1629 2774 103 224 376 1016 2623
Medium N1 132 193 316 443 772 1002 13.94
— N2 0422 0588 0938 130 221 288 398
N3 0.166 0233 0361 0491 0819 1.06 144

ILP 1381 2234 3468 6434 7364 - .

Lzt N1 1025 27.81 6931 123 147 154 222
arge N2 204 792 1947 3355 4057 4213 6547
N3 0994 272 651 1171 1263 1312 1976

TABLE III: Comparison of computation times (in seconds)

V. CONCLUSION

n this paper, we have proposed a multi-objective solution
joint node and link mapping of multi-domain SFCs using

an ILP model, as well as a memetic algorithm; the results of

our

heuristic with limited visibility on the network achieved

results that were close to optimal by 96.5 — 89.1% with a
computational time improvement of up to 400 times. In future
works, we aim to propose a solution that allows a finer grained
specification of user preferences, and that provides a Pareto set
of the multi-objective solutions.
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