On Using Physical Programming for
Multi-Domain SFC Placement with Limited
Visibility
Nassima Toumi, Student Member, IEEE, Olivier Bernier, Djamal-Eddine Meddour,
and Adlen Ksentini, Senior Member, IEEE,

Abstract—Service Function Chaining (SFC) is a networking concept by which traffic is steered through a set of ordered functions
composing an end-to-end service. It represents one of the facilitating technologies for 5G, and is enabled by the Network Function
Virtualization (NFV) and Software Defined Networks (SDN) paradigms. In the multi-domain context, SFC placement faces new
challenges related to the lack of visibility on the local domain’s networks. Indeed, the domain operators are often reluctant to unveil
details on their topology to external parties. Furthermore, the new 5G use cases introduce new requirements for services such as
end-to-end latency, and a minimal guaranteed bandwidth that the placement process needs to optimize simultaneously. In this work,
we propose a centralized framework that allows SFC partitioning and embedding over multiple domains with a limited visibility over the
global infrastructure. We model the multi-objective SFC placement problem using the Physical Programming method, which allows the
expression of the Decision Maker’s preferences through meaningful parameters, and propose an exact algorithm as well as a scalable

heuristic solution. We then perform an extensive evaluation of the framework as well as the proposed algorithms. The results
demonstrate our solution’s effectiveness with a limited visibility on the network.

Index Terms—Service Function Chaining, Multi-domain, Multi Objective Optimization, Physical Programming, Network Function

Virtualization, Software Defined Networks

1 INTRODUCTION

HE recent advances in Information Technology have
Tintroduced a set of new heterogeneous services with
specific requirements such as reliability and low latency;
furthermore, the advent of massive Machine Type Com-
munication applications has exponentially increased the
number of network users, as well as traffic volumes. In
this context, a new generation of mobile networks (5G)
is under development to meet the requirements of these
new use cases [1]; two main enabling technologies have
been retained for 5G : Network Function Virtualization, and
Software Defined Networking [2]. Leveraging on both of
these technologies, Service Function Chaining has emerged
as another promising enabler for 5G. It refers to the process
of steering traffic between a set of functions in an ordered
manner, to deliver an end-to-end service. Service Function
Chaining has been studied under different aspects such
as orchestration, composition, or placement; however, only
a few works have addressed SFC placement in a multi-
domain context, which is a challenging research topic since
the lack of visibility on the domain’s infrastructure hinders
the process of obtaining optimal placement results.

On the other hand, optimizing the placement of an SFC
in the context of 5G means that different QoS metrics have to
be taken into account such as latency and throughput, which

N. Toumi, O. Bernier, and D.E. Meddour, are with Orange,
22300, Lannion, France. (E-mail:nassima.toumi@orange.com,
,olivier.bernier@orange.com,djamal.meddour@orange.com)

N. Toumi and A. Ksentini are with the Communication Sys-
tems Department, EURECOM, 06410 Sophia-Antipolis, France. (E-
mail:massima.toumi,adlen.ksentini@eurecom.fr)

leads to the use of Multi-Objective Optimization (MOO)
methods, where the most used one is the optimization of
weighted sums of each objective [3]. However, this method
requires the normalization of the values of each objective,
as well as setting weights to assign degrees of importance
to each objective. These weights do not precisely express
the preferences of users, which means that the obtained
solutions won't necessarily reflect the user’s preferences.

In this paper, we apply the Physical Programming [4]
optimization approach to the multi-objective placement of
multi-domain SFCs, which is a method that allows the
expression of preferences for different objectives using
physically meaningful parameters. We adopt a centralized
framework that allows the deployment of SFCs on multiple
domains with a limited visibility over their infrastructure.
We also propose an exact method for SFC placement, along
with a heuristic for scalability purposes. The performance of
both solutions is evaluated through extensive simulations.
The contributions of this paper are listed below:

o We formulate the multi-domain SFC placement prob-
lem using three Physical Programming approaches
(Linear, non-linear, global). Three optimization ob-
jectives are considered : the end-to-end latency, the
bandwidth per user, and the overall cost.

« We propose an exact solution based on a branch and
bound algorithm.

o We introduce a scalable heuristic algorithm.

o We evaluate the efficiency of our approach by com-
paring its results to the ones obtained using a tradi-
tional ILP with a weighted sum of the objectives.

o We assess the efficiency of our proposed heuristic
compared to the exact solution.

To the best of our knowledge, this is the first work that
used Physical Programming to formulate the multi-domain
SFC placement problem. The remainder of this paper is
organized as follows: Section 2 introduces use cases that il-
lustrate the Multi-Domain context of Service Chains. Section
3 summarizes previous related works. Section 4 presents an
overview of the proposed framework for multi-domain or-
chestration. Section 5 features a formulation of the problem,
and introduces the Physical Programming method. Section
6 depicts the exact resolution algorithm, while Section 7
describes the proposed heuristic algorithm. Section 8 pro-
vides the methodology for our experimental evaluation, and
discusses the obtained results. Finally, section 9 concludes
the paper.

2 MuLTI-DoMAIN SFC USE CASES

In this section, we present two use-cases of multi-domain
SFCs for 5G. The first one is the IoT use case where
security, and data aggregation functions are deployed on
edge clouds; and the second one is related to the more
generic scenario of service composition, where the end-to-
end SFC is constructed by deploying and chaining functions
on different domains.

2.1 Industrial Internet of Things (lloT) Use Case

The upcoming 5G networks are set to enable three main
usage scenarios: enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (URLLC), and
massive machine type communications (mMTC). The latter
supports the deployment of a massive number of IoT de-
vices for several applications. Industrial Internet of Things
(IIoT) represents one of the most significant applications
of IoT, with use cases such as smart factories, that rely
on the deployment and the collection of data from a set
of IoT devices, e.g. surveillance cameras, sensors etc [5].
Considering the volume of data that is generated by the dif-
ferent devices, the operator could benefit from placing data
aggregation functions at the edge of the network, to reduce
the amount of consumed network resources [6]. Multiple
network providers and vendors have developed commercial
solutions that leverage on IoT and edge computing, such as
Microsoft with Azure IoT Edge [7], or Amazon with AWS
IoT Greengrass [8]. Both solutions allow the deployment of
pre-processing functions at the edge of the network, which
collect the data generated by the IoT devices and perform
filtering and compression before sending it to the core cloud
for further processing.

Furthermore, it is essential to protect the infrastructure
from different attacks, especially since IoT devices are more
vulnerable to hacking and can be used as vectors for large
scale attacks [9]. The operator would need to deploy security
functions that perform traffic inspection and attack detec-
tion, to stop/mitigate attacks such as DDos attacks before
they enter the network. Therefore, security functions should
also be deployed as close as possible to the sources of data.

Service Operator 1
Core Cloud

K

Service Operator 2
Edge Cloud 1

Service Operator 2
Edge Cloud 2

v
\

® O «

&
Fig. 1: IoT Use Case: Security and data aggregation VNFs at
the edge of the network

However, due to the number and geographical distri-
bution of the devices, the operator may not be able to
afford the cost of deploying edge clouds covering the whole
sensing area; instead, a less costly alternative is to deploy the
security and compression functions on external edge clouds
that are closer to the devices. In that case, as illustrated in
Figure 1, the operator deploys a multi-domain SFC, where
the data flow generated by the IoT devices is directed
to the security functions deployed on the external edge
clouds. After analysis, the flows that are deemed secure are
transmitted to the aggregation functions also deployed on
the external edge clouds, before sending the compressed
data to the remaining functions of the SFC that are deployed
on the operator’s domain.

2.2 Service Composition

With the advent of virtualization, different cloud service
models emerged : Infrastructure as a Service (laas), Plat-
form as a Service (PaaS), and Software as a Service (SaaS);
these models enable service providers to grant access to
resources, development environment, and software hosted
on their infrastructure respectively; thus enabling a multi-
tenant multi-layer architecture where physical and virtual
resources are shared between different customers (tenants)
as independent and isolated slices. In this scenario, as il-
lustrated in Figure 2, the service tenant does not own any
infrastructure, and composes its own service from a set of
Virtual Network Functions (VNFs) that are hosted by differ-
ent PaaS or SaaS providers. The VNFs are chained together
creating the SFC of the tenant, each tenant then disposes of
its own overlay slice spanning multiple domains. Note that
a slice can host more than one SFC.

3 RELATED WORKS
3.1 SFC Placement

A large set of works have tackled the SFC placement is-
sue, with different optimization parameters such as cost,
energy, or latency [10] [11]; however, most of these works
consider placement over a single domain, and assume that
the orchestrator performing the placement disposes of full
visibility and control on the underlying network infrastruc-
ture. As previously outlined, deploying service chains on

Saa$S Provider A

Saa$S Provider B

Saa$ Provider C

Slice of Tenant 1 /h/_\

-Gk]

SFir1]~ _ --[Cski SF1
[sFi--_ = []

=

sFk Je{ .. J< sFi

///‘/ Slice of Tenant 2

Fig. 2: Service Composition Across Multiple Operator Domains

multiple administrative domains adds more constraints to
the placement problem. Indeed, for security reasons, the
Infrastructure as a Service (laaS) providers withhold details
on their local infrastructure, which makes it difficult to
determine the optimal end-to-end placement and chaining
of services due to the lack of information. A few works have
addressed the multi-domain SFC deployment issue with
limited visibility on the network; two main architectural ap-
proaches were proposed: distributed, and centralized. Table
1 summarizes the main features of the proposed solutions,
and outlines our proposal’s contributions. Please note that
some works didn’t include placement algorithms, which is
why the columns related to optimization were left empty.

3.1.1 Distributed

This approach supposes that the infrastructure providers
don’t share details on their network; in that case, a dis-
tributed algorithm is executed on all of the domains, and
messages are exchanged to determine the best option with-
out disclosing information to external parties. However, this
approach falls short in terms of scalability, as communica-
tion and convergence time and cost are important. The work
in [12] details a policy-based, distributed, asynchronous
election protocol based on hosting capabilities; the solution
allows edge and core cloud providers to cooperatively in-
stantiate wide-area chains. However, the proposed solution
does not support more complex, non-linear SFCs, where
packets pass through certain functions more than once;
and its evaluation only considers CPU and bandwidth con-
straints. Zhang et al. [13] also propose a distributed vertex-
centric algorithm that supports SFC flexibility: the request
is relayed between orchestrators to determine the optimal
placement combination. The authors in [14] detail DistNSE,
a distributed framework that performs SFC partitioning and
placement using a privacy-preserving bidding mechanism
where each provider competes for the NFs of the chain.

3.1.2 Centralized

In this approach, a broker/coordinator collects the informa-
tion disclosed by different IaaS providers, and reconstitutes
an abstract global view of the network. The centralized
broker performs an initial placement using this abstract
view, then partitions the request and relays the sub-requests
to the local domains. However, this approach might lead
to sub-optimal orchestration decisions due to the lack of
sufficient information on the infrastructure state. Figueira
et al. [15], and Guerzoni et al. [16] propose a hierarchical
architectures for multi-domain SFC orchestration, where a

centralized main orchestrator interfaces with lower-level
domain orchestrators. Dietrich et al. [17] leverage on this
architectural approach and detail a solution for SFC map-
ping across datacenters that are operated by multiple NFPs.
The proposed solution allows NFPs to disclose minimal
information about their infrastructure, and constructs an ab-
stract view of the network topology. The placement is then
performed in two stages: graph partitioning and sub-graph
mapping; however, the solution doesn’t take latency into
account, which is a critical requirement for some upcoming
5G use cases (i.e. Ultra Reliable Low Latency services).
Furthermore, the solution is formulated as a Linear Program
and therefore lacks scalability, which makes it unsuitable for
bigger instances of the problem. Similarly, Xu ef al. [18] pro-
pose a multi-domain service chain partition and embedding
scheme using a Hidden Markov Model and a Viterbi-based
heuristic. However, the proposed heuristic solution only
considers the end-to-end latency while discarding cost. In
[19], the authors propose a multi-domain SFC orchestration
scheme that takes into account the issues related to the lack
of visibility over domains. They propose an algorithm that
aims to minimize the delay, then improves the bandwidth
cost of the obtained solution. However, this algorithm does
not take into account the service and SLA types of the
requests, indeed, a Best Effort service for example would
require the minimization of cost over latency.

In this paper, we formulate the multi-domain SFC place-
ment problem, and elaborate multiple algorithms that per-
form placement with a limited visibility, while minimizing
the end-to-end delay and cost, and maximizing the band-
width per user.

3.2 Multi Objective Optimization

Multi Objective Optimization (MOO) is a process where
more than one optimization objective are considered si-
multaneously. This process requires the articulation of the
Decision Maker’s (DM) preferences regarding the objectives,
which will influence the priority that each objective would
have over the others in the optimization process. Many
methods have been proposed to express the preferences of
the DM before or after the optimization. Most of these meth-
ods rely on the assignment of weights to each objective, and
the optimization of the weighted sum of these objectives [3].
However, these weights are generally determined through
trial and error, and do not reflect the specific preferences of
the DM as they are not physically meaningful. Furthermore,
as each objective has a different scale, a normalization
process is required.

Architecture Solution Mult. Adm. | Differentiated | Optimization Objectives Multi Obj. Solving
Domains SLAs Cost | Latency | Bw Opt. Method Method
Catena [12] v X - - - - ILP
Distributed Zhang et al. [13] v X - - - -
DistNSE [14] v X Ve X X Weights Heuristic
Figueira et al. [15] X X - - - - -
Guerzoni ef al. [16] X Vv - - - - -
Nestor [17] v Vv v X X Weights ILP/LP
Centralized Xu et al. T18] X v X v X - ILP, heuristic
Sun ef al. [19] v X X v Vv - ILP, heuristic
Proposed Solution v v v v v P Physmalh Exact algor'l thm,
rogramming heuristic

TABLE 1: Multi-Domain SFC Orchestration Solutions and Features

The Physical Programming Optimization approach was
proposed by Messac et al. in its Non-Linear [4] and Lin-
ear [20] forms. It allows the use of physically meaningful
parameters to express preferences using ranges for each
objective, and different classes that can be hard (H) or soft
(S), as shown in Figure 3:

« Hard Classes: These classes are constraints by defini-
tion, because solutions are rejected if they are not in
the acceptable range.

o Soft Classes: As illustrated in Figure 4, these soft
class functions include 6 preference regions: Highly
desirable, where improvement past the ideal value is
of minimal additional value, Desirable, Tolerable, Un-
desirable, Highly Undesirable, and Unacceptable, which
is expressed using a constraint.

The range limits provided by the DM, are translated into
class functions that allow the evaluation of the obtained
solutions in terms of their conformance to the DM’s pref-
erences. Multiple methods have been proposed for Physical

SOFT HARD
w
SMALLER 2 1S 2 1-H
s 7| rensiBLE @ _ a
BETTER : i £ s
s FEASIBLE | %
(Class—1) Ed - = .
> =
£ &
w
LARGER L E s ! 2H
1S _|2 FEASIBLE _| =
BETTER gl e L
5 % | FEASIBLE
(Class—2) — - = -
- =
£ g
w w w u
VALUE 2 @ 3s a|a 3H
IS @ FEASBLE | & 2|2
| = 1 = = T
BETTER 7| & ui 8 wola
E o w s H
(Class—3) = Z o = »
z r
m W o m
RANGE] @ o @ 4-H
Is 2, g4-8 2 2
BETTER T E u & g & | FeasBLE K
(Class—4) = Z S Z 5
g g i

Fig. 3: Physical Programming Preference Classes [4]

Programming: Linear Physical Programming [20] (LPP),
Non-Linear Physical Programming (NLPP) [4], and Global
Physical Programming (GPP) [21].Each method expresses
the class function for each criterion as a combination of
piece-wise convex functions using the values of the region
boundaries, and the global objective function is defined as
the sum of these functions. The main difference between the
three methods lies in the complexity of the class function’s
formulation to obtain a more or less smooth curve, so that

Class-1S) c"a‘\\‘\

@ T £

) a

ab'e @

) gesi@
pearate | pesale T4 ° g
esirable o 5
git 92 ai3 gia 5 i
2% Class-25

@
a
=
z
Toler,
g :b,e Desirapye Highly
- T Desirable

g5 Qe gi3 giz ait 9

Class-3S
- <
% 9i .g
}g =%
@ @
8 g
g T g

3

> . D D =]
ol gz O3 Oe a5 %6 g7 g8 dm g

Highly

Desirable

Class-4S
@ = L
=} 9i 3
% o
@ o
8 g
& - g

an G2 93 gi gi5 Highly g6 g7 g8 Go G0 9

Desirable

Fig. 4: Region Boundaries For Preference Classes

the class functions translate the preferences of the Decision
Maker as accurately as possible. The NLPP formulation
allows the most accurate depiction of the Decision Maker’s
preferences, with a smooth curvature, but at the cost of
very complex formulations; the GPP method simplifies the
formulation while keeping the Physical Programming prop-
erties; and the LPP method allows a linear formulation
of the class functions. The approaches for obtaining the
objective functions for each Physical Programming method
are explained in more details in Section 5.

Physical Programming optimization enforces the One vs
Other Criteria (OVO) Rule, which states that a full reduction
for one criterion across a given region is better than a full
reduction for all of the other criteria across the next better
region. In practice, it means that between the options of
improving one criterion from the Tolerable region to the
Desirable region, and improving all the other criteria from
the Desirable to the Highly Desirable region, the first option

would be preferred. This ensures a fair trade-off between
objectives, and avoids improving certain objectives at the
expense of others, as could be the case with the weighted
method. This rule also ensures that the value of the class
function for region boundaries is the same across criteria
(and therefore that each region’s class function’s amplitude
is also the same across criteria), which has a normalizing
effect. Furthermore, once a certain objective has reached the
ideal value, instead of further improving it past the ideal
value, the focus would be on the remaining objectives.

A few works have leveraged on the Physical Program-
ming method for Multi-Objective Optimization in different
fields [22]: aircraft parameter design [23], trajectory plan-
ning [24], mechanical engineering [25], as well as elec-
tromagnetic and transmission related problems [26]. The
results obtained with Physical Programming in each of the
aforementioned works are closer to the DM’s preferences
than the results obtained with the usual MOO methods.

At the time of this writing, and to the best of our
knowledge, this approach has not been applied to solve
the multi-objective SFC placement problem, further, no ex-
isting work compares the different Physical Programming
methods. In this paper, we apply three methods of Physical
Programming on the SFC placement problem (Linear, Non
Linear, Global), and compare their results. The efficiency of
Physical Programming is also evaluated by comparing its
results to the weighted sum method.

4 PROPOSED FRAMEWORK

In this section, we detail our proposed framework for multi-
domain SFC deployment. As illustrated in Figure 5, the
architecture is logically centralized, with a multi-domain
orchestrator that acts as a broker and constructs an abstract
view of the topology based on the information that each
domain is disposed to reveal on their network. The orches-
trator also interacts with the WAN domain operators to
establish inter-domain communication for SFCs. Based on
the work in [27], we suppose that local domains disclose the
following details on their infrastructure :

o The amount of computing capacity that is made
available, with the average cost per unit for each re-
source type. Note that these amounts are determined
through pre-established mutual agreements between
the domain operators.

o The vertices of their WAN links, the available capac-
ity, latency, as well as the cost per bandwidth unit.

We provide the pseudo-code of the Multi-Domain Place-
ment procedure in Algorithm 1. In this work, we consider
that each SFC deployment request is issued by a tenant that
will provide the service to multiple users. When the multi-
domain orchestrator receives a request req from a tenant to
deploy an SFC, it calls the function abstractPlacement that
performs an initial placement on the previously established
abstract view of the topology Gaups. This placement takes
into account the QoS requirements defined by the SLA of
the tenant, as well as the placement constraints of each
VNF such as affinity and anti-affinity constraints, and the
allowed locations; the optimization objectives and their lev-
els of priority are also defined by the SLA. Once the initial

placement abstractPl has been obtained, the SFC request is
partitioned accordingly (requestPartitioning), and dummy
boundary nodes are added at the extremities of the sub-
chains. These dummy nodes are required to be placed at
the boundaries of the domains, to forward the traffic out of
the domains and towards the next sub-chain. Next, the sub-
requests partReqs are sent to the chosen domains to perform
a local placement localPlacement, while having a full view
of their respective local topologies; note that each local
orchestrator can implement their own placement algorithm.
If the placement of a sub-chain fails, a backtracking mech-
anism is prompted to perform the initial placement once
again, but while ruling out the previous placement solution.
Once the multi-domain orchestrator receives the placement
results of all of the domains, it computes the end-to-end cost
and latency of the SFC, then sends a confirmation to the local
domain orchestrators to start the sub-SFCs deployment.

Algorithm 1: Multi-Domain Placement Algorithm

Input : Abstract Topology Gups , Request req
Set of Authorized Domains M
Output: Vector containing the placement result
1 absractP] < abstractPlacement(req,Gaps,M);
2 if abstract placement failed then
3 ‘ return False, null, null
4 end
// Perform request partitioning

5 partReqgs « requestPartitioning(req,abstractPl);
6 for p « 0 to |partRegs|-1 do

7 | partialPl[p] < localPlacement(partReqs[p]);
8 if local placement fails then

// Perform backtracking

9 if Junf € U{ partReqs[n],|M,,z| > 1 then
10 Find one vnf for which [M,,s| > 1;
11 Mong — Myns — {abstractPl[vnf]};

12 Go to Step 1;

13 else

14 | return False, null, null

15 end

16 end
17 end

18 Compute end-to-end cost and latency;

19 Send placement confirmation to local domains;
20 Update Gaps ;

21 return True,cost,latency

5 PROBLEM FORMULATION

We formulate in the following the model of the multi-
domain SFC placement problem on both levels. We first
define the different placement, resource, latency, and cost
constraints. Then, we express the objective function using
Linear, Non-Linear, and Global Physical Programming. Ta-
ble 2 features the notations that are used in our model.

5.1 Constraints
5.1.1 Placement Constraints

A VNF should be placed on only one of its authorized
nodes, and only if an available authorized path can be

- D\ LN
= > [z} > [
o BEC Multi-Domain Orchestrator ! :
§ Request ::> [] ‘ vrra)
= <
g P—
E VNFs : 4 — w
<< S
' vnr:
=
2 < v <
g
o
E:
S
IER soundary Node
Fig. 5: Multi-domain SFC Placement Framework
Notation Description
| ‘ T This variable obeys the following constraints:
S Set of SFCs
V; Set of VNFs in SFC i
g Set of affinity /anti-affinity X —Xn =0 ieS. (ki.ky) C - ne N 2
A A constraints for SFC i i,k i,k ’ ’ (1. 2) ﬂl’ d ()
M Set of allowed placement nodes for VNF ; in SFC i
R Set of computing resources (CPU, RAM, disk)
Na Set of nodes in domain d . ~
£ Set of links Xir}kl +Xixjk2 <1, i€8,(ki,k2) C Aij,ne Ny 3)
Decision Variables . .
X7 Placement of VNF j of SFC i on node n (Boolean) 1€ S’ v] € (Vi’ Vn € Mi,j’ Vm € Mi,j+1:
nm Placement of VNF i of SFC i on node n
X, SJs g+l and its successor on node m (Boolean) inj : Xl‘n}_,_l < Pi,nmo (4)
n.m.q Placement of link between VNFs j and j + 1 of SFC i on ? ’
b gth physical link between nodes n and m (Boolean) Constraint 1 ensures that each VNF is mapped to only one of
W; Allocated bandwidth per user for SFC i (Integer)
Request its authorized physical nodes. Constraints 2 and 3 express
v Required amount of computing resource affinity /co-location (i.e. two VNFs must be placed on the
i for VNF j of SFC i APV
T Number of users in SFC 7 same node) and anti-affinity /anti-location requirements (i.e.
A Minimallrel?uireg gangwigtg Va}ue per user ﬁor SII;‘(C:I two VNFs must not be placed on the same node), where A;
73 Maximal allowed bandwidth value per user for i =
Cpaid Amount paid by the SFC owner to deploy the Service Chain and A; represent the set of tuples of VNFs k1 and k2 of
Network Infrastructure SFC i, for which affinity and anti-affinity constraints apply,
Number of physical paths between the nodes n and m : . :
Pinm That ate allowed for SFC i respectively. We denote by p; »,, the number of physical
Rrn Amount of computing resource r available on node n paths between the nodes n and m that are allowed for
4o Cost per unit of resource r on node n . . .
g Tink [s part of the gth path between SFC i, constraint 4 ensures that two consecutive VNFs are
;{ nod(e:s n and mf(IBolgl;ean) mapped to two nodes if and only if there is at least one
W, apact or in . |
. Lafenctyyof Tk 1 allowed physical path between these nodes. Constraint 4
& Cost of using the link per bandwidth unit is quadratic but can be linearized by introducing a new
Physical Programming n,m . n
e Numbor of soff oriteria- boolean variable X j+1 Whose value is the product of X7,
i Objective value for criterion 7. and X R Constramt 4 then becomes:
2 Class function value for criterion i.
§k Amplitude of interval k on y-axis. on,m < s (5)
ar Amplitude of interval k on x-axis for the criterion i. i,j,j+1 = Pin,m
) Upper/lower limit of interval k on x-axis nm
8is for the criterion i (Class 1-S/2-S). Where the variable X] P takes the value of the product of
p Convexity parameter X;; and X", | thanks to the following constraints:
TABLE 2: Notations used (VM < xn 6)
. el S X
mapped to the other VNFs that it is connected to. Further- b !
... . . n,m m
more, additional requirements may mandate placing two X g S &g @)
VNFs on the same node due to dependencies, or prohibit it, Xn,m /\’“ + Xm ®)

for security concerns. All of these requirements are enforced
using the following node and link mapping constraints.

Node Mapping: The boolean variable X', expresses
whether the jh VNF of the SFC i has been mapped to the
physical node n.

» _ |1 If VNF j of SEC i is placed on node n
L) 71 0 Otherwise

X X=1,
neM; ;

ieS\VjeV; €))]

i+l =
Note that thanks to the affinity constraints, our solution
supports non-linear SFC requests. Indeed, if the SFC
packet flow is required to pass through a VNF more than
once, a new dummy VNF instance is created with resource
requirements that are null, and the flow is redirected to the
original VNF using the affinity constraint that ensures that
the original VNF and its dummy instance are placed on the
same physical node [28].

Link Mapping: We will denote by ¢ the index of a
physical path between nodes n and m. The boolean variable
Z"":{ determines whether the logical link between the th
VNF and its successor in the SFC i has been mapped to the
¢™ physical path between nodes n and m.

1 If the logical link between VNFs j and j + 1 of SFC i
is mapped to the ¢'" physical path between nodes n and m
0 Otherwise

Vie S,VjeV,Vne M, ;j,Vme M ju:

Zzhma =

i+l T

Pn,m

) Zm = XX ©)

i,j,j+1 i,j+1
Constraint 9 ensures that a logical link between two VNFs is
mapped to a physical path if and only if the corresponding
VNFs are mapped to the nodes that the path interconnects,
and vice versa; it also ensures that not more than one
physical path is allocated to a logical link. Similarly to 4,
the constraint can be linearized as follows:
Prm

n.m,q _ ynm
El Zijjn =X m

(10)

5.1.2 Capacity Constraints

SFC placement is also subject to resource capacity con-
straints. Indeed, a VNF can only be placed on a node that
disposes of sufficient computing resources to host it, and a
physical path can be used to interconnect two VNFs if and
only if enough bandwidth is available on all of its links.
These constraints are formulated as follows:

Computing resources: We will denote by R the set
of computing resource types of physical nodes (CPU, RAM,
disk space...), by V, ; ; the required amount of the resource
r for the jth VNF of the ith SFC, and by R, , each node n’s
remaining capacity for the resource type r. Constraint 11
ensures that the total amount of allocated resources on each
node does not exceed the amount of available resources
remaining on the node for each resource type.

Z Vr,[,j Xn < Rr,n,

hi s Vne Ny, VreR
JE€Vi ’

11)
Link resources: We designate by U; the number of
users of the SFC i, by “W; the allocated bandwidth per user
for the SFC i, and by R,,; each link {’s capacity; we will also
use the boolean 7, to express whether the link / is part
of the gth path between the nodes n and m. We denote by
7{51’?"’:’1” the amount of bandwidth that is consumed from
eachlink / of the gth path between nodes n and m, by each
SFC link between the VNFs j and j + 1, which is computed
as follows: Vi € S,Vj € V;,Vn € M; ;,Vm € M; j.1,Vl € L
wl,q,m,n - (M/z . Zn,m,q Tln,m,q . ﬂi

i,j,j+1 NN

(12)

1
Therefore, H; ’J{?’ﬁ’ln would take one of two values:

W; - U; If the logical link between VNFs j and j + 1 of SFC i
is mapped to the physical path g between the nodes
n and m, that the link / is part of
0 Otherwise

Depending on the SLA of the request, ‘W, could be a fixed
value for the strict SLAs, or variable in cases of SLAs with
more relaxed constraints, with a minimal value for the
bandwidth. We can therefore discern two different cases :

pbam

i,j,j+1

o The bandwidth value is fixed: ‘W, is a constant. Con-
straint 13 ensures that the total allocated bandwidth
on each physical link of an end-to-end physical path
does not exceed its remaining capacity.
VieS,VieL:

Pn.m

YN XN N HMTM <R,
JEVineM; j meM; ju q=1 e

(13)

« The bandwidth value is variable: In that case ‘W, is
an integer variable, we will denote by ¢; the minimal
amount of bandwidth per user that is required by the
SLA of the SEC i, and by ¢ the maximum amount of
bandwidth that is allowed for the SLA of the SFC
i. Constraints 14 and 15 ensure that the allocated
bandwidth per user for this SFC is within the allowed
range of values for the selected SLA of the SFC i:

Wi < v
Wi = u;

VieS
VieS

(14)
(15)

On the other hand, Constraint 13 becomes quadratic,

! . . .
as H, """ contains the product of a binary variable

and an integer variable. It can be linearized using the
big M method [29], by replacing Equation 12 by the
constraints 16 to 19 to set the value of #""/ using
its upper and lower bounds. Vi € S,Vj € V;,Vn €

M j,Vm e M; 1,V € L:

l,q,m,n +.qf. . G NG
HA <yl U Z8 (16)
l,q,m,n n,m,
Wi,f’,m <W; U -7)"™ (17)

l,q,m, ,m, M,
HLTR 2 U™ (W= (=200 - 7218)

HTT > 0 (19)

i,j.j+l =

5.1.3 Latency Constraint

Depending on the SLA of the SFC owner (Low Latency, Best
Effort, etc.), latency constraints may apply. Indeed, a critical
service such as autonomous driving would require very
low latencies, while a classical web browsing service would
allow higher latencies. Equation 20 expresses the end-to-
end latency for the SFC i, which is computed as the sum
of the latencies of all of the links that are traversed by the
SFC packets, with ¢; being the link /s latency. Constraint
21 ensures that the end-to-end latency doesn’t exceed the
maximum allowed value for SFC i, which is denoted by ¢;}.

Pn,m
= 2 X X X X -z ™ (20)
JeVileLneM; j meM; ;1 g=1 e
¢i < ¢F (21)

5.1.4 Cost Constraint

To ensure a profit margin to the SFC provider, the cost of
deploying an SFC should not exceed a certain value. Equa-
tions 22 and 23 express computational and link costs for
the SFC i respectively. The computational cost C; compuring 15
calculated as the sum of the costs of allocating the required
resources for each VNF of the SFC, depending on the nodes
where they have been placed, with ¢, , being the cost of

using the resource r on node n per unit. The link cost
Ci,1ink is calculated as the sum of the costs of allocating the
required bandwidth for each user on each link that has been
used to forward the packets of the SFC, with ¢; being the
cost of using the link / per bandwidth unit. The overall cost
C; is the sum of the computational and link cost.

Ci,cumputing = Z Z Z é’r,n : Vr,i,j ! X,'r}j (22)
neNgreR jev;
Prm aysl.g.m.n
Com=% T % % Sqouars (23
JjeVileLneM; ; meM; j q=1 e
G = Ci,link + Ci,computing (24)

We will denote by C; ,qiq the amount paid by the SFC
owner in order to have its Service Chain deployed, and by
v the minimal margin of profit that the operator requires.
Constraint 25 ensures that the operator keeps its margin
above the minimal value.

Ci < (1-v)Cipaid (25)

5.2 Objective Function

The objective of our model is to minimize the cost C; and
end-to-end latency ¢;, and maximize the allocated band-
width per user W;. Since increasing the allocated bandwidth
increases cost, and lower latency links are more expensive,
the optimization’s goal is to find a fair trade-off between
all of these objectives while taking into account the tenant’s
preferences as expressed in the SLAs.

As stated earlier, we use Physical Programming to obtain
the multi-criteria objective function. We use the variable i to
designate a given criterion, and the variable & to designate
a class function interval. Figure 6 features examples of class
functions g; of the objective values g; for all three methods.
As illustrated in Figure 6a, we will denote by A¥ the x-axis
amplitude of each criterion i in a given interval k, and by
g* the y-axis amplitude for the interval k. The class function
value for each interval’s limits is the same across criteria as
expressed in relation 26.

8k = 8i(8ik)Vi; (2<k <5);21=0 (26)
This means that the y-axis amplitude for each interval g is
also the same across criteria. Note that since the objective
of our optimization is to reduce cost and latency, they are
expressed using the Physical Programming class 1-S, and
bandwidth per user is expressed using the class 2-S as the
optimization aims to increase it. Once the function for each
criterion 7/ has been defined, the global objective function
G (x) to minimize is formulated as follows :

G(x) = logyg {l pf [gi]} @7)

The individual class function g;[g;] for each criterion i is
expressed differently depending on the chosen Physical
Programming method as will be shown in the following.

5.2.1 Linear Physical Programming

This method has been proposed by Messac et al. in [20]. The
piece-wise functions for each range are convex and linear as
illustrated in Figure 6a. Taking the example of the class 1-S,
the piece-wise linear function is expressed as follows :

g = {gk—l +§k(%) If gi € [gik-1.8ik].2 <k <5
;=

0 If gi < gia
(28)
The method to compute the values of g€ and g* is provided
in the Appendix.

5.2.2 Non Linear Physical Programming

This method has been detailed in [4]. The piece-wise func-
tions are convex but non-linear, and can be arbitrarily
shaped in order to reflect the priorities of the Decision
Maker as illustrated in Figure 6b. This method is the most
flexible compared to the other methods, and allows the most
accurate depiction of the Decision Maker’s preferences, but
is also the most complex mathematically. For the sake of
readability, we put the mathematical formulations of the
class functions in the Appendix.

5.2.3 Global Physical Programming

Global Physical Programming is an adaptation of the Phys-
ical Programming method proposed by Sanchis et al. [21],
which allows a simpler formulation of the problem than the
NLPP method, while still satisfying the previously detailed
PP rules such as the OVO-rule. It also allows more flexibility
in defining N the number of preference ranges for each
criterion. The class function for the class 1-S is illustrated
in Figure 6c and formulated as follows :

g = 8k +§k(&_§%) Ifgi € [8ik-1.81k].2 <k <5
0 If g; < gin

(29)

Where n is a pre-defined parameter. Details on how to

compute the g and z* values can be found in the Appendix.

6 EXACT SOLUTION

The problem as formulated is a set of piece-wise functions,
and contains exponentiations that can reach the value of 4
in the case of Non-Linear Physical Programming. Therefore,
the traditional ILP optimizers can’t be used to solve the
problem. In order to implement the exact resolution of the
problem using the given formulation, we propose a Branch
and Bound based algorithm that recursively constructs so-
lutions while eliminating branches that don’t satisfy the
constraints, as well as those with a fitness that is worse than
the one of the current best complete solution.

The algorithm takes as input the topology graph G
which comprises the resource information of the nodes and
links, the pre-computed set of paths £, the request req
which contains the resource requirements for each VNF, the
number of users of the SFC, and its SLA class from which we
can determine the latency and bandwidth constraints, the
set of authorized nodes for placement M is also provided.
The output of the algorithm is the optimal solution bestSol.

The solutions are encoded as a vector where the first
value represents ‘W, the allocated bandwidth per user for

2
Jh)\

Gia

o2 ¥

gin v

> g L . 1 > di

di iz gi3 Q4 gis Qi1

(a) Linear Physical Programming

giz
(b) Non Linear Physical Programming

Ji3 Q4 Qs i Qiz 9z Q4 gis

(c) Global Physical Programming (n=2)

Fig. 6: Examples of class functions g; of the objective values g; for the different Physical Programming methods

the SFC i, and each value at the index 2 * j + 1 represents the
ID of the node where VNF j has been placed. Each value
at the non-zero index 2 * j represents the index g of the
path that will be used for the virtual link between the nodes
where VNFs j — 1 and j have been mapped.

Algorithm 2 features the pseudo-code of the proposed
method. First, an initial valid solution is generated, and
serves as the best solution reference to eliminate the partial
solutions that are already worse. Then, the set of possible
solutions is recursively constructed level by level by con-
catenating values from the set of allowed values per level
and evaluating the solution. At the level zero, the possible
bandwidth values are added, then for each subsequent level,
the possible placement nodes per VNF are added, while also
computing the best path between the VNF and its predeces-
sor. Once the partial solutions for each level are generated, if
they satisfy the constraints, their fitness is calculated accord-
ing to the SLA of the request and the Physical Programming
method that is enforced. This fitness value is then compared
to the fitness of the best solution found so far. If the fitness
is worse, the solution is withdrawn and the branch is cut,
otherwise, if the solution is complete, it becomes the best
solution found so far. After all of the possible solutions for a
level have been explored, the function solGen is recursively
called again to compute the solutions of the next level. Once
the last level is reached, the best solution is returned.

7 HEURISTIC SOLUTION

Although the previously detailed model ensures an opti-
mal placement of SFC requests considering the provided
information, it lacks scalability; indeed, SFC placement has
been proven to be an NP-Hard problem [30], which means
that computation time increases exponentially using large
problem instances as will be illustrated in our evaluation
results in Section 8, thus making this solution impractical for
operational use; however, the exact algorithm’s results can
be used as a reference to evaluate the efficiency of alternative
solutions. As an alternative, and to support bigger instances
of the problem, we propose a memetic heuristic based on
a genetic algorithm, combined to a local search method for
solution improvement.

At first, a set of initial solutions is generated and classi-
fied; the set is then updated at each generation by introduc-
ing new individuals obtained through solution generation,
mutation, crossover, or local search improvement; the set of

solutions is then evaluated and classified using the objective
function previously expressed in section 5, and the best
individuals are selected for the next generation. The process
is repeated until a fixed number of generations is reached,
and the best solution is then returned. Note that all of the
operations use intervals to reduce request fragmentation. As
shown in Figure 7, the main steps of the heuristic are:

« Solution Generation: New individuals are generated
as follows : the placement of the first VNF is ran-
domly determined from the list of allowed locations,
then each subsequent VNF is also placed on the
same location as long as all of the constraints allow
it; to reduce link-associated cost and latency. Route
mapping is performed by choosing the best available
path according to the request’s SLA.

o Mutation: During the mutation phase, a solution is
randomly selected, then the placement and chaining
of a random interval of successive VNFs is changed
while respecting the aforementioned constraints.

o Crossover: Two solutions are selected at random, and
are crossed at a random interval to generate a new
solution, VNF chaining is also updated.

o Local Search Improvement: In this phase, a random
solution is selected, and its neighbor solutions are
explored to operate local improvements (e.g. move
one or more VNFs to a nearby node).

Similar to the exact algorithm, the function that com-
putes the fitness value of each solution depends on the SLA
of the request and the Physical Programming method.

8 EVALUATION
8.1 Test Environment

Our simulations were conducted on a server with 32 Intel
Xeon 2.60 GHz CPU cores, 128 GB of memory, hosting an
Ubuntu Server 16.04 x64 OS. The simulation program, as
well as the Branch and Bound and memetic algorithms
were developed using the Python language, and the Gurobi
solver [31] was used to implement the ILP model.

8.2 Topology and Requests

In order to evaluate our solutions, we leveraged on the
networkx [32] library to generate multi-domain topologies
where each domain is a 3-level Fat Tree network, which is a
network topology that is used in data-centers. The physical

Algorithm 2: Branch and Bound Placement

Input : Topology G , Paths , Request req
Set of Authorized Nodes M
Output: Placement pl
1 Function solGen(partS,Ivi,M,req,G,P,partC,partL) :

2 newPartS « [] ;
3 for sol < 0 to |partS|-1 do
4 for j € M[Ivl] do
5 currSol « [i fori € partS[sol]];
6 if lvl= 0 then
7 ‘ currSol « currSol + [J];
8 else
9 Compute path the index of the best
path between the last node in currSol
and j;
10 currSol < currSol + [path, j];
11 end
12 if currSol satisfies the constraints then
13 Compute currFit the fitness of
solution currSol;
14 if currFit < bestFit then
15 newPartS «— nwPartS + [currSol] ;
16 if Ivl = maxLvl then
17 currBestSol « currSol;
18 bestFit < currFit;
19 end
20 end
21 end
22 end
23 end
24 if [vl = maxLvl then
25 ‘ return currBestSol
26 else
27 ‘ solGen(newPartS,lvi+1,M,req,G,P)
28 end
29 end

30 Generate one valid initial solution currBestSol, and
save its fitness in currFit ;

31 Determine the set of allowed bandwidth values B
from the SLA of the request;

32 partSol « [[b] for b € B];

33 vl «0;

34 bestSol— solGen(partS,Ivl,M,req,G,P)

35 return bestSol

servers are connected to edge switches that are connected
to aggregate switches, and are in turn connected to core
switches that ensure the inter-domain communication. We
also use this library to compute the set of paths between
nodes. The generated multi-domain topologies are depicted
in Table 3. For the link characteristics, we follow the fat tree
concept by allocating more bandwidth to the links as we
go higher in the topology. In terms of latency, two types of
links are used : low latency links, and less expensive high
latency links. The servers that host VNFs can be of 3 types
with different computing resource capacities, the hardware
configurations of each server and link type are detailed
in Table 3. Note that these types for each component are
randomly selected with equal probabilities.

Generate Initial Solutions

Operation
Choice

Crossover
—

f— v "

New Solution

. Generation - Local Search .

No

Yes
Generate Initial Solutions

Fig. 7: Proposed Heuristic Solution

Topology Configurations
Topology Domain Number | Node Number | Link Number
T1 4 144 240
T2 6 216 368
T3 8 288 496
Link Configurations
Link Type Bw (Gbps) Latency (ms) | Price per unit
Server-Edge 10 0.1-0.5 10-20
Edge-Aggregation 10 0.5-1 40-80
Aggregation-Core 3 §
(Low Latency) 40 0.5-1 480-960
Aggregation-Core i i
(Hiigh Latency) 40 10-20 160-320
Inter-domain
(Low Latency) 100 1-5 1920-3840
Inter-domain
(Medium Latency) 100 10-15 1280-2560
Inter-domain
(High Latency) 100 25-50 640-1280
Node Configurations
Node Type CPU RAM (Gb) Disk (To)
Large 500 1024 256
Medium 250 256 64
Small 100 64 16
Cost Per unit 10-20 10-20 1-2
VNF Resource Requirements
VNF Type CPU RAM (Gb) Disk (Go)
Large 4 6 80
Medium 2 4 40
Small 1 2 20

TABLE 3: Topology and Request Characteristics

As for the SFC requests, they are generated with VNF
lengths of 4 to 10. Where each VNF can be of one of
three types (Large, Medium, Small) with different resource
requirements as detailed in Table 3. Each SFC serves as a
slice that accommodates a certain number of users, and
we randomly set the number of users for each SFC in the
interval 10-5000. In order to support the 5G use cases, we
also set different SLA types to each request based on the 5G
service types (URLLC, mMTC, eMBB), and different Stan-
dard Developing Organizations (SDO) documents [33] [34]
[35] [36]. We can identify many SLA classes with different
requirements regarding the QoS metrics :

« Low Latency - High Throughput : For Augmented or
Virtual Reality applications, or live video streaming
with strict latency and bandwidth requirements.

« Low Latency - Low Throughput : For mission-
cr