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global infrastructure. We model the multi-objective SFC placement problem using the Physical Programming method, which allows the
expression of the Decision Maker’s preferences through meaningful parameters, and propose an exact algorithm as well as a scalable
heuristic solution. We then perform an extensive evaluation of the framework as well as the proposed algorithms. The results
demonstrate our solution’s effectiveness with a limited visibility on the network.
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1 INTRODUCTION

THE recent advances in Information Technology have
introduced a set of new heterogeneous services with

specific requirements such as reliability and low latency;
furthermore, the advent of massive Machine Type Com-
munication applications has exponentially increased the
number of network users, as well as traffic volumes. In
this context, a new generation of mobile networks (5G)
is under development to meet the requirements of these
new use cases [1]; two main enabling technologies have
been retained for 5G : Network Function Virtualization, and
Software Defined Networking [2]. Leveraging on both of
these technologies, Service Function Chaining has emerged
as another promising enabler for 5G. It refers to the process
of steering traffic between a set of functions in an ordered
manner, to deliver an end-to-end service. Service Function
Chaining has been studied under different aspects such
as orchestration, composition, or placement; however, only
a few works have addressed SFC placement in a multi-
domain context, which is a challenging research topic since
the lack of visibility on the domain’s infrastructure hinders
the process of obtaining optimal placement results.

On the other hand, optimizing the placement of an SFC
in the context of 5G means that different QoS metrics have to
be taken into account such as latency and throughput, which
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leads to the use of Multi-Objective Optimization (MOO)
methods, where the most used one is the optimization of
weighted sums of each objective [3]. However, this method
requires the normalization of the values of each objective,
as well as setting weights to assign degrees of importance
to each objective. These weights do not precisely express
the preferences of users, which means that the obtained
solutions won’t necessarily reflect the user’s preferences.

In this paper, we apply the Physical Programming [4]
optimization approach to the multi-objective placement of
multi-domain SFCs, which is a method that allows the
expression of preferences for different objectives using
physically meaningful parameters. We adopt a centralized
framework that allows the deployment of SFCs on multiple
domains with a limited visibility over their infrastructure.
We also propose an exact method for SFC placement, along
with a heuristic for scalability purposes. The performance of
both solutions is evaluated through extensive simulations.
The contributions of this paper are listed below:

• We formulate the multi-domain SFC placement prob-
lem using three Physical Programming approaches
(Linear, non-linear, global). Three optimization ob-
jectives are considered : the end-to-end latency, the
bandwidth per user, and the overall cost.

• We propose an exact solution based on a branch and
bound algorithm.

• We introduce a scalable heuristic algorithm.
• We evaluate the efficiency of our approach by com-

paring its results to the ones obtained using a tradi-
tional ILP with a weighted sum of the objectives.



• We assess the efficiency of our proposed heuristic
compared to the exact solution.

To the best of our knowledge, this is the first work that
used Physical Programming to formulate the multi-domain
SFC placement problem. The remainder of this paper is
organized as follows: Section 2 introduces use cases that il-
lustrate the Multi-Domain context of Service Chains. Section
3 summarizes previous related works. Section 4 presents an
overview of the proposed framework for multi-domain or-
chestration. Section 5 features a formulation of the problem,
and introduces the Physical Programming method. Section
6 depicts the exact resolution algorithm, while Section 7
describes the proposed heuristic algorithm. Section 8 pro-
vides the methodology for our experimental evaluation, and
discusses the obtained results. Finally, section 9 concludes
the paper.

2 MULTI-DOMAIN SFC USE CASES

In this section, we present two use-cases of multi-domain
SFCs for 5G. The first one is the IoT use case where
security, and data aggregation functions are deployed on
edge clouds; and the second one is related to the more
generic scenario of service composition, where the end-to-
end SFC is constructed by deploying and chaining functions
on different domains.

2.1 Industrial Internet of Things (IIoT) Use Case

The upcoming 5G networks are set to enable three main
usage scenarios: enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (URLLC), and
massive machine type communications (mMTC). The latter
supports the deployment of a massive number of IoT de-
vices for several applications. Industrial Internet of Things
(IIoT) represents one of the most significant applications
of IoT, with use cases such as smart factories, that rely
on the deployment and the collection of data from a set
of IoT devices, e.g. surveillance cameras, sensors etc [5].
Considering the volume of data that is generated by the dif-
ferent devices, the operator could benefit from placing data
aggregation functions at the edge of the network, to reduce
the amount of consumed network resources [6]. Multiple
network providers and vendors have developed commercial
solutions that leverage on IoT and edge computing, such as
Microsoft with Azure IoT Edge [7], or Amazon with AWS
IoT Greengrass [8]. Both solutions allow the deployment of
pre-processing functions at the edge of the network, which
collect the data generated by the IoT devices and perform
filtering and compression before sending it to the core cloud
for further processing.

Furthermore, it is essential to protect the infrastructure
from different attacks, especially since IoT devices are more
vulnerable to hacking and can be used as vectors for large
scale attacks [9]. The operator would need to deploy security
functions that perform traffic inspection and attack detec-
tion, to stop/mitigate attacks such as DDos attacks before
they enter the network. Therefore, security functions should
also be deployed as close as possible to the sources of data.

Fig. 1: IoT Use Case: Security and data aggregation VNFs at
the edge of the network

However, due to the number and geographical distri-
bution of the devices, the operator may not be able to
afford the cost of deploying edge clouds covering the whole
sensing area; instead, a less costly alternative is to deploy the
security and compression functions on external edge clouds
that are closer to the devices. In that case, as illustrated in
Figure 1, the operator deploys a multi-domain SFC, where
the data flow generated by the IoT devices is directed
to the security functions deployed on the external edge
clouds. After analysis, the flows that are deemed secure are
transmitted to the aggregation functions also deployed on
the external edge clouds, before sending the compressed
data to the remaining functions of the SFC that are deployed
on the operator’s domain.

2.2 Service Composition
With the advent of virtualization, different cloud service
models emerged : Infrastructure as a Service (Iaas), Plat-
form as a Service (PaaS), and Software as a Service (SaaS);
these models enable service providers to grant access to
resources, development environment, and software hosted
on their infrastructure respectively; thus enabling a multi-
tenant multi-layer architecture where physical and virtual
resources are shared between different customers (tenants)
as independent and isolated slices. In this scenario, as il-
lustrated in Figure 2, the service tenant does not own any
infrastructure, and composes its own service from a set of
Virtual Network Functions (VNFs) that are hosted by differ-
ent PaaS or SaaS providers. The VNFs are chained together
creating the SFC of the tenant, each tenant then disposes of
its own overlay slice spanning multiple domains. Note that
a slice can host more than one SFC.

3 RELATED WORKS

3.1 SFC Placement
A large set of works have tackled the SFC placement is-
sue, with different optimization parameters such as cost,
energy, or latency [10] [11]; however, most of these works
consider placement over a single domain, and assume that
the orchestrator performing the placement disposes of full
visibility and control on the underlying network infrastruc-
ture. As previously outlined, deploying service chains on



Fig. 2: Service Composition Across Multiple Operator Domains

multiple administrative domains adds more constraints to
the placement problem. Indeed, for security reasons, the
Infrastructure as a Service (IaaS) providers withhold details
on their local infrastructure, which makes it difficult to
determine the optimal end-to-end placement and chaining
of services due to the lack of information. A few works have
addressed the multi-domain SFC deployment issue with
limited visibility on the network; two main architectural ap-
proaches were proposed: distributed, and centralized. Table
1 summarizes the main features of the proposed solutions,
and outlines our proposal’s contributions. Please note that
some works didn’t include placement algorithms, which is
why the columns related to optimization were left empty.

3.1.1 Distributed
This approach supposes that the infrastructure providers
don’t share details on their network; in that case, a dis-
tributed algorithm is executed on all of the domains, and
messages are exchanged to determine the best option with-
out disclosing information to external parties. However, this
approach falls short in terms of scalability, as communica-
tion and convergence time and cost are important. The work
in [12] details a policy-based, distributed, asynchronous
election protocol based on hosting capabilities; the solution
allows edge and core cloud providers to cooperatively in-
stantiate wide-area chains. However, the proposed solution
does not support more complex, non-linear SFCs, where
packets pass through certain functions more than once;
and its evaluation only considers CPU and bandwidth con-
straints. Zhang et al. [13] also propose a distributed vertex-
centric algorithm that supports SFC flexibility: the request
is relayed between orchestrators to determine the optimal
placement combination. The authors in [14] detail DistNSE,
a distributed framework that performs SFC partitioning and
placement using a privacy-preserving bidding mechanism
where each provider competes for the NFs of the chain.

3.1.2 Centralized
In this approach, a broker/coordinator collects the informa-
tion disclosed by different IaaS providers, and reconstitutes
an abstract global view of the network. The centralized
broker performs an initial placement using this abstract
view, then partitions the request and relays the sub-requests
to the local domains. However, this approach might lead
to sub-optimal orchestration decisions due to the lack of
sufficient information on the infrastructure state. Figueira
et al. [15], and Guerzoni et al. [16] propose a hierarchical
architectures for multi-domain SFC orchestration, where a

centralized main orchestrator interfaces with lower-level
domain orchestrators. Dietrich et al. [17] leverage on this
architectural approach and detail a solution for SFC map-
ping across datacenters that are operated by multiple NFPs.
The proposed solution allows NFPs to disclose minimal
information about their infrastructure, and constructs an ab-
stract view of the network topology. The placement is then
performed in two stages: graph partitioning and sub-graph
mapping; however, the solution doesn’t take latency into
account, which is a critical requirement for some upcoming
5G use cases (i.e. Ultra Reliable Low Latency services).
Furthermore, the solution is formulated as a Linear Program
and therefore lacks scalability, which makes it unsuitable for
bigger instances of the problem. Similarly, Xu et al. [18] pro-
pose a multi-domain service chain partition and embedding
scheme using a Hidden Markov Model and a Viterbi-based
heuristic. However, the proposed heuristic solution only
considers the end-to-end latency while discarding cost. In
[19], the authors propose a multi-domain SFC orchestration
scheme that takes into account the issues related to the lack
of visibility over domains. They propose an algorithm that
aims to minimize the delay, then improves the bandwidth
cost of the obtained solution. However, this algorithm does
not take into account the service and SLA types of the
requests, indeed, a Best Effort service for example would
require the minimization of cost over latency.

In this paper, we formulate the multi-domain SFC place-
ment problem, and elaborate multiple algorithms that per-
form placement with a limited visibility, while minimizing
the end-to-end delay and cost, and maximizing the band-
width per user.

3.2 Multi Objective Optimization
Multi Objective Optimization (MOO) is a process where
more than one optimization objective are considered si-
multaneously. This process requires the articulation of the
Decision Maker’s (DM) preferences regarding the objectives,
which will influence the priority that each objective would
have over the others in the optimization process. Many
methods have been proposed to express the preferences of
the DM before or after the optimization. Most of these meth-
ods rely on the assignment of weights to each objective, and
the optimization of the weighted sum of these objectives [3].
However, these weights are generally determined through
trial and error, and do not reflect the specific preferences of
the DM as they are not physically meaningful. Furthermore,
as each objective has a different scale, a normalization
process is required.



Architecture Solution Mult. Adm. Differentiated Optimization Objectives Multi Obj. Solving
Domains SLAs Cost Latency Bw Opt. Method Method

Distributed
Catena [12] X X - - - - ILP

Zhang et al. [13] X X - - - - -
DistNSE [14] X X X X X Weights Heuristic

Centralized

Figueira et al. [15] X X - - - - -
Guerzoni et al. [16] X X - - - - -

Nestor [17] X X X X X Weights ILP/LP
Xu et al. [18] X X X X X - ILP, heuristic
Sun et al. [19] X X X X X - ILP, heuristic

Proposed Solution X X X X X
Physical Exact algorithm,

Programming heuristic

TABLE 1: Multi-Domain SFC Orchestration Solutions and Features

The Physical Programming Optimization approach was
proposed by Messac et al. in its Non-Linear [4] and Lin-
ear [20] forms. It allows the use of physically meaningful
parameters to express preferences using ranges for each
objective, and different classes that can be hard (H) or soft
(S), as shown in Figure 3:

• Hard Classes: These classes are constraints by defini-
tion, because solutions are rejected if they are not in
the acceptable range.

• Soft Classes: As illustrated in Figure 4, these soft
class functions include 6 preference regions: Highly
desirable, where improvement past the ideal value is
of minimal additional value, Desirable, Tolerable, Un-
desirable, Highly Undesirable, and Unacceptable, which
is expressed using a constraint.

The range limits provided by the DM, are translated into
class functions that allow the evaluation of the obtained
solutions in terms of their conformance to the DM’s pref-
erences. Multiple methods have been proposed for Physical

Fig. 3: Physical Programming Preference Classes [4]

Programming: Linear Physical Programming [20] (LPP),
Non-Linear Physical Programming (NLPP) [4], and Global
Physical Programming (GPP) [21].Each method expresses
the class function for each criterion as a combination of
piece-wise convex functions using the values of the region
boundaries, and the global objective function is defined as
the sum of these functions. The main difference between the
three methods lies in the complexity of the class function’s
formulation to obtain a more or less smooth curve, so that

Fig. 4: Region Boundaries For Preference Classes

the class functions translate the preferences of the Decision
Maker as accurately as possible. The NLPP formulation
allows the most accurate depiction of the Decision Maker’s
preferences, with a smooth curvature, but at the cost of
very complex formulations; the GPP method simplifies the
formulation while keeping the Physical Programming prop-
erties; and the LPP method allows a linear formulation
of the class functions. The approaches for obtaining the
objective functions for each Physical Programming method
are explained in more details in Section 5.

Physical Programming optimization enforces the One vs
Other Criteria (OVO) Rule, which states that a full reduction
for one criterion across a given region is better than a full
reduction for all of the other criteria across the next better
region. In practice, it means that between the options of
improving one criterion from the Tolerable region to the
Desirable region, and improving all the other criteria from
the Desirable to the Highly Desirable region, the first option



would be preferred. This ensures a fair trade-off between
objectives, and avoids improving certain objectives at the
expense of others, as could be the case with the weighted
method. This rule also ensures that the value of the class
function for region boundaries is the same across criteria
(and therefore that each region’s class function’s amplitude
is also the same across criteria), which has a normalizing
effect. Furthermore, once a certain objective has reached the
ideal value, instead of further improving it past the ideal
value, the focus would be on the remaining objectives.

A few works have leveraged on the Physical Program-
ming method for Multi-Objective Optimization in different
fields [22]: aircraft parameter design [23], trajectory plan-
ning [24], mechanical engineering [25], as well as elec-
tromagnetic and transmission related problems [26]. The
results obtained with Physical Programming in each of the
aforementioned works are closer to the DM’s preferences
than the results obtained with the usual MOO methods.

At the time of this writing, and to the best of our
knowledge, this approach has not been applied to solve
the multi-objective SFC placement problem, further, no ex-
isting work compares the different Physical Programming
methods. In this paper, we apply three methods of Physical
Programming on the SFC placement problem (Linear, Non
Linear, Global), and compare their results. The efficiency of
Physical Programming is also evaluated by comparing its
results to the weighted sum method.

4 PROPOSED FRAMEWORK

In this section, we detail our proposed framework for multi-
domain SFC deployment. As illustrated in Figure 5, the
architecture is logically centralized, with a multi-domain
orchestrator that acts as a broker and constructs an abstract
view of the topology based on the information that each
domain is disposed to reveal on their network. The orches-
trator also interacts with the WAN domain operators to
establish inter-domain communication for SFCs. Based on
the work in [27], we suppose that local domains disclose the
following details on their infrastructure :

• The amount of computing capacity that is made
available, with the average cost per unit for each re-
source type. Note that these amounts are determined
through pre-established mutual agreements between
the domain operators.

• The vertices of their WAN links, the available capac-
ity, latency, as well as the cost per bandwidth unit.

We provide the pseudo-code of the Multi-Domain Place-
ment procedure in Algorithm 1. In this work, we consider
that each SFC deployment request is issued by a tenant that
will provide the service to multiple users. When the multi-
domain orchestrator receives a request A4@ from a tenant to
deploy an SFC, it calls the function abstractPlacement that
performs an initial placement on the previously established
abstract view of the topology G01B . This placement takes
into account the QoS requirements defined by the SLA of
the tenant, as well as the placement constraints of each
VNF such as affinity and anti-affinity constraints, and the
allowed locations; the optimization objectives and their lev-
els of priority are also defined by the SLA. Once the initial

placement 01BCA02C%; has been obtained, the SFC request is
partitioned accordingly (requestPartitioning), and dummy
boundary nodes are added at the extremities of the sub-
chains. These dummy nodes are required to be placed at
the boundaries of the domains, to forward the traffic out of
the domains and towards the next sub-chain. Next, the sub-
requests ?0AC'4@B are sent to the chosen domains to perform
a local placement localPlacement, while having a full view
of their respective local topologies; note that each local
orchestrator can implement their own placement algorithm.
If the placement of a sub-chain fails, a backtracking mech-
anism is prompted to perform the initial placement once
again, but while ruling out the previous placement solution.
Once the multi-domain orchestrator receives the placement
results of all of the domains, it computes the end-to-end cost
and latency of the SFC, then sends a confirmation to the local
domain orchestrators to start the sub-SFCs deployment.

Algorithm 1: Multi-Domain Placement Algorithm
Input : Abstract Topology G01B , Request A4@

Set of Authorized DomainsM
Output: Vector containing the placement result

1 absractPl← abstractPlacement(A4@,G01B ,M);
2 if abstract placement failed then
3 return False, null, null
4 end
// Perform request partitioning

5 partReqs← requestPartitioning(A4@,abstractPl);
6 for ? ← 0 to |partReqs|-1 do
7 partialPl[p]← localPlacement(partReqs[p]);
8 if local placement fails then

// Perform backtracking
9 if ∃vnf ∈ ⋃?

0 ?0AC'4@B[=], |ME= 5 | > 1 then
10 Find one vnf for which |ME= 5 | > 1 ;
11 ME= 5 ←ME= 5 − {abstractPl[vnf]};
12 Go to Step 1;
13 else
14 return False, null, null
15 end
16 end
17 end
18 Compute end-to-end 2>BC and ;0C4=2H;
19 Send placement confirmation to local domains;
20 Update G01B ;
21 return True,cost,latency

5 PROBLEM FORMULATION

We formulate in the following the model of the multi-
domain SFC placement problem on both levels. We first
define the different placement, resource, latency, and cost
constraints. Then, we express the objective function using
Linear, Non-Linear, and Global Physical Programming. Ta-
ble 2 features the notations that are used in our model.

5.1 Constraints
5.1.1 Placement Constraints
A VNF should be placed on only one of its authorized
nodes, and only if an available authorized path can be



Fig. 5: Multi-domain SFC Placement Framework

Notation Description
Sets

S Set of SFCs
V8 Set of VNFs in SFC 8

A8/Ā8
Set of affinity/anti-affinity

constraints for SFC 8

M8, 9 Set of allowed placement nodes for VNF 9 in SFC 8

< Set of computing resources (CPU, RAM, disk)
N3 Set of nodes in domain 3

L Set of links
Decision Variables

X=
8, 9

Placement of VNF 9 of SFC 8 on node = (Boolean)

¤Xn,m
8, 9, 9+1

Placement of VNF 8 of SFC 8 on node =

and its successor on node < (Boolean)

Z=,<,@

8, 9, 9+1
Placement of link between VNFs 9 and 9 + 1 of SFC 8 on

@th physical link between nodes = and < (Boolean)
W8 Allocated bandwidth per user for SFC 8 (Integer)

Request

∇A,8, 9
Required amount of computing resource A

for VNF 9 of SFC 8

U8 Number of users in SFC 8

k−
8

Minimal required bandwidth value per user for SFC 8

k−
8

Maximal allowed bandwidth value per user for SFC 8

C?083 Amount paid by the SFC owner to deploy the Service Chain
Network Infrastructure

d8,=,<
Number of physical paths between the nodes = and <

that are allowed for SFC 8

RA,= Amount of computing resource A available on node =

ZA,= Cost per unit of resource A on node =

g
=,<,@

;

Link ; is part of the @th path between
nodes = and < (Boolean)

Rl,; Capacity of link ;

q; Latency of link ;

Z; Cost of using the link ; per bandwidth unit
Physical Programming

=B2 Number of soft criteria.
68 Objective value for criterion 8.
6̄8 Class function value for criterion 8.
˜̄6: Amplitude of interval : on y-axis.
_:
8

Amplitude of interval : on x-axis for the criterion 8.

68B
Upper/lower limit of interval : on x-axis

for the criterion 8 (Class 1-S/2-S).
V Convexity parameter

TABLE 2: Notations used
mapped to the other VNFs that it is connected to. Further-
more, additional requirements may mandate placing two
VNFs on the same node due to dependencies, or prohibit it,
for security concerns. All of these requirements are enforced
using the following node and link mapping constraints.

Node Mapping: The boolean variable X=
8, 9

expresses
whether the 9 th VNF of the SFC 8 has been mapped to the
physical node =.

X=
8, 9

=

{
1 If VNF 9 of SFC 8 is placed on node =

0 Otherwise∑
=∈M8, 9

Xn
8, 9

= 1, 8 ∈ S,∀ 9 ∈ V8 (1)

This variable obeys the following constraints:

Xn
8,:1
− Xn

8,:2
= 0, 8 ∈ S, (:1, :2) ⊂ A8 , = ∈ N3 (2)

Xn
8,:1
+ Xn

8,:2
≤ 1, 8 ∈ S, (:1, :2) ⊂ Ā8 , = ∈ N3 (3)

8 ∈ S,∀ 9 ∈ V8 ,∀= ∈ M8, 9 ,∀< ∈ M8, 9+1:

Xn
8, 9
· Xm

8, 9+1 ≤ d8,=,<, (4)

Constraint 1 ensures that each VNF is mapped to only one of
its authorized physical nodes. Constraints 2 and 3 express
affinity/co-location (i.e. two VNFs must be placed on the
same node) and anti-affinity/anti-location requirements (i.e.
two VNFs must not be placed on the same node), where A8

and Ā8 represent the set of tuples of VNFs :1 and :2 of
SFC 8, for which affinity and anti-affinity constraints apply,
respectively. We denote by d8,=,< the number of physical
paths between the nodes = and < that are allowed for
SFC 8, constraint 4 ensures that two consecutive VNFs are
mapped to two nodes if and only if there is at least one
allowed physical path between these nodes. Constraint 4
is quadratic but can be linearized by introducing a new
boolean variable ¤Xn,m

8, 9 , 9+1 whose value is the product of Xn
8, 9

and Xm
8, 9+1, Constraint 4 then becomes:

¤Xn,m
8, 9 , 9+1 ≤ d8,=,< (5)

Where the variable ¤Xn,m
8, 9 , 9+1 takes the value of the product of

Xn
8, 9

and Xm
8, 9+1 thanks to the following constraints:

¤Xn,m
8, 9 , 9+1 ≤ X

n
8, 9

(6)

¤Xn,m
8, 9 , 9+1 ≤ X

m
8, 9+1 (7)

¤Xn,m
8, 9 , 9+1 ≥ X

n
8, 9
+ Xm

8, 9+1 − 1 (8)

Note that thanks to the affinity constraints, our solution
supports non-linear SFC requests. Indeed, if the SFC
packet flow is required to pass through a VNF more than
once, a new dummy VNF instance is created with resource
requirements that are null, and the flow is redirected to the
original VNF using the affinity constraint that ensures that
the original VNF and its dummy instance are placed on the
same physical node [28].



Link Mapping: We will denote by @ the index of a
physical path between nodes = and <. The boolean variable
Z=,<,@

8, 9 , 9+1 determines whether the logical link between the 9 th

VNF and its successor in the SFC 8 has been mapped to the
@th physical path between nodes = and <.

Z=,<,@

8, 9 , 9+1 =


1 If the logical link between VNFs 9 and 9 + 1 of SFC 8

is mapped to the @th physical path between nodes = and <

0 Otherwise

∀8 ∈ S,∀ 9 ∈ V8 ,∀= ∈ M8, 9 ,∀< ∈ M8, 9+1 :
d=,<∑
@=1
Z=,<,@

8, 9 , 9+1 = Xn
8, 9
· Xm

8, 9+1 (9)

Constraint 9 ensures that a logical link between two VNFs is
mapped to a physical path if and only if the corresponding
VNFs are mapped to the nodes that the path interconnects,
and vice versa; it also ensures that not more than one
physical path is allocated to a logical link. Similarly to 4,
the constraint can be linearized as follows:

d=,<∑
@=1
Z=,<,@

8, 9 , 9+1 = ¤Xn,m
8, 9 , 9+1 (10)

5.1.2 Capacity Constraints
SFC placement is also subject to resource capacity con-
straints. Indeed, a VNF can only be placed on a node that
disposes of sufficient computing resources to host it, and a
physical path can be used to interconnect two VNFs if and
only if enough bandwidth is available on all of its links.
These constraints are formulated as follows:

Computing resources: We will denote by < the set
of computing resource types of physical nodes (CPU, RAM,
disk space...), by ∇A ,8, 9 the required amount of the resource
A for the 9th VNF of the 8th SFC, and by RA ,= each node =’s
remaining capacity for the resource type A . Constraint 11
ensures that the total amount of allocated resources on each
node does not exceed the amount of available resources
remaining on the node for each resource type.∑

9∈V8

∇A ,8, 9 · Xn
8, 9
≤ RA ,=, ∀= ∈ N3 ,∀A ∈ < (11)

Link resources: We designate by U8 the number of
users of the SFC 8, byW8 the allocated bandwidth per user
for the SFC 8, and by Rl,; each link ;’s capacity; we will also
use the boolean g

=,<,@

;
to express whether the link ; is part

of the @th path between the nodes = and <. We denote by
H ;,@,<,=

8, 9 , 9+1 the amount of bandwidth that is consumed from
each link ; of the @th path between nodes = and <, by each
SFC link between the VNFs 9 and 9 + 1, which is computed
as follows: ∀8 ∈ S,∀ 9 ∈ V8 ,∀= ∈ M8, 9 ,∀< ∈ M8, 9+1,∀; ∈ L

H ;,@,<,=

8, 9 , 9+1 =W8 · Z=,<,@

8, 9 , 9+1 · g
=,<,@

;
· U8 (12)

Therefore, H ;,@,<,=

8, 9 , 9+1 would take one of two values:

H ;,@,<,=

8, 9 , 9+1 =


W8 · U8 If the logical link between VNFs 9 and 9 + 1 of SFC 8

is mapped to the physical path @ between the nodes
= and <, that the link ; is part of

0 Otherwise

Depending on the SLA of the request, W8 could be a fixed
value for the strict SLAs, or variable in cases of SLAs with
more relaxed constraints, with a minimal value for the
bandwidth. We can therefore discern two different cases :

• The bandwidth value is fixed: W8 is a constant. Con-
straint 13 ensures that the total allocated bandwidth
on each physical link of an end-to-end physical path
does not exceed its remaining capacity.
∀8 ∈ S,∀; ∈ L :∑

9∈V8

∑
=∈M8, 9

∑
<∈M8, 9+1

d=,<∑
@=1
H ;,@,<,=

8, 9 , 9+1 ≤ Rl,; (13)

• The bandwidth value is variable: In that caseW8 is
an integer variable, we will denote by k−

8
the minimal

amount of bandwidth per user that is required by the
SLA of the SFC 8, and by k+

8
the maximum amount of

bandwidth that is allowed for the SLA of the SFC
8. Constraints 14 and 15 ensure that the allocated
bandwidth per user for this SFC is within the allowed
range of values for the selected SLA of the SFC 8:

W8 ≤ k+8 ∀8 ∈ S (14)

W8 ≥ k−8 ∀8 ∈ S (15)

On the other hand, Constraint 13 becomes quadratic,
as H ;,@,<,=

8, 9 , 9+1 contains the product of a binary variable
and an integer variable. It can be linearized using the
big M method [29], by replacing Equation 12 by the
constraints 16 to 19 to set the value of H=,<,@

8, 9 , 9+1 using
its upper and lower bounds. ∀8 ∈ S,∀ 9 ∈ V8 ,∀= ∈
M8, 9 ,∀< ∈ M8, 9+1,∀; ∈ L:

H ;,@,<,=

8, 9 , 9+1 ≤ k
+
8
· U8 · g=,<,@

;
· Z=,<,@

8, 9 , 9+1 (16)

H ;,@,<,=

8, 9 , 9+1 ≤ W8 · U8 · g=,<,@

;
(17)

H ;,@,<,=

8, 9 , 9+1 ≥ U8 · g=,<,@

;
· (W8 − (1 −Z=,<,@

8, 9 , 9+1) · k
+
8
)
(18)

H ;,@,<,=

8, 9 , 9+1 ≥ 0 (19)

5.1.3 Latency Constraint
Depending on the SLA of the SFC owner (Low Latency, Best
Effort, etc.), latency constraints may apply. Indeed, a critical
service such as autonomous driving would require very
low latencies, while a classical web browsing service would
allow higher latencies. Equation 20 expresses the end-to-
end latency for the SFC 8, which is computed as the sum
of the latencies of all of the links that are traversed by the
SFC packets, with q; being the link ;’s latency. Constraint
21 ensures that the end-to-end latency doesn’t exceed the
maximum allowed value for SFC 8, which is denoted by q+

8
.

q8 =
∑
9∈V8

∑
;∈L

∑
=∈M8, 9

∑
<∈M8, 9+1

d=,<∑
@=1

q; · Z=,<,@

8, 9 , 9+1 · g
=,<,@

;
(20)

q8 ≤ q+8 (21)

5.1.4 Cost Constraint
To ensure a profit margin to the SFC provider, the cost of
deploying an SFC should not exceed a certain value. Equa-
tions 22 and 23 express computational and link costs for
the SFC 8 respectively. The computational cost C8,2><?DC8=6 is
calculated as the sum of the costs of allocating the required
resources for each VNF of the SFC, depending on the nodes
where they have been placed, with ZA ,= being the cost of



using the resource A on node = per unit. The link cost
C8,;8=: is calculated as the sum of the costs of allocating the
required bandwidth for each user on each link that has been
used to forward the packets of the SFC, with Z; being the
cost of using the link ; per bandwidth unit. The overall cost
C8 is the sum of the computational and link cost.

C8,2><?DC8=6 =
∑

=∈N3

∑
A ∈<

∑
9∈V8

ZA ,= · ∇A ,8, 9 · Xn
8, 9

(22)

C8,;8=: =
∑
9∈V8

∑
;∈L

∑
=∈M8, 9

∑
<∈M8, 9+1

d=,<∑
@=1

Z; · H ;,@,<,=

8, 9 , 9+1 (23)

C8 = C8,;8=: + C8,2><?DC8=6 (24)

We will denote by C8, ?083 the amount paid by the SFC
owner in order to have its Service Chain deployed, and by
W the minimal margin of profit that the operator requires.
Constraint 25 ensures that the operator keeps its margin
above the minimal value.

C8 ≤ (1 − W) · C8, ?083 (25)

5.2 Objective Function

The objective of our model is to minimize the cost C8 and
end-to-end latency q8 , and maximize the allocated band-
width per userW8 . Since increasing the allocated bandwidth
increases cost, and lower latency links are more expensive,
the optimization’s goal is to find a fair trade-off between
all of these objectives while taking into account the tenant’s
preferences as expressed in the SLAs.

As stated earlier, we use Physical Programming to obtain
the multi-criteria objective function. We use the variable 8 to
designate a given criterion, and the variable : to designate
a class function interval. Figure 6 features examples of class
functions 6̄8 of the objective values 68 for all three methods.
As illustrated in Figure 6a, we will denote by _:

8
the x-axis

amplitude of each criterion 8 in a given interval : , and by
˜̄6: the y-axis amplitude for the interval : . The class function
value for each interval’s limits is the same across criteria as
expressed in relation 26.

6̄: ≡ 6̄8 (68,: )∀8; (2 ≤ : ≤ 5); 6̄1 ≡ 0 (26)

This means that the y-axis amplitude for each interval ˜̄6: is
also the same across criteria. Note that since the objective
of our optimization is to reduce cost and latency, they are
expressed using the Physical Programming class 1-S, and
bandwidth per user is expressed using the class 2-S as the
optimization aims to increase it. Once the function for each
criterion 8 has been defined, the global objective function
� (G) to minimize is formulated as follows :

� (G) = log10

{
1
=B2

=B2∑
8=1
6̄8 [68]

}
(27)

The individual class function 6̄8 [68] for each criterion 8 is
expressed differently depending on the chosen Physical
Programming method as will be shown in the following.

5.2.1 Linear Physical Programming
This method has been proposed by Messac et al. in [20]. The
piece-wise functions for each range are convex and linear as
illustrated in Figure 6a. Taking the example of the class 1-S,
the piece-wise linear function is expressed as follows :

6̄8 =

{
6̄:−1 + ˜̄6:

(
68−68,:−1

_:
8

)
If 68 ∈ [68,:−1, 68,: ], 2 ≤ : ≤ 5

0 If 68 < 68,1
(28)

The method to compute the values of 6̄: and ˜̄6: is provided
in the Appendix.

5.2.2 Non Linear Physical Programming
This method has been detailed in [4]. The piece-wise func-
tions are convex but non-linear, and can be arbitrarily
shaped in order to reflect the priorities of the Decision
Maker as illustrated in Figure 6b. This method is the most
flexible compared to the other methods, and allows the most
accurate depiction of the Decision Maker’s preferences, but
is also the most complex mathematically. For the sake of
readability, we put the mathematical formulations of the
class functions in the Appendix.

5.2.3 Global Physical Programming
Global Physical Programming is an adaptation of the Phys-
ical Programming method proposed by Sanchis et al. [21],
which allows a simpler formulation of the problem than the
NLPP method, while still satisfying the previously detailed
PP rules such as the OVO-rule. It also allows more flexibility
in defining # the number of preference ranges for each
criterion. The class function for the class 1-S is illustrated
in Figure 6c and formulated as follows :

6̄8 =

{
6̄:−1 + ˜̄6:

(
68−68,:−1

_:
8

)=
If 68 ∈ [68,:−1, 68,: ], 2 ≤ : ≤ 5

0 If 68 < 68,1
(29)

Where = is a pre-defined parameter. Details on how to
compute the 6̄: and ˜̄6: values can be found in the Appendix.

6 EXACT SOLUTION

The problem as formulated is a set of piece-wise functions,
and contains exponentiations that can reach the value of 4
in the case of Non-Linear Physical Programming. Therefore,
the traditional ILP optimizers can’t be used to solve the
problem. In order to implement the exact resolution of the
problem using the given formulation, we propose a Branch
and Bound based algorithm that recursively constructs so-
lutions while eliminating branches that don’t satisfy the
constraints, as well as those with a fitness that is worse than
the one of the current best complete solution.

The algorithm takes as input the topology graph G
which comprises the resource information of the nodes and
links, the pre-computed set of paths P, the request A4@
which contains the resource requirements for each VNF, the
number of users of the SFC, and its SLA class from which we
can determine the latency and bandwidth constraints, the
set of authorized nodes for placement M is also provided.
The output of the algorithm is the optimal solution 14BC(>;.

The solutions are encoded as a vector where the first
value represents W8 the allocated bandwidth per user for



(a) Linear Physical Programming (b) Non Linear Physical Programming (c) Global Physical Programming (n=2)

Fig. 6: Examples of class functions 6̄8 of the objective values 68 for the different Physical Programming methods

the SFC 8, and each value at the index 2 ∗ 9 + 1 represents the
ID of the node where VNF 9 has been placed. Each value
at the non-zero index 2 ∗ 9 represents the index @ of the
path that will be used for the virtual link between the nodes
where VNFs 9 − 1 and 9 have been mapped.

Algorithm 2 features the pseudo-code of the proposed
method. First, an initial valid solution is generated, and
serves as the best solution reference to eliminate the partial
solutions that are already worse. Then, the set of possible
solutions is recursively constructed level by level by con-
catenating values from the set of allowed values per level
and evaluating the solution. At the level I4A>, the possible
bandwidth values are added, then for each subsequent level,
the possible placement nodes per VNF are added, while also
computing the best path between the VNF and its predeces-
sor. Once the partial solutions for each level are generated, if
they satisfy the constraints, their fitness is calculated accord-
ing to the SLA of the request and the Physical Programming
method that is enforced. This fitness value is then compared
to the fitness of the best solution found so far. If the fitness
is worse, the solution is withdrawn and the branch is cut,
otherwise, if the solution is complete, it becomes the best
solution found so far. After all of the possible solutions for a
level have been explored, the function solGen is recursively
called again to compute the solutions of the next level. Once
the last level is reached, the best solution is returned.

7 HEURISTIC SOLUTION

Although the previously detailed model ensures an opti-
mal placement of SFC requests considering the provided
information, it lacks scalability; indeed, SFC placement has
been proven to be an NP-Hard problem [30], which means
that computation time increases exponentially using large
problem instances as will be illustrated in our evaluation
results in Section 8, thus making this solution impractical for
operational use; however, the exact algorithm’s results can
be used as a reference to evaluate the efficiency of alternative
solutions. As an alternative, and to support bigger instances
of the problem, we propose a memetic heuristic based on
a genetic algorithm, combined to a local search method for
solution improvement.

At first, a set of initial solutions is generated and classi-
fied; the set is then updated at each generation by introduc-
ing new individuals obtained through solution generation,
mutation, crossover, or local search improvement; the set of

solutions is then evaluated and classified using the objective
function previously expressed in section 5, and the best
individuals are selected for the next generation. The process
is repeated until a fixed number of generations is reached,
and the best solution is then returned. Note that all of the
operations use intervals to reduce request fragmentation. As
shown in Figure 7, the main steps of the heuristic are:

• Solution Generation: New individuals are generated
as follows : the placement of the first VNF is ran-
domly determined from the list of allowed locations,
then each subsequent VNF is also placed on the
same location as long as all of the constraints allow
it; to reduce link-associated cost and latency. Route
mapping is performed by choosing the best available
path according to the request’s SLA.

• Mutation: During the mutation phase, a solution is
randomly selected, then the placement and chaining
of a random interval of successive VNFs is changed
while respecting the aforementioned constraints.

• Crossover: Two solutions are selected at random, and
are crossed at a random interval to generate a new
solution, VNF chaining is also updated.

• Local Search Improvement: In this phase, a random
solution is selected, and its neighbor solutions are
explored to operate local improvements (e.g. move
one or more VNFs to a nearby node).

Similar to the exact algorithm, the function that com-
putes the fitness value of each solution depends on the SLA
of the request and the Physical Programming method.

8 EVALUATION

8.1 Test Environment
Our simulations were conducted on a server with 32 Intel
Xeon 2.60 GHz CPU cores, 128 GB of memory, hosting an
Ubuntu Server 16.04 x64 OS. The simulation program, as
well as the Branch and Bound and memetic algorithms
were developed using the Python language, and the Gurobi
solver [31] was used to implement the ILP model.

8.2 Topology and Requests
In order to evaluate our solutions, we leveraged on the
networkx [32] library to generate multi-domain topologies
where each domain is a 3-level Fat Tree network, which is a
network topology that is used in data-centers. The physical



Algorithm 2: Branch and Bound Placement
Input : Topology G , Paths P, Request A4@

Set of Authorized NodesM
Output: Placement ?;

1 Function solGen(?0AC(,;E;,M,A4@,G,P,?0AC�,?0AC!) :
2 =4F%0AC( ← [] ;
3 for B>; ← 0 to |?0AC( |-1 do
4 for 9 ∈ M[;E;] do
5 2DAA(>; ← [8 for 8 ∈ ?0AC([B>;]];
6 if lvl= 0 then
7 2DAA(>; ← 2DAA(>; + [ 9];
8 else
9 Compute ?0Cℎ the index of the best

path between the last node in 2DAA(>;
and 9 ;

10 2DAA(>; ← 2DAA(>; + [?0Cℎ, 9];
11 end
12 if 2DAA(>; satisfies the constraints then
13 Compute 2DAA�8C the fitness of

solution 2DAA(>;;
14 if 2DAA�8C < 14BC�8C then
15 =4F%0AC( ← =F%0AC( + [2DAA(>;] ;
16 if ;E; = <0G!E; then
17 2DAA�4BC(>; ← 2DAA(>;;
18 14BC�8C ← 2DAA�8C;
19 end
20 end
21 end
22 end
23 end
24 if ;E; = <0G!E; then
25 return 2DAA�4BC(>;

26 else
27 solGen(=4F%0AC(,;E;+1,M,A4@,G,P)
28 end
29 end
30 Generate one valid initial solution 2DAA�4BC(>;, and

save its fitness in 2DAA�8C ;
31 Determine the set of allowed bandwidth values B

from the SLA of the request;
32 ?0AC(>; ← [[1] for 1 ∈ B];
33 ;E; ←0;
34 14BC(>;← B>;�4=(partS,lvl,M,req,G,P)
35 return bestSol

servers are connected to edge switches that are connected
to aggregate switches, and are in turn connected to core
switches that ensure the inter-domain communication. We
also use this library to compute the set of paths between
nodes. The generated multi-domain topologies are depicted
in Table 3. For the link characteristics, we follow the fat tree
concept by allocating more bandwidth to the links as we
go higher in the topology. In terms of latency, two types of
links are used : low latency links, and less expensive high
latency links. The servers that host VNFs can be of 3 types
with different computing resource capacities, the hardware
configurations of each server and link type are detailed
in Table 3. Note that these types for each component are
randomly selected with equal probabilities.

Fig. 7: Proposed Heuristic Solution

Topology Configurations
Topology Domain Number Node Number Link Number

T1 4 144 240
T2 6 216 368
T3 8 288 496

Link Configurations
Link Type Bw (Gbps) Latency (ms) Price per unit

Server-Edge 10 0.1-0.5 10-20
Edge-Aggregation 10 0.5-1 40-80
Aggregation-Core 40 0.5-1 480-960(Low Latency)
Aggregation-Core 40 10-20 160-320(High Latency)

Inter-domain 100 1-5 1920-3840(Low Latency)
Inter-domain 100 10-15 1280-2560(Medium Latency)
Inter-domain 100 25-50 640-1280(High Latency)

Node Configurations
Node Type CPU RAM (Gb) Disk (To)

Large 500 1024 256
Medium 250 256 64

Small 100 64 16
Cost Per unit 10-20 10-20 1-2

VNF Resource Requirements
VNF Type CPU RAM (Gb) Disk (Go)

Large 4 6 80
Medium 2 4 40

Small 1 2 20

TABLE 3: Topology and Request Characteristics

As for the SFC requests, they are generated with VNF
lengths of 4 to 10. Where each VNF can be of one of
three types (Large, Medium, Small) with different resource
requirements as detailed in Table 3. Each SFC serves as a
slice that accommodates a certain number of users, and
we randomly set the number of users for each SFC in the
interval 10-5000. In order to support the 5G use cases, we
also set different SLA types to each request based on the 5G
service types (URLLC, mMTC, eMBB), and different Stan-
dard Developing Organizations (SDO) documents [33] [34]
[35] [36]. We can identify many SLA classes with different
requirements regarding the QoS metrics :

• Low Latency - High Throughput : For Augmented or
Virtual Reality applications, or live video streaming
with strict latency and bandwidth requirements.

• Low Latency - Low Throughput : For mission-
critical signaling in scenarios such as Autonomous



SLA Class Use Case Latency Bandwidth

0 Real-time video applications Strict : < 10ms Guaranteed : > 1 Gbps(AR,VR,live streaming)

1 Mission-Critical Signaling Strict : < 10ms Guaranteed : > 10 Mbps(V2X, Smart Factories)
2 Internet Usage, Platinum < 100ms > 100 Mbps
3 Internet Usage, Gold < 200ms > 50 Mbps
4 Internet Usage, Silver < 300ms > 25 Mbps
5 Internet Usage, Best Effort Best Effort Best Effort

TABLE 4: SLA Classes

Driving (V2X messages), and Smart Factories, with
strict latency requirements.

• Medium Latency - High Throughput : For buffered
video streaming and file sharing applications.

• Medium Latency - Low Throughput : For other TCP-
based services such as web browsing, messaging etc.

Additionally, in the general case of classic internet usage,
operators provide different offers of level of service to
their customers that vary in cost (Platinum, Gold, Silver,
Best Effort). In this vein, we set 6 different SLA classes
with strict and non-strict QoS requirements as described
in Table 4. These requirements will next be translated to
Physical Programming classes for use in the multi-objective
optimization scheme:

• In the case of SLA classes 0 and 1, latency and
bandwidth requirements are strict and are therefore
equivalent to Physical Programming hard classes 1-H
(Must be smaller) and 2-H (Must be greater) respec-
tively, and they can be modeled as linear constraints.

• For SLA classes 2 to 4, latency and bandwidth re-
quirements are less strict, they can be translated to
Physical Programming soft classes 1-S (Smaller is
better) and 2-S (Greater is better) respectively.

• SLA Class 5 is best effort, hence only cost is mini-
mized.

• The cost objective for all of the classes will need
to be minimized and is equivalent to the Physical
Programming soft class 1-S (Smaller is better).

Given these values, and considering that a tenant with a
certain SLA shouldn’t be able to benefit from a service level
that corresponds to a higher nor a lower level than its own,
we can define ranges of allowed values for the latency and
bandwidth. The deployment cost however always has to be
inferior than 95% of the amount paid by the SFC owner
irrespective of the SLA class, to guarantee a profit margin
of at least 5% to the operator. Once the ranges have been
defined, we can define the values of preference intervals
for each objective and each SLA class. Table 5 details the
intervals for the Physical Programming classes that will be
used to generate the evaluation functions of each objective.
We denote by - the Unacceptable SLA class, by H-U the Highly
Undesirable SLA class, by U the Undesirable class, by T the
Tolerable class and by D and H-D the Desirable and Highly
Desirable classes respectively.

Additionally, convexity parameters also need to be defined
for each Physical Programming method. For NLPP, we set
the constant U at 0.05, and the convexity parameter V at
1.5. In LPP, V is set at 1.1, and in GPP, U8=8C is set at 0.1
and the exponent = is set at 2. By applying these values, we

SLA Class - H-U U T D H-D
Latency (ms)

2 > 105 95-105 90-95 85-90 75-85 < 75
3 > 210 190-210 180-190 ms 170-180 170-150 < 150
4 > 315 285-315 270-285 255-270 225-255 < 225

Bandwidth per User (Mbps)
2 < 95 95-105 105-115 115-125 125-135 > 135
3 < 47.5 47.5-52.5 52.5-57.5 57.5-62.5 62.5-67.5 > 67.5
4 < 23.75 23.75-26.25 26.25-28.75 28.75-31.25 31.25-33.75 > 33.75

Relative Deployment Cost (%)
All SLAs >95 85-95 70-85 60-70 50-60 <50

TABLE 5: Physical Programming Classes

obtain the class functions for each objective and each SLA.
Figure 8 illustrates the obtained functions for SLA class 2 for
latency, bandwidth, and cost respectively. For each figure,
the blue line represent the Linear Physical Programming
function, the red line represents the Non-Linear Physical
Programming function, and the green line represents the
Global Physical Programming function. It can be noticed
that the class function results for each objective at the
interval limits are equal, which normalizes the objectives.

8.3 Algorithms
In our simulations, we evaluate 3 different optimization
algorithms :

• The heuristic combined to the SFC hierarchical par-
titioning framework and applied to both levels of
placement with the Physical Programming methods,
and with a limited visibility on the domains at the
first step (since the algorithm performs the initial
placement on an abstracted view of the topology).
Note that the number of generations # for which the
heuristic is run is varied, to study its effect on the
efficiency of the algorithm, depending on the SFC
length and topology size. It would have as values :
#1 = |A4@ | ∗ |G|, #2 =

#1
4 , #3 =

#1
16 . Where |A4@ | is

the length of the request, and |G| is the size of the
topology. Since each local domain only receives part
of the original SFC, the cost and latency limits for
each sub-SFC are recalculated according to the sub-
SFC length’s proportion to the original SFC’s length.

• In order to evaluate the efficiency of the heuristic
algorithm we also implement the Branch and Bound
algorithm applied on the full topology with the three
Physical Programming methods.

• To evaluate the efficiency of Physical Programming
compared to weighted sum MOO methods, we im-
plement an ILP applied on the full topology using
constraints expressed in Section 5, but where the ob-
jective function is a weighted sum of the normalized
objectives:

minimize UC ·
CB
_C
+ Uq ·

q

_q

− UW ·
W8

_W

With UC , Uq , and UW being the associated weights to
cost, latency, and bandwidth respectively, which are
determined from the tenant’s SLA as shown in Table
6. For SLA classes 0 and 1, the latency and bandwidth
requirements are strict, which means that they are
expressed as constraints, their associated weights are
therefore set to 0, and only cost is minimized in the
objective function. The SLA classes 2 to 4 represent



Fig. 8: Physical Programming class functions for the SLA class 2

different levels of service for internet usage, where
depending on the subscription, the operator would
give more or less priority to the QoS related ob-
jectives (allocated bandwidth and latency) over the
cost objective. The last SLA class is best effort, which
means that only cost is considered, and the weights
associated to latency and bandwidth are set to 0. We
also denote by _C , _q , and _W the normalization
coefficients for cost, latency, and bandwidth which
are set as the optimal values for each objective for the
selected SLA. The ILP is also applied on the complete
multi-domain topology.

SLA Cost UC Latency Uq Bandwidth UW
0-1 (Strict QoS reqs.) 1 0 0

2 (Platinum) 0.2 0.4 0.4
3 (Gold) 0.5 0.25 0.25
4 (Silver) 0.8 0.1 0.1

5 (Best Effort) 1 0 0

TABLE 6: Weights associated to the optimization objectives
for the ILP depending on the SLA

For the three algorithms, 150 requests of different SLAs
are generated and placed sequentially, and after each SFC
placement, the capacity values of the topology are updated.
Note that since the output of the heuristic can vary from an
experiment to another, we repeat the experiment 20 times.

8.4 Results
In the following, we present the results obtained from the
different simulations. We evaluate the performance of our
algorithms using two metrics: First, we assess efficiency,
which can be quantified by classifying each solution in
the corresponding SLA satisfaction class according to the
obtained results, and comparing the overall results. The sec-
ond evaluation metric is scalability, which can be estimated
by measuring the evolution of runtime for each algorithm
when increasing SFC length and topology size.

8.4.1 Efficiency
Overall Satisfaction Rate: First, we evaluate the

efficiency of the Physical Programming method compared
to the ILP by classifying the placed solutions according to
the preference ranges provided by the SFC owner. Table 7
provides the classifications of all of the requests regardless
of SFC length and topology type.

It can be observed that while the ILP provides the best
placement solutions in terms of latency with 100% of the

solutions in the Highly Desirable range, it falls short in terms
of allocated bandwidth per user where the minimal value is
allocated in 100% of the time. For the relative deployment
cost, 30% of the solutions are classified at the Highly Un-
desirable range and only 65% of the request placements are
classified at the Highly Desirable range, even when higher
weights are assigned to the cost and bandwidth objectives.
In comparison, the Physical Programming results maintain
relatively good results across all objectives. Indeed, the
Branch and Bound algorithm combined with Physical Pro-
gramming provides solutions where latency is in the Highly
Desirable range 91 to 94% of the times, where cost is always
kept at a minimal value, and where the optimal value for
bandwidth is reached for 95% to 97% of the requests.

It can also be noticed that among the Physical Program-
ming methods, the Linear one is the most efficient. Although
all of the methods perform similarly in terms of cost, the
LPP method keeps the number of solutions in the Highly
Undesirable range to a minimum with 0.58% of solutions
for latency and 1.08% solutions for bandwidth, as opposed
to 1.47% and 4.07% respectively for NLPP, and 1.59% and
2.8% of solutions for GPP respectively. The number of Highly
Desirable solutions for LPP is also the highest with 94.99%
solutions as opposed to 91.31% and 91.62% solutions for
NLPP and GPP respectively regarding latency, and 97.15%
solutions as opposed to 95.69% and 95.81% solutions for
NLPP and GPP respectively in terms of bandwidth. How-
ever, this difference remains in the range of 2 − 3% of the
produced solutions, which isn’t a significant difference.

This difference between the results of the Physical Pro-
gramming methods and the ILP is due to the fact that in
Physical Programming, if a solution reaches the optimal
value for an objective, its class function keeps outputting
the same value even if the objective is further optimized,
thus giving preference to solutions that also improve the
other objectives. The weighted-sum ILP however, might
give preference to solutions that minimize a certain objective
past its ideal value, while disregarding the other objectives.

Since the LPP method performs better than the other two,
and for the sake of brevity, we will only display the results of
the heuristic using LPP, while varying the generation num-
ber. It can be noticed that the solutions from the heuristic
are less optimal than those obtained using the Branch and
Bound algorithm, with more solutions that are classified
on the least desirable ranges; however, the heuristic still
outperforms the ILP with results that remain at the Highly



SLA Class H-U U T D H-D
Latency

B&B - LPP 0.58% 0.96% 2.29% 1.21% 94.99%
B&B - NLPP 1.47% 2.10% 2.54% 2.61% 91.31%
B&B - GPP 1.59% 2.04% 2.61% 2.16% 91.62%

ILP 0% 0% 0% 0% 100%
H - N1 1.15% 0.77% 0.85% 0.58% 96.68%
H - N2 1.16% 0.88% 0.98% 0.55% 96.46%
H - N3 1.05% 0.78% 0.85% 0.46% 96.89%

Bandwidth per User
B&B - LPP 1.08% 0% 1.78% 0% 97.15%

B&B - NLPP 4.07% 0% 0.26% 0% 95.69%
B&B - GPP 2.8% 0% 1.40% 0% 95.81%

ILP 100% 0% 0% 0% 0%
H - N1 0.70% 0.38% 0.43% 0.52% 98%
H - N2 0.67% 0.46% 0.61% 0.52% 97.77%
H - N3 0.70% 0.41% 0.60% 0.58% 97.74%

Relative Deployment Cost
B&B - LPP 0% 0% 0% 0% 100%

B&B - NLPP 0% 0% 0% 0% 100%
B&B - GPP 0% 0% 0% 0% 100%

ILP 29.97% 2.07% 1.57% 1.76% 64.64%
H - N1 0.30% 0.42% 0.29% 0.41% 98.61%
H - N2 0.36% 0.43% 0.36% 0.47% 98.40%
H - N3 0.23% 0.41% 0.31% 0.44% 98.63%

TABLE 7: Results Classification using Preference Classes

Desirable range for 93 − 96% of the placement results. The
change in the number of generations does not have a signif-
icant effect on the overall results, as the results classification
remains consistent with a slight decrease in the number of
solutions that are classified in the Highly Desirable range, as
the number of generations decreases. Similarly to the Branch
and Bound algorithm, all objectives are uniformly optimized
and no objective is given preference over the two others.

Effect of the SFC Length and Topology Size: Next,
we study how the efficiency of the 3 solutions is affected by
the changes of SFC length and topology size. Figures 9, 10
and 11 illustrate the obtained results for latency, bandwidth,
and cost respectively. The 0 value on the y-axis represents
the optimal value for each request, and the different results
represent the relative mean difference between the obtained
value for each algorithm and the optimal one. Depending on
the optimization objective, it would be preferable to have
results either above or below the optimal value threshold.
Indeed, since the optimization model aims to reduce the
end-to-end latency and relative cost, the best solutions
should be below the threshold. In contrast, as the bandwidth
per user is a Larger-is-Better Physical Programming class,
the best solutions are above the threshold. The blue line
represents the average ILP results, the orange, green and red
lines represent the mean Branch and Bound results for the
LPP, NLPP, and GPP methods respectively, and the purple,
brown and pink dashed lines represent the mean and 95%
Confidence Interval (C.I) of heuristic results using LPP for
the generation numbers N1, N2, and N3 respectively.

Looking at the end-to-end latency results in Figure 9, we
can first confirm the results in Table 7, where the ILP gives
preference to latency over the other objectives. The latency
values for the ILP are under the optimal threshold with a
mean value of around 95−100% less than the objective value
across SFC lengths and topology sizes. The same behavior
can be observed from the values obtained from the Physical

Programming algorithms regardless of the topology size
and SFC length. As for the Branch and Bound and heuristic
results, we can observe that latency values slowly increase
proportionally with SFC length and topology size while still
remaining under the optimal value threshold, and therefore
within the Highly Desirable preference class with values
increasing from −81.5% to −38.4% for the topology T1,
−80.72% to −29.04% for the topology T2, and −68.75% to
−20.33% for the topology T3. It can also be noticed that
although all of the Physical Programming plots are similar,
the NLPP latency results are slightly lower than those of
the other two methods for the Branch and Bound algorithm
for the shorter SFCs with values of −83.63%,−80.72%, and
−68.75% for SFC length of 4 SFCs and topologies T1,T2,
and T3 respectively. However, as SFC length increases, the
LPP method provides solutions with slightly lower latencies
with values of up to −45.45%,−35%, and −32.81% for SFC
length 10 and topologies T1,T2, and T3 respectively. Another
observation that can be made on the heuristic results is
that the highest generation numbers N1 and N2, provide,
on average, lower latencies than those obtained with the
generation number N3. This can be explained by the fact
that the longer a heuristic is run, the more solutions are
explored and the better results can be. In contrast, the ILP
results for bandwidth (Figure 10) remain stable and under
the optimal value threshold for all SFC lengths and all
topologies with mean values of around −25%. Note that in
Table 7 all of the placement solutions are classified as Highly
Undesirable. As for the Branch and Bound results, they also
remain stable but slightly over the optimal value threshold,
which is consistent with the results in Table 7 where the
majority of solutions are classified as Highly Desirable. The
NLPP method provides the highest bandwidth values with
an average of values that are 8% higher than the optimal
value for lower SFC lengths, and slowly decreasing to 0.9%
as the number of VNFs increases, as opposed to 6 − 2% for
LPP and 7 − 0.1% for GPP.

However, the bandwidth values for the heuristic algo-
rithm fluctuate more depending on SFC length and topology
size. Indeed, for topology T1, the mean values of bandwidth
per user for the heuristic algorithm are higher than the
optimal value, and those of the Branch and Bound solution;
the values oscillate between 0.04% and 79% over the Highly
Desirable threshold, with C.Is of 0.4−21% respectively, with a
general tendency of decreasing as the SFC length increases.
The heuristic results for bandwidth stabilize as topology
size increases. For topology T2, the mean values of the
bandwidth per user are reduced, but are still close to the
optimal value with results that are between 6% below the
threshold, and 23% over the threshold, and C.Is of 0.4−12%.
As for topology T3, the mean bandwidth values are very
similar to those of the Branch and Bound algorithm for the
shorter SFCs with values of around 2 − 4%, and a peak at
SFC lengths 9 and 10 that reaches 40% over the optimal
value with a C.I of 11% for generation number N3; while
the mean values for generation numbers N1 and N2 reach
the values 20% and 24% over the threshold respectively
for the SFC length of 10 VNFs, with C.Is of 8% and 9%
respectively. Moving on to the relative cost, we can see that
once again the Branch and Bound results remain stable and
way under the optimal value across configurations with



Fig. 9: Relative Difference Between the Placement Solutions and the Optimal Value for the End-to-End Latency

Fig. 10: Relative Difference Between the Placement Solutions and the Optimal Value for the Bandwidth per User

Fig. 11: Relative Difference Between the Placement Solutions and the Optimal Value for the Relative Cost

mean values of −96% to −80%. We can also observe that for
this objective, the GPP method slightly outperforms the LPP
and NLPP methods. The heuristic algorithm also displays
values that slowly increase as SFC length increases, but the
results remain similar to the ones obtained by the Branch
and Bound algorithm. In contrast, as the ILP provides lower
latency values, hence using higher-cost links compared to
the other solutions, its cost results are higher than those of
the algorithms that leverage on Physical Programming. For
topology T1 the relative cost increases proportionally to the
SFC length with a mean relative cost of −82% to −49%; while
for topology T2 the ILP provides results with relative costs
of 79% to 49% lower than the optimal value. For topology
T3 the relative cost oscillates between −75% and −60%.

8.4.2 Runtime
During our simulations, we also measured the mean run-
time of the algorithms to evaluate their scalability in terms
of computing time. The obtained results are gathered in
Table 8. Due to its complexity, the ILP displays high com-
putation times for all of the simulation configurations. For
topology T1, the runtime for the ILP starts at 19B for SFC
length of 4 and increases to up to 122B for SFC length 10,
similar behavior is observed for topologies T2 and T3 with
an increase from 24.58B and 24.19B for SFC length 4 to 110B
and 102B for SFC length 10 respectively.

The Branch and Bound algorithm turns out to be more
costly than the ILP in terms of runtime, indeed, the runtime
for longer SFC lengths increases to up to 249B. Overall, the
NLPP method is the one with the highest runtime values



SFC Length 4 5 6 7 8 9 10
Topology T1

ILP 19.36 30.54 44.16 55.13 78.76 82.94 122.26
B&B - LPP 21.02 25.23 47.8 65.67 97.69 149.04 174.67

B&B - NLPP 25.95 33.89 64.5 86.48 118.65 173.86 186.96
B&B - GPP 20.73 25.74 47.82 62.19 86.6 124.81 144.41

H - N1 2.87 2.1 4.2 6.21 6.66 9.11 11.05
H - N2 1.27 1.06 1.76 1.52 2.81 2.75 3.5
H - N3 0.86 0.71 0.93 0.91 0.95 1.41 1.64

Topology T2
ILP 24.58 33.44 45.97 60.24 72.53 98.24 110.6

B&B - LPP 24.28 51.58 82.21 123.2 146.36 151.73 249.4
B&B - NLPP 27.34 63.15 95.22 129.86 146.12 154.96 218.9
B&B - GPP 24.22 51.74 79.21 112.72 129.12 137.25 205.17

H - N1 2.89 4.49 7.31 6.79 7.54 11.65 11.57
H - N2 1.21 2.64 2.83 2.01 3.29 5.36 4.22
H - N3 0.65 0.95 1.54 1.32 1.86 2.38 2.38

Topology T3
ILP 24.19 35.29 45.13 56.22 77.96 102.43 102.95

B&B - LPP 42.49 60.92 98.14 143.99 171.21 232.39 234.92
B&B - NLPP 49.61 74.82 118.66 164.38 195.13 241.01 236.18
B&B - GPP 45.2 65.68 102.73 140.63 172.14 210.5 209.1

H - N1 8.09 10.84 13.43 12.4 19.46 16.93 15.84
H - N2 2.24 3.83 5.12 4.58 6.29 3.66 3.83
H - N3 1.73 1.86 1.61 1.85 3.15 2.74 2.24

TABLE 8: Comparison of computation times (in seconds)

starting at 25.95B for SFC length of 4 and increasing to 186B
for SFC length 10 when used on topology T1, when for
topologies T2 and T3 it increases from 24.58B and 24.19B for
SFC length 4 to 110B and 102B for SFC length 10 respectively.
The LPP method comes second with a runtime of 21B to
174B for topology T1, and 24B and 42B to 249B and 234B
respectively for topologies T2 and T3. Lastly, Global Physical
Programming displays runtimes of 20B,24B, and 45B to 144B,
205B, and 209B for topologies T1, T2, and T3 respectively.

In contrast, the heuristic proves to be the most scalable
as it outputs results in significantly lower times compared to
the exact solutions. The heuristic algorithm with the highest
generation number N1 outputs results after 2.1B and up to
11.05B for the topology T1, while for the topologies T2 and
T3 the proposed heuristic returns results after 2.89B to 11.65B
and 8.09B to 19.46B respectively. Reducing the number of
generations to N2 further reduces the runtime, with values
of 1.06B to 3.5B for topology T1, and between 1.21B and
5.36B for topology T2, while for topology T3 the runtime
ranges between 2.24B and 6.29B. The generation number
N3 produces the lowest runtimes with 0.71B to 1.64B, 0.65B
to 2.38B, and 1.73B to 2.24B for topologies T1, T2, and T3
respectively. We can therefore conclude that the proposed
exact solutions are not scalable, and are not suitable for
use at runtime, while the heuristic approach allows results
within less than 20 seconds for the biggest instances, and
less than a second for the small instances when reducing
the number of generations.

9 CONCLUSION AND FUTURE WORK

In this work, we proposed a centralized framework to
support SFC placement over multiple domains while allow-
ing the domain operators to disclose minimal information
on their infrastructure. We modeled the SFC placement
problem as a multi-objective optimization problem where
the end-to-end latency, individual bandwidth, and relative
deployment cost are optimized using Physical Program-
ming to express preferences through meaningful param-
eters. Three Physical Programming methods were used :
Linear, Non Linear, and Global. We implemented our model
using an exact algorithm, and also formulated a scalable and

efficient heuristic solution. The evaluation of the framework
and the proposed algorithms proved our solution’s effec-
tiveness with a limited visibility on the network, and the
scalability of the heuristic that provided results within the
desirable ranges in relatively low runtimes. Furthermore,
we were able to demonstrate the benefits of using Physical
Programming as opposed to the weighted-sum method by
comparing our results to those obtained from an ILP. The
comparison between the three Physical Programming meth-
ods also provided insights on the results of each one, and
we were able to establish that the Linear method slightly
outperformed the other ones.
However, the end-to-end life-cycle management of SFCs
also requires resource orchestration post-deployment. In-
deed, several 5G use cases are characterized by the mobility
of users, such as autonomous vehicles, and e-Health. In both
use cases, cameras and/or sensors capture information on
the environment/patient and send that data to the cloud
for processing, and similar to the IIoT use case, security and
pre-processing functions are deployed on edge clouds. Since
the users are in constant mobility, they might move away
from the edge cloud, far enough to increase the latency
past the accepted limit. In that case, the operator might
have to migrate the edge VNFs to edge clouds that are
closer to those users, thus re-computing the SFC placement
post-deployment. Furthermore, in the context of fault man-
agement, cases of link or node failure would prompt the
operator to re-compute the optimal link and node mapping
of the affected SFC, and carry out flow re-routing, VNF
migration or VNF re-instanciation. In future works, we plan
to tackle SFC resource management post-deployment to
obtain an orchestration solution that manages SFCs during
their entire life-cycle.
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APPENDIX A
PHYSICAL PROGRAMMING FORMULATIONS

A.1 Linear Physical Programming
A.1.1 Interval limits on the y-axis

6̄1 = 0, 6̄2 = ˜̄62 is a small positive number (e.g 0.1) (1)

In order to enforce the OVO rule, the following relationship
is applied:

˜̄6: = V(=B2 − 1) ˜̄6:−1; (3 ≤ : ≤ 5); =B2 > 1; V > 1 (2)

Where V is a convexity parameter that needs to be deter-
mined.

A.1.2 Convexity
In a contribution from Ma et al. 1, a simplified method
is proposed for obtaining the appropriate value of V for
each criterion in one iteration using the following inequality
system: {

V > 1
V >

68,:
68,:−1 (=B2−1) ; (3 ≤ : ≤ 5)

Solving this system produces a value for V that satisfies the
OVO-rule as well as the convexity requirement.

A.2 Non Linear Physical Programming
In the following, we provide the mathematical formulation
of the NLPP class functions, as well as the equation system
that allows the computation of the convexity parameter V,
more details on the method that was employed to obtain
these equations can be found in the original NLPP paper2.

A.2.1 Interval limits on the y-axis
6̄1 = ˜̄61is a small positive number (e.g 0.1) (3)

˜̄6: ≡ 6̄8 [68 (:) ] − 6̄8 [68 (:−1) ] = V=B2 ˜̄6:−1, 2 ≤ : ≤ 5 (4)

A.2.2 Convexity
The convexity parameter V must be greater than 1 and
ensure that both constants 0 and 1 are strictly positive. V

is first set at 1.5 then gradually increased by 0.5 until strictly
positive values are obtained for 0 and 1 for each range of
each criterion. Their values are calculated as follows :

0 =
3[3B8,:+B8,:−1 ]−12B̃:

8

2(_:
8
)3 (5)

1 =
12B̃:

8
−3[B8,:+3B8,:−1 ]

2(_:
8
)3 (6)

Where B̃:
8

is a characteristic slope for the :th region of
the criterion 8 as expressed in Eq 7. And B:

8
allows the

computation of the slope of a region according to the slope
of the preceding region as is shown in Eqs 8-9.

B̃:
8
= ˜̄6:/_:

8
(7)

1. X. Ma and B. Dong, "Linear Physical Programming-Based Ap-
proach for Web Service Selection," 2008 International Conference on
Information Management, Innovation Management and Industrial En-
gineering, Taipei, 2008, pp. 398-401, doi: 10.1109/ICIII.2008.156.

2. A. Messac, “Physical programming - effective optimization for
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B81 = U · B̃2
8
, 0 < U < 1 (8)

B8,: =
(8U+4) B̃:

8
−(8U+1)B8,:−1

3 , 2 ≤ : ≤ 5 (9)

Note that the constant U should be kept at a relatively
small value (<0.1) in order to maximize the range of accept-
able slopes at the region boundaries.

A.2.3 Class Functions
For each objective 8: For the soft class 1-S, the following
model is given:

– For the first range ((68 ≤ 68,1)):

6̄8 = 6̄1 · 4
[
(B8,1/68,1) (68−68,1)

]
(10)

– For each other range:

6̄8 = )0 (b:8 )6̄:−1 + )1 (b:8 )6̄: + )̄0 (b:8 ;_:
8
)B8,:−1 + )̄1 (b:8 ;_:

8
)B8:
(11)

b:
8
=

68−68,:−1
_8,:

(12)

Where 0 ≤ b:
8
≤ 1, : = 2, ..., 5, and

)0 (b) ≡ 1
2 b

4 − 1
2 (b − 1)4 − 2b + 3

2 (13)

)1 (b) ≡ − 1
2 b

4 + 1
2 (b − 1)4 + 2b − 1

2 (14)

)̄0 (b, _) ≡ _[ 1
8 b

4 − 3
8 (b − 1)4 − 1

2 b +
3
8 ] (15)

)̄1 (b, _) ≡ _[ 3
8 b

4 − 1
8 (b − 1)4 − 1

2 b +
1
8 ] (16)

A.3 Global Physical Programming
A.3.1 Interval limits on the y-axis
The images 6̄: at the range boundaries 6:

8
are calculated as

follows :
6̄0 = 0, 6̄1 = 6̄8=8 , 6̄8=8 ≥ 0 (17)

6̄: = 6̄:−1 ∗ =B2 (2 ≤ : ≤ #) (18)

With # being the number of preference ranges, and 6̄8=8 a
pre-defined parameter.


