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Abstract—Premium rate phone numbers are often abused by
malicious parties (e.g., via various phone scams, mobile malware)
as a way to obtain monetary benefit. This benefit comes from
the ‘revenue share’ mechanism that enables the owner of the
premium rate number to receive some part of the call revenue
for each minute of the call traffic generated towards this number.

This work focuses on International Revenue Share Fraud
(IRSF), which abuses regular international phone numbers as
the so-called International Premium Rate Numbers (IPRN). IRSF
often involves multiple parties (e.g., a fraudulent telecom operator
in collaboration with a premium rate service provider) who collect
and share the call revenue, and is usually combined with other
fraud schemes to generate call traffic without payment. Although
this fraud scheme has been around for several years, it remains
to be one of the most common phone fraud schemes, reportedly
leading to billions of dollars of losses every year.

In this paper we explore the IRSF ecosystem from multiple
angles, via: (i) A telephony honeypot that observes IRSF attempts
towards an unused phone number range (i.e., a phone number
gray space), (ii) A dataset of more than 3 Million test IPRNs and
more than 206K test call logs we collected from several online
IPRN service providers during 4 years, and finally, (iii) A real-
world call data set from a small European operator, involving
689K call records, that we analyze to find IRSF cases. By
leveraging our observations from (ii), we propose several machine
learning features that can be used in IRSF detection. We validate
our approach on the dataset in (iii), achieving 98% accuracy with
a 0.28% false positive rate in detecting the fraudulent calls.

I. INTRODUCTION

Telephony is the largest and the oldest deployed network.
Telephony networks carry a huge volume of call, messaging
and data traffic every day. This is a complex and opaque
ecosystem, which combines multiple technologies and involves
various types of service providers and customers. Because calls
can be expensive, and can be used to monetize third party
services, telephony becomes a very profitable environment
for many fraud schemes [57]. Among these, International
Revenue Share Fraud (IRSF) is one of the most profitable
for the fraudsters. According to the 2017 CFCA fraud loss
survey, IRSF costs telecom operators $6.10B a year (roughly
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Fig. 1: IRSF Overview.

20% of the estimated communication fraud) [12]. Moreover,
it remains to be the most common fraud type reported by the
telecom operators in 2019 [15]. IRSF can affect all users of
the telephone network, both the individual users (fixed lines,
prepaid and postpaid mobile subscribers) and the enterprise
phone systems (that often include a Private Branch Exchange
- PBX - to handle the internal and external communications
of the enterprise). As an example, a recent report from Check
Point Research [61] shows how the attackers target and exploit
PBX systems worldwide, and use this access to generate calls
to the so-called IPRNs for profit.

A. International Revenue Share Fraud Overview

IRSF often involves three types of fraudulent actors:

• A third party service provider who advertises regular
phone numbers as the so-called International Premium
Rate Numbers (IPRN). Throughout the paper, we will call
these service providers as the IPRN providers.

• A fraudster who obtains IPRNs from an IPRN provider,
and generate fraudulent call traffic to those phone num-
bers to receive monetary benefit.

• A fraudulent telecom operator who hijacks the phone calls
and reroutes them to the IPRN provider, while collecting
and sharing the call revenue. The hijacking of the calls
is often performed during their transit, and it is often
impossible to identify the fraudulent transit operator due
to the opacity of international call routing [57].

An overview of the IRSF fraud scheme is presented in
Figure 1. Next, we explain each of these actors in more detail.
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Fig. 2: Example advertisements from IPRN providers.

1) IPRN providers: A simple online search for interna-
tional premium rate numbers reveals many websites advertis-
ing them, and promising fast and easy money payout guarantee
for the call traffic generated to these numbers. Some of the
websites also provide easy-to-setup and ready-to-use Integrated
Voice Response services (IVRs) that can be used for setting up
the premium rate service, such as broadcasting audio books,
live radio, live games or weather forecast. Figure 2 shows some
example advertisements taken from IPRN provider websites.

In addition, such websites often provide specific web
interfaces for testing purposes: they publish a set of test
numbers that the fraudsters can call to check if the calls they
generate will reach the IPRN provider and generate revenue.
This ensures that the hijacking of the call is successful on this
route, i.e., at some part of the call route, the involved fraudulent
transit operator is able to hijack and re-route the call to the
IPRN provider (which enables the revenue share). Throughout
the paper, we will call these test numbers as test IPRNs.

The test interfaces also show the records of the calls that
are initiated to the test IPRNs. Fraudsters can view the call
records in real time, to check if the current call they are
making has reached the IPRN provider. Note that, as we will
discuss in detail later, reachability of these test IPRNs may
not be consistent. That is why the IPRN providers often report
some statistics about which countries/operators were recently
reachable from which other countries/operators.

2) Fraudster who generate call traffic: Fraudsters aim to
generate high volume of phone calls to the so-called IPRNs
via compromised phone lines. To be able to avoid paying for
the phone calls, they may use different fraud schemes [31]:

• Fraudulently obtained SIM cards. Fraudsters may use
stolen SIM cards or, SIM cards that are obtained via
subscription fraud (e.g., subscribed with fake identity and
payment details). They often use the SIM card in a roam-
ing network, abusing the fact that the call records may
not be immediately available to the home operator [29],
[65].

• PBX hacking. Fraudsters might gain unauthorized access
to enterprise telephone systems (PBXs) (e.g., by abusing
remote access interfaces, weak credentials or misconfigu-
rations [39]) and use the phone lines to initiate outgoing
phone calls (often, multiple calls in parallel) [6], [44],
[48], [61].

• Wangiri (One-ring/Callback) scam. Fraudsters trick the
phone users to call back certain international phone
numbers, by ringing users’ phones for only a few seconds,
which results in missed call notifications [14], [50], [58],
[66]. In recent years, a large number of countries have
been target of Wangiri scam. Consumer protection bodies,
regulatory bodies, and news agencies in various countries
try to warn the users against this type of scam [51].

• Mobile malware. Malware that infects mobile phones
might be able to initiate phone calls stealthily [7], [21],
[35], [60].

In the case of PBX hacking or fraudulently obtained SIM
cards, fraudsters aim to generate large volume of calls as
quickly as possible (before they are detected). To stay under
the radar of fraud detection mechanisms, they might generate
calls to multiple IPRNs, while keeping the duration of each call
low. Thus, they may use the test interfaces of IPRN providers
to find the suitable destinations that will allow revenue share.
They also often commit fraud during the weekend, when the
fraud management team of the telecom operator is less likely
to react quickly.

In the case of Wangiri scam, fraudsters would determine
to use certain IPRNs belonging to the destination countries
to which the calls are likely to be hijacked. It is possible
that, some of the victims’ calls will not generate revenue
for the fraudster, because the victims may be using different
originating operators. For mobile malware, it might be possible
to remotely update the telephone numbers that will be used for
fraud.

3) Fraudulent telecom operator: Since the deregulation of
the telecommunication industry in most of the countries, lots
of small or medium sized operators have emerged. Most of
them do not own their own infrastructure, but resell the service
they buy from other operators (e.g., Mobile Virtual Network
Operators-MVNOs) [57]. Moreover, with the advances in
VoIP technology, the number of transit operators that work
in wholesale international market have also increased. Open
source software and cheap equipment reduced the cost of
creating a telecom operator [53]. While setting up a telecom
operator became rather easy and low cost, the telecommuni-
cation network still remains opaque. Operators make bilateral
agreements to buy and sell call traffic. However, due to the
confidentiality of these agreements, it is often not possible to
know the complete route that a call has taken. As a result, it
is difficult to know if an operator manipulates the call route,
and to pinpoint this operator.

IRSF requires the collaboration of a telecom operator who
will route the calls to the IPRN provider. In some cases, this
operator may own the destination number, in other cases it
may be the same entity as the IPRN provider. In Section II
we will explain in more detail the mechanisms enabling the
hijack of the phone calls and variations of IRSF.

B. Our study and contributions

In this paper, we analyze the IRSF ecosystem from multiple
perspectives and finally we propose a machine learning method
for IRSF detection. We use three main data sources for our
study (Figure 3 and Table I summarize the data sources and
experiments):
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Fig. 3: Summary of experiments on International Revenue
Share Fraud.

1) We present our findings from a telephony honeypot that
was designed to detect the possible IRSF attempts on a
specific phone number range of 10,000 numbers (Sec-
tion III). This honeypot receives 259 international phone
calls in around 2 years. In addition, we generate several
calls from Germany and Italy to test the accessibility of
the honeypot numbers during this experiment.

2) We present various insights about the IRSF ecosystem
using the 3.14M test numbers and 206K test call logs
that we collect from the public test interfaces of IPRN
provider websites (Section IV). Combining these insights
with our domain knowledge on how IRSF works, we then
present a set of machine learning features that can be used
in detection of IRSF (Section VI).

3) We use a real-world dataset of 689K Call Data Records
(CDRs) from a telecom operator to evaluate the machine
learning features that we propose.

With these experiments and analyses, we make several
contributions in this paper:

• Via the telephony honeypot, we provide empirical evi-
dence on the hijack of an unused phone number range
that belongs to a small European operator.

• By analyzing the phone number space used by IPRN
providers, we demonstrate the extent and prevalence of
IRSF.

• We point out the challenges in IRSF detection and analyze
the existing detection techniques.

• We evaluate our machine learning approach via the real-
world call dataset and achieve 98% accuracy (with 0.28%
FPR) in experiments with 10-fold cross validation. More-
over, our machine learning model detects majority of the
fraudulent calls (without any false positives) when applied
to previously unobserved fraud cases.

II. BACKGROUND: IRSF MECHANISMS

International revenue share is a complex fraud scheme that
manipulates certain weaknesses of the telephony networks,
and it may come in many variations. In this section we will
examine the types of abuse in the telephony network that would
enable IRSF, and the different forms of this fraud.

A. Enablers of IRSF

1) Misuse of phone number allocations: Numbering plans
enable the allocation of phone number ranges worldwide. First,
each country is assigned a country code by the International
Telecommunication Union (ITU) [2]. Then, the regulator in
each country further allocates phone number ranges for land-
line, mobile or special purpose services, and assigns these
numbers to telecom operators.

However, there are several issues with the numbering plans:

• There is no centralized numbering plan database that
keep up-to-date information about all operators in every
country.

• Numbering plans show the allocated phone number
ranges, but do not give information on individual numbers
(e.g., whether a given phone number is in use or not).

Due to these issues, the originating or transit operators
often cannot know if the destination number is legitimately
allocated and/or currently assigned to a user [4].

As we will show in upcoming sections, the phone numbers
that are abused for IRSF are in fact regular phone numbers
(landline or mobile), and they are not allocated for the purpose
of international premium rate services. In fact, as stated in ITU
guideline E.169.2 [3], the universal, legitimate number range
allocated for international premium rate services consists of the
3-digit code +979, followed by a 9-digit phone number. Thus,
any other number advertised as an International Premium Rate
Number is not legitimate.

In particular, the ITU guideline E.156 [36] reports the
misuse of regular phone numbers as premium rate numbers,
stating that:

[International country] codes are not designed to
be used as charging band indicators for calls that
are terminated short of the designated country. Fur-
thermore separate provision is made within ITU-
T Recommendations for designating International
Premium Rate and Shared Cost Service. [...] E-series
numbering resource will only be utilized by the
assignee for the specific application for which they
have been assigned.

2) Abuse of international call routing mechanisms: Rout-
ing of an international call from originating operator to the des-
tination operator is usually enabled by several transit operators
carrying the call in between. Each operator on the call route
decides where to route the call next, depending on their peering
agreements and routing algorithms. However, the operators
have only partial visibility on the call route, and the agreements
and algorithms they employ are often confidential [57]. As a
result, it is often not possible to trace the route that a call has
taken.

Fraudulent telecom operators can take advantage of this,
and terminate the phone calls before they reach the actual
destination operator (also called, short-stopping [36], [57]). In
IRSF, the fraudulent transit operator can short-stop the calls by
misrouting them to the IPRN provider. Due to the opaqueness
of the call route, identifying the fraudulent party becomes
almost impossible.
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TABLE I: Summary of the datasets used in our study.

Dataset Time interval Nature of data # of records Data Fields Way we obtain

Honeypot call logs 1© Jan16 - Oct18 Call record 259 A number, B number, Date Telephony
Honeypot

Test IPRNs 2© Jan16 - Nov19 Phone number 3.14 M Phone Number, Collection date,
Source Website Crawling providers’ sites

Test call logs 2© Jan16 - Nov19 Call records 206 K A number, B number, Date,
Duration, Source Website Crawling providers’ sites

Real world call logs 3© Oct14 - Dec14 Call record 689 K A number, B number, Date,
Duration, Localisation Operator

3) Number range hijacking: Telecom operators employ
complex algorithms to handle the interconnections with other
operators. For each outgoing call, the operator decides which
route it will send the call over: This can be another operator
with a peering agreement, or through an interconnect broker
that trades call traffic [36]. As depicted in Figure 3, Operator
A may have multiple options (in this case, T1 and T3) to route
the call to its final destination, Operator B. In our example, T1
advertises a lower price (70 cents) to route this call, compared
to T3 (that advertises 80 cents). If Operator A, for instance,
employs a Least Cost Routing [18] policy, it is likely to select
the cheapest route (T1) to maximize its own profit (30 cents
instead of 20). However, the low cost of this route is in fact
due to T2, which is advertising a very cheap rate, but actually
not terminating the call to its legitimate destination. Instead,
T2 advertises a low cost route to attract traffic with the goal
of hijacking (take over). The calls to this destination number
range, will then be misrouted to an IPRN provider.

As routing decisions are dynamic, fraudsters need to con-
stantly make sure that the call they generate will be routed
through the involved fraudulent operator. This is the reason
why IPRN providers employ the test interfaces (mentioned
in Section I-A1). Note that, test interfaces often advertise
unallocated or unused number ranges. Otherwise the test calls
may ring the phones of genuine users when the hijack of the
route fails.

A significant example of number range hijacking for
IRSF occured in 2005, towards Pacific Islands [5], [25]. The
originating operators who incurred losses due to this fraud
started to block all the calls to the Pacific Islands to avoid
fraud and protect their customers [59]. As a result, Pacific
Islands were not reachable anymore from certain parts of
the world, and their revenue from incoming international call
traffic significantly dropped. Their reputation was damaged
while they were not responsible for the fraud, nor they were
able to do anything against it [5].

B. Variations of IRSF

Depending on the fraud agreement between the operator
and the IPRN provider, the phone number space abused for
fraud can either be allocated and in use (assigned to actual
users), or can be unused (not assigned to any user) or un-
allocated. Moreover, the phone number space can be actually
owned by the operator who is abusing it, or the operator might
just be hijacking and short-stopping the calls that are intended
to be terminated on this number range. In the latter case,
the success of calls depends on the hijacking ability of the
operator.

Although it is challenging to identify the exact relationship
between the IPRN providers and the telecom operators who
collaborate with them, it is possible that these two are in
fact the same entity. It is also possible that there is a chain
of premium rate number resellers, so the IPRN provider is
not directly connected to the operator abusing/hijacking the
number range.

Depending on the revenue share mechanism and fraud
agreement, the owner of the misused number range may or
may not be aware that its numbers are used for IRSF [4],
[36]. In summary we can distinguish the following cases:

• Terminating operator as part of the scheme: The terminat-
ing operator (owner of the victim number range) resells
its numbers to a premium rate service as IPRNs, and
terminates the illegitimate traffic on its own network. The
revenue of traffic is shared between the terminating oper-
ator, the premium rate service provider and the fraudster
who is generating the calls.

• Transit operator is rerouting calls illegitimately: A transit
operator can make an agreement with a premium rate
service provider to misroute the hijacked phone calls. In
this case, the fraudulent transit operator short-stops the
calls to the victim number range, keeps the termination
fee, and shares the benefit with the IPRN provider (as
depicted in Figure 3). Thus, the owner of the victim
number range may not be aware of the fraud scheme
performed using its numbers [45], as the calls will never
reach their intended destination.

III. TELEPHONY HONEYPOTS TO
OBSERVE IRSF ATTEMPTS

Operators can setup telephony honeypots to observe hijacks
on their own unused number ranges. Such a honeypot can
collect calls that are aiming for revenue share, but were not
properly hijacked by the fraudulent transit operators (i.e., failed
IRSF attempts). In this section, we describe our findings from
a similar honeypot that we employed for 2 years, between
January 2016 and October 2018.

Nature of the honeypot numbers: Our honeypot con-
sists of 10,000 phone numbers that are reserved as technical
numbers in GSMA roaming database. This number range is
essentially reserved for quality control and testing purposes
and it is not supposed to be assigned to individual users. Thus,
these numbers are not supposed to receive any calls. However,
as the number range belongs to a small European country (a
slightly high-cost destination), it is likely to be targeted by
the fraudsters. In that sense, our honeypot acts like a network
telescope [19] for telephony.
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We set up the honeypot as an Asterisk PBX server located
in the premises of the telecom operator. The operator directly
routes the incoming calls to this PBX server, over a SIP trunk.
In the honeypot, half of the honeypot numbers are configured
to immediately decline (hangup) the received calls. For the
other half, the server first emits a ring tone for 12 seconds and
then emits a busy signal for 10 seconds before hangup. Note
that, 10,000 numbers actually constitute a small number range
when compared to the total allocated phone number space in
this country. However, we still observe many IRSF attempts,
as we will soon describe. As an additional experiment, starting
from September 2016, we also generated periodic test calls to
a few of the honeypot numbers from two mobile phones that
we deployed in Germany and Italy.

Observations from the collected calls During the 2-year
period, our honeypot received 259 international calls with
caller IDs indicating that the calls were originated from 77
different countries. These calls come from 156 unique caller
IDs, while 78 calls have their caller IDs anonymized. Figure 4
shows the monthly number of international calls received by
our honeypot (excluding the test calls generated by us).

An empirical evidence of hijack on honeypot numbers
As can be seen in Figure 4, our honeypot observed an unusual
call traffic in January’17. More precisely, in 5 days (from the
11th to the 16th), 117 calls were received from 48 countries.
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Fig. 4: Monthly number of received calls at honeypot.

Moreover, starting from the 6th of January’17 (12pm) to
the 7th of January’17 (5am), the 30 test calls that we generated
from Germany were all answered and billed for 1,5 minutes
on average. In addition, these calls were not received by
our honeypot; which indicates that they were terminated at
a different location.

We looked up the origination numbers of these calls in
a commercial numbering plan database [1]. For many of the
origination numbers, we could only find a matching country
code, which means they belong to unallocated number ranges,
and indicates that they might actually be spoofed numbers.
Also, it is interesting that some originating numbers belong to
’supplementary services’, which are usually the premium rate
number ranges in their corresponding countries.

This incident is a strong evidence that the honeypot number
range was advertised as an IRSF destination during this time
period, and it attracted a lot of call traffic. Although the hijack
of the number range was not always successful (as we observed
from the 117 calls received by the honeypot), it was indeed
successful on our test calls originated from Germany.

Note that, our honeypot is only able to observe the calls
that were failed to be hijacked. If a fraudster makes an initial
test call to an advertised IPRN, and the test call is successfully
hijacked, only then he would start generating the actual fraud
calls (in which case, we cannot observe in the honeypot). Thus,
we did not expect to receive a very large number of calls in
the honeypot.

We also note that, the calls received on the honeypot are not
likely to be robocalls/telemarketing: Such unsolicited calls are
often domestic, or spoofing domestic caller IDs, whereas our
honeypot received international caller IDs. Unwanted calls will
also generally target known telemarketing lists or commonly
used number ranges, while our range has never been allocated
to real users. Some of the calls could be misdials, however,
most of the calls were received during the 5-day period, when
our own test calls were also hijacked.

IV. A DEEPER LOOK INTO THE IRSF ECOSYSTEM

In this section, we present our observations on the
IRSF ecosystem, using the data collected from online IPRN
providers.

A. Data Collection

By making online searches for“international premium rate
number” keywords, we identified 45 websites that provide
IPRNs. We then searched for the names of these IPRN
providers online and on social media. With this, we identified
the test interfaces of 15 IPRN providers.

These test interfaces are often advertised on social media
(e.g., Facebook, Twitter) or online forums, together with
the credentials for a publicly available test account (e.g.,
username:test, password:test123). Those public test accounts
are designed so anyone can access the test interface, list
the advertised test IPRNs, and see the previous test calls
recorded on the system. Typically, these accounts are used for
testing IPRN success, and the fraudsters then obtain separate,
private accounts to generate fraudulent calls and obtain the
payout. We have never obtained such private accounts, but
we aimed at collecting data from the publicly available test
accounts that are explicitly advertised by the IPRN providers.
Although automated data extraction was difficult on some of
the interfaces, we were able to collect the test IPRNs from 12
of the websites, and from 6 of them, we could also collect
the test call logs (which are evidence of successfully hijacked
calls). Overall, we collected 3,149,793 distinct test IPRNs
and 206,263 test call logs from January’16 to November’19.
Moreover, using a commercial numbering plan database [1],
we extracted further information on the test IPRNs and the
source and destination numbers of the call logs. Table II
summarizes the type of data we extracted using the numbering
plan database. Note that, even though we use an up-to-date
numbering plan database, our database may not be 100%
accurate. For example, some recent number range allocations
or modifications might be missing. However, such commercial
databases provide the most comprehensive data available to us
(and to many operators).

As another remark on accuracy: Some websites may ob-
fuscate the source numbers in the test call logs, e.g., by
removing the last few digits. However, as long as the country
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TABLE II: Type of data extracted using the numbering plan database.

Data field Explanation
Country Name Name of the country that the phone number is allocated to.
Country Code (CC) International country prefix as specified in ITU-T E.164 Recommendation [2].
National Destination
Code (NDC) A number prefix that identifies a geographic area or a service. (Some number allocations do not contain NDC, but only SN.)

Subscriber Number (SN) Initial digits of the subscriber number that is used to distinguish between different areas prefixed by the same NDC. (Some number
allocations do not contain SN, but only NDC.)

Subscriber Number
Length (SNL)

Valid length (in terms of the number of digits) of the subscriber number.
(Some number allocations do not specify the SNL.)

Number type The type of the international CC-NDC-SN sequence (e.g., Mobile, Fixed, Special Service)
Network and operator name Name of the operator holding the number range. (Not available for all number allocations.)

Number range
validity

- Invalid CC: The number does not match any CC (No such instances in our dataset).
- Unallocated number range: The number matches a CC, but does not match any allocated NDC-SN sequence inside the country code.
- Valid number range: The number matches with an allocated CC-NDC-SN sequence.

Number length
validity

- Valid length: The number has a valid length according to its matching number range. Note that for the unallocated number ranges
(i.e., numbers matching only a CC), number length can still be valid. Also, if SNL is not specified for a number, we count it as valid length.
- Invalid length: The number has an invalid length according to its matching number range.

code, national destination code and/or the subscriber number
are available, we can extract data about those numbers using
the numbering plan database. Moreover, some of the source
numbers might be spoofed (e.g., by the fraudsters who generate
the calls from a compromised PBX) but others cannot (e.g.,
calls generated from a stolen SIM card).

B. Analyzing IPRN providers

In Table III, we give an overview of the data that we
collect from each of the 12 IPRN providers. In the Entire
data column, we present the data collected during the total
duration of January’16 to November’19. However, starting
from February’18, we improved our data collection framework,
and we were able to collect more fine-grained data from 9
of the providers. Thus, in the Fine-grained data collection
column, we present more detailed statistics on the lifetime of
IPRNs (i.e., the average number of days that an IPRN has been
advertised on this website) and the number of new (unseen)
IPRNs advertised per day, per provider.

As it can be observed in Table III, IPRN providers have
different profiles: While some of them (P1, P2) update the
advertised IPRNs every few days, and add thousands of new
IPRNs per day; others may keep the same IPRNs for almost
a year (P3, P4, P8) or not update any IPRN at all (P9).

Another observation is that, there are very few IPRNs that
are advertised by multiple providers. Among 3.14M IPRNs,
only 88,356 of them are repeated across multiple providers. In
fact, except P1 & P3 that share around 80K IPRNs; and P9 &
P12 that advertise very few IPRNs; the rest of the providers
only have a small part of their numbers shared. We find that,
a shared IPRN is advertised by 2 providers on average, and 4
providers maximum.

However, looking at the advertised number ranges (instead
of distinct IPRNs) gives a different picture. According to Fig-
ure 5, when the last 4 digits of the IPRNs are ignored, ∼80%
of the number ranges are shared across all providers. This
shows that, the hijacked number ranges are shared between
the IPRN providers in a fine-grained way. In other words, a
fraudulent operator who hijacks a number range is likely to
assign different portions of the range to different providers, or
the hijack is done on very specific ranges.
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Fig. 5: Number sharing between IPRN sources.
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Fig. 6: IPRNs advertised by different providers, for a small
number range from Latvia. (Red:P1, Green:P4, Orange:P3,
Purple:P6, Black:P7, Blue:P8)

As an example, Figure 6 demonstrates the advertisement of
a range of 1000 Latvian numbers by 6 different IPRN providers
during 2018. We can easily observe that each IPRN provider
advertises a separate sub-range. Furthermore, we can see that
the number ranges are rotated (likely to avoid blacklisting) and
that significant “holes” are present.

This figure shows the test IPRNs, but in fact after a
successful test call, a fraudster is provided one or multiple
dedicated IPRNs in a similar number range, to which he will
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TABLE III: Summary of the data collected from 12 IPRN providers.

Entire data
Jan’2016 - Nov’2019

Fine-grained data collection
Feb’2018 - Nov’2019

Provider # Distinct IPRNs # Shared IPRNs # Distinct IPRNs # Data collection days Lifetime of IPRNs (days)
(avg ± stdev)

# New IPRNs per day
(avg ± stdev)

P1 2,335,962 85,751 2,335,881 597 5±7 4, 385±6, 380
P2 460,370 2,981 460,319 245 5±5 1, 954±2, 373
P3 269,016 83,779 14,791 598 354±191 22±35
P4 39,775 1,865 39,775 602 398±205 55±144
P5 49,985 532 36,344 598 78±130 106±981
P6 21,432 144 21,432 86 48±34 188±1, 055
P7 7,603 101 7,603 355 102±56 55±84
P8 1,951 64 1,951 356 322±87 2±2
P9 254 254 216 608 564±155 –
P10 47,611 1,794 – – – –
P11 1,803 13 – – – –
P12 774 774 – – – –
Total 3,149,356 2,837,205 4, 539±6, 306
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(a) Advertised test IPRNs (destinations).
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(b) Test calls origins.

Fig. 7: Geographical representation of the source and destination of the IRSF fraud.

generate the actual fraud calls. We expect that the fraudster will
have the successful calls logged on his own private account on
the website, and we do not see these call logs in the public
test account. The fraudster will get a share of the revenue
generated from any call reaching the IPRNs that was assigned
to him. This also suggests that the fraudulent operator does not
assign the same IPRNs to multiple IPRN providers, because
they wouldn’t be able to know with whom they are supposed
to share the revenue.1

C. Analyzing test IPRNs

Overall coverage. Our dataset includes test numbers tar-
geting 238 out of 247 international destinations2 and 1070
operators3. This shows that IRSF can target a large variety
of countries, with varying call termination costs. Indeed, the
whitepaper by TransNexus [9] analyzes payout rates from
193 countries and mentions that the fraudster’s benefit can be
as low as $0.00013 per minute. Another observation is that,
none of the test numbers belong to the legitimate Universal
International Premium Rate Number range (+979) specified by
the ITU [3], [37]. Figure 7a shows the distribution of collected
IPRNs across countries worldwide. African countries, Russia
and part of Europe appear to be the most affected.

On the other hand, the popularity of the countries seem

1It would be possible to use the caller ID for this, but this information is
not reliable and is sometimes modified during an international call routing.

2Including countries but also, e.g., territories and satellite services.
3Note that operator information is only available for mobile numbers. Our

numbering plan includes 1522 different mobile operators (including MVNOs).

to change over time. Although some countries like Latvia,
Lithuania and Iraq are always in the top 10 destinations, the
other popular destinations keep changing over time (Table X
in Appendix).

Validity. In Table IV, we present the validity of the test
IPRNs, classified by the validity of the number range and
number length. Number range validity checks if the number
belongs to an allocated CC-NDC-SN (Country Code - National
Destination Code - Subscriber Number) sequence defined in
the numbering plan database. Overall, 70% of the numbers
belong to a valid number range and have a valid length ac-
cording to the numbering plan database we use. The remaining
30% either have an invalid length, or belong to an unallocated
number range, or both. Note that the call route will initially be
decided based on the CC or CC-NDC combination [4]. Thus,
even if the rest of the number range is not allocated, or has
invalid length, the call will be routed to the selected transit
operator(s) which may hijack it at some point.

Number type. Next, we look at the number type informa-
tion for the test IPRNs. Our numbering plan database specifies

TABLE IV: Validity of test IPRNs

Valid length Invalid length Total
Valid
range 70% 11.7% 81.7%

Unallocated
range 8.7% 9.6% 18.3%

Total 78.7% 21.3% 100%
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a number type for each allocated number range (CC-NDC-
SN sequence). However, for the 18.3% of the test IPRNs
which do not match an allocated number range, number type
information is not available. As we show in Table V, mobile
number ranges are the most frequently abused. This may be
because the mobile number ranges are usually more expensive,
and therefore allow for a better revenue. Another possible
explanation is that it is easier to check if a mobile number
range is currently in use (assigned to someone) or not, by
performing HLR lookups on the SS7 network.

TABLE V: Types of IPRN test numbers.

Number Type %
Mobile 56.9
Fixed 15.9
Supplementary Services 7.8
Unallocated number range 18.3
Satellite 1.0

Dispersion of numbers. Figure 8 shows the cumulative
distribution of the number of distinct test IPRNs by the
percentage of countries. We find that, around 17% of countries
have less than 1000 numbers advertised, whereas almost half
of the countries have more than 10,000.
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Fig. 8: Empirical cumulative distribution of the advertised test
numbers by the % of countries.

It is likely that the numbers which are advertised as IPRNs
are hijacked as part of a whole block of numbers. For example,
a block of ten numbers in Latvia could be represented as
+371xxxxxxxy, where the digits represented by an ‘x’ are
fixed, and digits represented by a ‘y’ vary inside this range.
Similarly a range of hundred numbers can be represented as
+371xxxxxxyy. In our dataset, grouping the numbers in blocks
of 10 (ignoring the last 1 digit) results in 2.4M number ranges,
whereas grouping in blocks of 100 results in 1.6M ranges.

For the top 10 countries with the largest number of adver-
tised test numbers, Figure 9 shows the number of collected
test IPRNs, and the unique number ranges when the last digits
of the number are ignored. As we can see from this figure,
the quantity of test IPRNs is not always an indication of
the dispersion of abused number ranges in that country. For
instance, although Latvia has the largest quantity of test IPRNs,
these numbers belong to a smaller set of number ranges,
especially when compared to the countries like Iraq, Cuba or
Guinea.

Next, we take a more detailed look into the dispersion of
IPRNs in the phone number space of Latvia and Cuba. (We
chose these countries as they both have 8-digit phone numbers

and number spaces are easier to visualize.) Figures 10a and 10b
shows the IPRNs (last digit ignored) together with the number
types. In both countries, mobile number ranges are the most
frequently abused. However, looking at the rest of the figures,
the number ranges abused in Cuba are much more dispersed
compared to Latvia.

We also observe that there is an accumulation of IPRNs in
the beginning of the 4-digit number ranges. Figures 10c and
10d better demonstrate this accumulation in both countries.
We believe that, when a 4-digit number range is hijacked, the
initial numbers are advertised as test IPRNs, and the rest of
the range is assigned to fraudsters for the actual IRSF call
generation.

Rate of operators being involved in IPRNs. For the
mobile test IPRNs, our dataset often contains the name of
the mobile network and the operator. Moreover, from the
numbering plan database, we can obtain the complete list of
mobile network operators in a country. By combining these
two sources, for each country, we can compute the ratio of
mobile networks whose number ranges were involved in test
IPRNs. Note that, the operators may or may not be a part of
the fraud scheme, but for simplicity, we will call them the
victim operators.

We find that, in 66.3% of countries, all mobile networks
are victims of number range hijacking. In 86.5% of the
countries, at least half of the mobile networks are hijacked.
The average number of victim operators per country is 3.47.
This observation is also in line with the data we present in
Table VI, where we group the countries according to the total
number of mobile networks per country.

TABLE VI: Ratio of affected operators, grouped by the number
of mobile network operators per country.

Number of such
countries in dataset

Ratio of affected
operators (avg.)

# Operators <3 98 96.9%
3 <= # Operators <6 62 85.4%
# Operators >=6 44 50.6%

In conclusion, our analysis shows that there is a large
variety of number ranges that can potentially be used for IRSF:
While almost all countries in the world are affected, IPRNs can
belong to any number type and a large variety of operators.

D. Analyzing the test call logs

The 206,203 test call logs we collected contain calls from
248 origination countries to 199 destination countries. In
particular, we observe 7082 distinct source-destination country
pairs, which indicates that the test calls are widely dissemi-
nated.

Among these calls, 50,926 have invalid or anonymized
caller IDs. The rest of the calls include 68,740 distinct origina-
tion numbers and 52,171 distinct destination numbers (i.e., test
IPRNs). Table VII presents types of origination and destination
numbers. A large number of test calls seem to be originated
from mobile numbers, which possibly belong to stolen or
abused SIM cards. Note that, we cannot completely trust the
caller ID, as it can be spoofed by the fraudster (e.g., from a
PBX) or during routing by an operator. On the other hand,
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Fig. 9: Top 10 countries having test IPRNs advertised.

(a) Dispersion of IPRNs on the number range of Latvia. (b) Dispersion of IPRNs on the number range of Cuba.
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(d) Last digits of Cuba.

Fig. 10: Dispersion of IPRNs in Cuba and Latvia (Blue: Mobile, Green: Fixed, Black: Supplementary Services, Red: Unallocated).

TABLE VII: Types of originating and destination phone num-
bers observed in test calls.

Number Type Originating
Numbers

Destination
Numbers

Mobile 62% 71%
Fixed 19% 13%
Supplementary Services 5% 5%
Unallocated number range 14% 8%
Satellite - 6%

calls that originate from mobile networks are less likely to
be spoofed, as the caller ID cannot be easily modified by the
caller (unlike the calls from a PBX with a SIP trunk), due to
the SIM card being authenticated to the mobile network.

We also observe that many of the test calls were repeated

more than once. To analyze the actual number of fraud cases
per country, we remove the recurring calls and only consider
the unique source and destination phone number pairs. This
leaves us with 119,684 call logs. In Figure 11, we present
the cumulative distribution of the number of unique test calls
by the percentage of originating countries. We can see that,
half of the countries have less than 100 unique test calls
originated, whereas approximately 10% of countries have more
than 1000 unique test calls. In particular, the US, India and
Germany were the top 3 most frequent test call originators.
Only from the US, there were test calls to 155 different
countries. An interesting point is that, our dataset contains
few test IPRNs from these countries: The US has only 260,
India has 1174, Germany has 2026 test IPRNs advertised. This
might show that the fraudsters are likely to manipulate separate
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Fig. 11: Empirical cumulative distribution of the number of
test calls by the % of originating countries.

sets of countries for originating and terminating the fraudulent
calls. This phenomenon can also be observed in geographical
distribution of call originations (Figure 7b), compared to the
geographical distribution of test IPRNs (Figure 7a). In fact,
these two figures seem to be almost the opposite of each other
in terms of the distribution ratios. (Some obvious examples are
the US, Russia, Bolivia, Syria, Congo, India and China.)

V. IRSF DETECTION: EXISTING TECHNIQUES

A. Blocking number ranges

A basic approach to prevent IRSF is to block all the calls to
frequent IRSF destinations, or number ranges. However, this
type of extensive interference may lead to unreachability of
genuine users in the destination country, and may result in
significant disruption of service and user complaints [59]. As
we show in the previous section, the abused phone numbers
may belong to a large variety of countries and operators, which
makes it unrealistic to block all the suspicious number ranges.

B. Crowdsourced Blocklists and Hotlists

Another approach is to use list of previously identified
destination numbers to block calls. Organizations like GSMA
and CFCA share such lists with their members [11], [68].
There are also other industry initiatives (such as [54]) to
collect and share the phone numbers identified to be used in
Wangiri scams. However, our analysis shows that the phone
number space that can be abused for IRSF is quite large:
Fraudsters can easily circulate or renew the IPRNs, which will
make such lists outdated. Moreover, it is difficult to know
the efficiency of this approach, as a number range hijack
that works from one country, may not work from another
(similar to what we observed in Section III with test calls
from Germany and Italy). At this point, we also note that the
hijack of a number range towards a destination can be detected
by the commercial Test Call Generation (TCG) platforms4

that provide call initiation points worldwide. However, this
process can get costly if the hijack occurs and the phone calls
are answered and billed in transit (as we also experienced in
our experiment in Section III). Currently, to the best of our
knowledge, there is no commercial TCG platform that provide
such a service to detect number range hijacks.

4e.g., sigos.com, araxxe.com, revector.com

C. Monitoring for test IPRNs for early detection

Leveraging the test IPRNs as an early detection mechanism
has been proposed by a few commercial services [10], [13] that
provide databases of test IPRNs (similar to the data we have
collected). As the fraudsters are likely to make few test calls
before starting the actual fraud, monitoring for the test IPRNs
or close number ranges may indeed be an efficient approach.
However, the efficiency of this approach relies on the test IPRN
database being up-to-date: When the fraudsters start to abuse a
different number range, or a new IPRN provider enters into the
market, the test IPRN database should be immediately updated.
Another disadvantage of this approach is that, monitoring for
large number ranges may result in a high number of false
positives. We will refer to this as the naive approach in the
next section.

D. Call record analytics and anomaly detection

Applying analytics and anomaly detection techniques based
on historical call data records is another method to detect
IRSF. Commercial fraud management systems such as [31],
[62] claim to integrate call analytics and machine learning
techniques together with hotlists from different sources, and
achieve near real time detection in different types of IRSF
calls. However, the inner details and the accuracy rates of such
solutions are not available to us.

There are also a few academic studies that use clustering
and other anomaly detection techniques to identify IRSF calls
in different contexts. However, these studies report low accu-
racy and high false positive rates. In particular, [38] focuses on
mobile networks and proposes to generate an international out-
going call graph (from domestic users to foreign destinations),
and use a Markov Clustering based algorithm to the isolate
fraudulent activities. Authors obtain a 6-months call dataset
from a large mobile operator, and use the customer complaints
(i.e., fraud cases that was reported to the operator) and other
online complaints (from public forums or social media) as a
ground truth on fraudulent destination numbers. Overall, their
clustering method was able to detect the destination numbers
that correspond to 78% of the IRSF calls in the dataset. On
the other hand, this method seems to yield a high ratio of false
positives: Out of the 24K candidate phone numbers that they
found suspicious, only 9.3% was actually associated with IRSF
or other fraud activities in the ground truth dataset.

In a more recent work, Meijaard et al. [42] analyze the
use of Isolation Forest algorithm to identify IRSF calls as
anomalies. To be able to detect IRSF before the fraudulent calls
are complete, they use only pre-call features such as source
country, destination country, anonymized representations of
the source and destination numbers, timestamp and whether
the call was answered, canceled or busy. They avoid post-
call features like duration and cost of the call. They use an
industrial anti-fraud solution as the ground truth to compute
the accuracy of the results. On a dataset of 10K phone calls
from 9 users, the industrial solution detects 150 IRSF calls.
Unfortunately, isolation forest does not seem to perform well
for this task: The paper reports to detect 45% of fraudulent
calls with 2% false positive rate, while up to 87% of detection
is achieved at the cost of 5% false positives. This rate of false
positives is likely to clog the fraud management team with

10



false alerts, when the real-world volume of phone calls is con-
sidered. One problem with this approach (as also discussed in
the paper) is that fraudulent calls can be distributed over many
countries that also involve legitimate calls. As a result, relying
on the country names and phone numbers might misguide
the algorithm. Moreover, anomaly detection techniques like
Isolation Forest may not perform well, because there can be
multiple types of anomalies in the dataset, and the algorithm
may isolate the wrong type of anomaly. As also mentioned
in [46], the diverse types of anomalies and the class imbalance
between the normal and anomalous instances pose challenges
to anomaly detection, especially for unsupervised techniques
that do not have prior knowledge of the true anomalies. In
conclusion, those previous approaches have too high false
positive rates, making them impossible to use in practice.

VI. OUR APPROACH: LEVERAGING TEST IPRNS FOR
MACHINE LEARNING FEATURES

In this section, we propose several features that can be used
with supervised Machine Learning algorithms to detect poten-
tial IRSF calls. Our features aim to leverage the intelligence
we gathered from test IPRNs, and also the domain knowledge
on how IRSF works. Next we explain each feature in detail.
Note that, we often refer to the originating number of a phone
call as the A-Number, and the destination phone number as the
B-Number in the rest of the paper.

A. Features related to call destination

Distance to test IPRNs. This feature computes the proxim-
ity of the destination number to the closest known test IPRN.
For instance, the number can match an exact test IPRN (in
which case the distance will be 0), or it can be in the same
number range with a few digits of difference.

Dispersion digit of test IPRNs in the destination coun-
try. This feature reflects our analysis (Section IV) that the
test IPRNs can be dispersed over the phone number space in a
country-specific way. For example, if the test IPRNs are widely
dispersed over the number range allocation of the country, we
would have less confidence in labeling a phone number as
suspicious, even if it is very close to a known test IPRN. In
other words, this feature aims to provide a spreading factor
based on how spread the test IPRNs are in the destination
country’s numbering plan. For this, we simply propose to use
the analysis in Figure 9, looking at the number of digits that
give the highest variance to the test IPRNs. For instance, the
dispersion digit for Latvia is 11 (which corresponds to the
last digit in international format), as most of the variety of
test IPRNs comes from this digit (i.e., ignoring the last digit
results in losing almost half of the distinct number ranges). On
the other hand, the dispersion digit for Guinea is the 9th digit
(out of 12 digits), which shows that the test IPRNs are more
widely dispersed in country’s number space.

IRSF likelihood of the destination number. This feature
combines the two previous features, in a way that will better
reflect the IRSF likelihood of the destination number. The
idea is that, if the dispersion digit is low, we would have less
confidence to label a B-Number as suspicious. On the other
hand, the length of the number and the distance to test IPRNs
is inversely correlated to the suspiciousness of the number.

Combining these factors, we compute a IRSF likelihood score
for the B-Number as:
(Dispersion digit / (Number length x Distance to test IPRNs)).

Test IPRN ratio of the destination country. This feature
computes the number of distinct test IPRNs that belongs to the
destination country, to all of the distinct test IPRNs collected.
If this ratio is low, this destination country would be less
suspicious.

Test call ratio of the destination country. To compute
this feature, we take the test calls with distinct caller ID -
IPRN pairs. We then compute the ratio of the number of test
calls directed to the destination country (from distinct source
numbers), over all of the distinct test calls.

Test call spreadness This feature computes the number of
distinct origination countries that called this destination in the
test call logs we collected. If a destination country has received
test calls from many different originations, it is likely to be
a popular IRSF destination (i.e., the hijacking of its number
space affects multiple originations).

Number length validity. This is a boolean feature that
checks if the destination number has a valid length. We
gather this information from the commercial numbering plan
database [1].

Number type. We map this categorical feature to nu-
merical values, based on our observations in Section IV-D.
The values are correlated to the likelihood of the number
type to be used for IRSF: Fixed 7→ 1, Mobile 7→ 2,
Supplementary services 7→ 3, Satellite numbers 7→ 4,
Unallocated numbers 7→ 5.

B. Features related to historical call records

These features relate to the call history of the originating
number (A-Number). Note that, for the transit operators it may
not be possible to compute these features, as they do not always
carry the calls to/from a specific set of users like the retail
operators.

Call frequency metric. This feature first computes the
duration between the initial call related to this A-Number
and B-Number pair, and the current call. We then divide this
value by total number of calls in between. For instance, if the
A-Number has called the B-Number 3 times in the last 60
minutes, this value would be 20. If we observe the first call
between A and B Numbers, we assign the value of 0.

Time to previous call. This feature is based on the
observation that the fraudsters will try to create as many calls
as possible in a small amount of time. Thus, this feature
computes the number of seconds that has passed since the
last outgoing international call originating from this user (i.e.,
the A-Number).

Hour. We use the hour of the current call as another feature.
As the fraudsters might prefer the night time or non-business
hours to avoid being detected, this can be an important feature
that distinguishes the fraudulent calls.

We highlight the fact that all our features are pre-call
features, which means they do not require the call to be
answered or completed. Thus, they can be used to detect IRSF
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or to identify suspicious calls, before the calls go through.
Moreover, most of our features do not directly rely on the
test IPRNs or A/B Numbers. By integrating the intelligence
gathered from the cumulative data, we aim to detect fraudulent
calls even if the destination number range does not exactly
match the test IPRNs.

C. Other possible features

Depending on the data available to the telecom operator,
additional features can help in detecting IRSF. For instance,
the payout rate (pay-back, cash back) advertised by the IPRN
providers for this particular destination can relate to the
likelihood of fraud. In addition, the difference between the
average price of a high quality route and a standard (often
low quality) route from the originating country/operator to the
destination country/operator can be used as a feature: If the
difference is too large (i.e., the price of the low-cost route is
‘too cheap’), the route is likely to include fraud. For mobile
destination numbers, real time HLR lookups can be used to
check if the number is assigned to a real user, and currently in
use. Note that, we do not use these additional features in our
evaluation section, due to the lack of (timely) data. Depending
on the usage of the fraud detection system, post-call features
(such as call duration and cost of the call) and behavioral
patterns (such as multiple simultaneous calls) can be combined
with the pre-call features.

VII. EVALUATION ON A REAL-WORLD DATASET

In this section, we use the features proposed in Sec-
tion VI-A and VI-B to detect IRSF on a real world Call Data
Record (CDR) dataset that we obtained from a small retail
telecom operator in Europe.

A. Challenges related to real world data

First, we want to emphasize the difficulty of obtaining real
world CDR datasets for research purposes. Indeed, CDR is
very sensitive data, which makes it difficult for operators to
share CDRs with third parties. Anonymizing the call records
would not be a solution, as we need to parse the phone numbers
to be able to compute most of our features. To overcome
this challenge, we ran all our experiments involving CDRs
under NDA, and on a server hosted on the telecom operator’s
premises.

A second challenge is obtaining the ground truth on
fraudulent calls. While the best way to validate our approach
would be to experiment on a pre-labeled dataset, telecom
operators often does not have such data, unless they employ a
very accurate fraud detection solution with manual verification.
Thus, we first needed to create a ground truth, as we will
explain in the following sections.

The third challenge is to obtain timely data. Unless there
is a near real time data sharing framework with the telecom
operator, the obtained dataset is likely to be old. In our case,
the CDRs were collected between 10/01/2014 and 12/31/2014.
Note that, this time period is even before we started to collect
the test IPRNs. However, we see this as a positive aspect:
In a real world deployment it is also likely that the time
period of analyzed phone calls will not exactly overlap with
the collection period of test IPRNs. In addition, note that we
have at most 3 months of historical data of the users.

B. Details of the dataset

Our CDR dataset contains 3 months of outgoing inter-
national call records from the users of this small operator.
This corresponds to 689,015 phone calls from 6,289 users
(both mobile and fixed lines). Each call record contains the
A-Number and B-Numbers in international format, the date
and time of the call, duration, and the localization data. The
localization corresponds to the country from which the call
is initiated. While most of time this is the country of the
home operator, it can also be a different country if the user is
roaming.

C. Addressing the Machine Learning Challenges

1) Lack of ground truth: Telecom operators carry a huge
volume of call traffic to various destinations, for a large number
of users. Although they may employ automated fraud detection
systems or human analysts, some of the fraud might go
unnoticed, or the cost of detecting some fraud might be higher
than the cost of fraud. Moreover, fraud detection systems may
have large number of false alerts and it may not be feasible
to manually investigate all of them. As a result, it is often not
possible to obtain a 100% accurate ground truth on what is
legitimate and what is fraudulent.

Solution. As our CDR dataset did not have any labels on
fraudulent and benign calls, we tried to use the collected test
IPRNs as an indication to detect the possible fraud cases.
We found calls that hit 12 of the test IPRNs. Upon further
manual investigation, we realized that these calls belong to
4 different possible IRSF cases, involving many other calls.
Table VIII gives the details about these cases, such as the
total duration of the fraud, number of calls, number of distinct
destinations, and how many test IPRNs were matched (either
exactly, or with 2 or 4 digit distance). We find that in three of
the cases, victim numbers were fixed lines, possibly belonging
to compromised PBX systems of certain enterprises. In fact,
for the PBX Hack#1 case, the originating number belongs to an
outgoing call center that makes large number of international
calls. Only in one case (SIM theft) we found that the victim was
using a mobile number roaming in Spain (i.e., localization was
Spain). This case is likely to involve a stolen mobile phone,
and the 2 day duration of fraud is possibly because the victim
did not cancel his SIM card after the phone was stolen. In fact,
the organized crime in Spain is well known to use IRSF with
stolen phones [22], [29], [64].

Our fraud findings for the ground truth were later approved
by the telecom operator. Thus, we can be sure that the fraud-
labeled data is indeed fraud. However, we cannot be sure that
the rest of the data does not include any undetected IRSF calls.
Yet, we treat all the rest of the calls from these 4 users as
benign calls. While this is not a perfect solution, it is realistic:
In real world, telecom operators can never have 100% certainty
about the legitimacy of each call, and some of the fraud goes
unnoticed. Thus, this was the best approach available to us.

Combining the calls from the users involved in those four
fraud cases, our labeled dataset contains 3084 fraudulent and
158,703 legitimate calls. Looking at the fraudulent calls, we
observe that multiple IPRNs were used (at least 40 distinct
numbers) in every fraud case. We also observe that each fraud
case involves a different set of IPRNs, meaning that different
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fraud cases did not have any destination numbers in common.
(Note that, the count of distinct IRSF phone numbers does
not correspond to the number of bad actors, as one fraudster
can easily obtain multiple numbers, or a single IRSF number
can be recycled and assigned to multiple fraudsters in time.)
Moreover, multiple destination countries were involved in each
fraud case. The average duration of fraudulent calls is 10
minutes (602± 445 seconds), probably because the fraudsters
try to stay under the radar of fraud detection systems by
initiating short duration calls to several different numbers.

2) Imbalanced dataset: Imbalanced datasets is a common
problem when applying machine learning for fraud detec-
tion [20], [46]. For instance, considering the four fraud cases
we detected in our dataset with 689K calls, the ratio of
fraudulent calls to all calls is 0.0046. Because there are too few
fraud calls compared to the benign data, unsupervised learning
methods such as clustering and isolation forest often result
in a large number of false positives [24], [42]. On the other
hand, supervised machine learning algorithms, in particular the
Random Forest classifier is found to achieve the best results
for fraud detection in previous work [24], [41]. In addition, the
classification problem in such extremely imbalanced datasets
is addressed in two ways in the literature: Assigning a higher
cost to the misclassification of the minority class, or using a
sampling technique [23], [26], [27].

Solution. Following the similar previous work that aims
at fraud detection [24], [41], we chose to use the Random
Forest algorithm and to down-sample the majority class (i.e.,
the legitimate calls) by randomly selecting the quantity equal
to the fraudulent calls. Thus, our final dataset contains 3084
fraudulent calls and 3084 legitimate calls. To avoid the bias of
the sampling procedure, we have run our experiment 10 times
(with different re-sampling of the benign calls) and averaged
the results.

D. Evaluation

For the experiment, we used the sklearn [47] implemen-
tation of the Random Forest algorithm [17]5. To evaluate the
accuracy, we first trained and tested the model on the balanced
dataset with 10-fold cross validation, re-sampling the benign
calls 10 times and taking the average.

In addition, we compute the accuracy of the naive ap-
proach, i.e., using the number ranges of known test IPRNs for
detection. In particular, we identified the calls that would be
labeled as fraudulent, if we were monitoring for the number
ranges of test IPRNs (e.g., ignoring the last 2 digits or the
last 4 digits). Table IX shows the True Positive Rate (TPR),
False Positive Rate (FPR) and accuracy of all methods in
comparison.

Compared to the naive approach of monitoring -2 digit
number ranges, our method achieves 33% higher TPR, with
only a slight increase in FPR. We can also see that, the naive
approach with -4 digits may significantly increase the FPR,
even though it improves detection rate compared to -2 digits.
Overall, our method achieves 98% accuracy, which is much
higher than both of the naive approaches. Note that, although
the naive approach can be useful to detect IRSF cases in

5Modified parameters: n estimators=200, class weight=’balanced’.

historical CDRs, our experiment shows that it may not be
reliable for automated and real time detection of fraud, with
high accuracy.

To gain a better insight into the Random Forest model, we
demonstrate the feature importances (based on the impurity-
based importance provided in sklearn [17]) when trained on
a balanced dataset, in Figure 12. Although this measurement
has some disadvantages such as favoring the features with
high cardinality [8], [16], overall we can see that the features
related to the destination country have the highest importance,
followed by the features related to the destination number, and
the features related to the call history at last.

Evaluation on previously unobserved data. As our
dataset contains only 4 IRSF cases with a limited number of
fraudulent calls, there is a possibility of over-fitting in the
classifier, even if we apply 10-fold cross validation. Thus,
we made a further evaluation by training the Random Forest
classifier with three of the fraud cases, and testing it on the
fourth, previously unseen case.

When we train the model on PBX Hack #1, PBX Hack #2
and SIM theft cases, and test it on the PBX Hack #3 case;
we achieve 100% TPR and 0% FPR. This means, all of the
110 fraudulent calls in PBX Hack #3 were correctly identified,
without any false positives. Of course the performance on a
larger dataset with a higher variety of calls might not be as
good, but unfortunately we do not have access to such a large
dataset.

When we train the model on PBX Hack #1, PBX Hack #2
and PBX Hack #3 cases, and test it on the SIM theft case; we
achieve 57% TPR and 0% FPR. In this case, only 308 of the
539 fraudulent calls are detected, but there are still no false
positives. Note that, the lower TPR is possibly due to the fact
that the fraud patterns of PBX hacking is different from SIM
theft. This result shows the importance of the variety of fraud
cases in the training data.

Finally, in Figure 13 we give an overview of our ap-
proach, demonstrating the requirements (such as the test IPRN
database, numbering plan database, and historical call records)
and the feedback loop to keep the classifier up-to-date.

E. Limitations

This first experiment demonstrates how the test IPRNs
combined with machine learning approaches can help in IRSF
detection. Note that, our dataset only contains examples of
IRSF conducted via compromised PBX and stolen SIM cards.
Thus, some of the CDR related parameters such as call
frequency and time to previous call is designed to detect these
fraud types. On the other hand, we did not have any example
of Wangiri fraud. In fact, Wangiri fraud is different in nature:
It involves a fraudster initiating calls to a large population and
expecting the calls to be returned (rather than compromising
a phone system and directly initiating the fraudulent calls). In
terms of machine learning approach, additional features can
be computed to detect Wangiri fraud such as the number of
distinct users contacted by a certain A-Number. However, to
compute this feature, the operator would need to access all
its call records and maybe multiple operators would need to
exchange data. We believe that our IRSF likelihood feature and
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TABLE VIII: Summary of the IRSF cases identified in the CDR dataset.

Match with test IPRNs Naive Detection RateFraud Case Fraud
Duration # Calls Total Call

Dur. (min)
# Distinct Dest.
Numbers

# Distinct Dest.
Countries Exact Upto 2 Upto 4 2 digit 4 digit

PBX Hack #1 9h 59m 43s 2,263 22,152 59 11 1 39 52 81% 82%
PBX Hack #2 22h 31m 42s 172 1,670 44 8 2 11 16 19% 35%
PBX Hack #3 5h 7m 59s 110 563 91 2 1 32 90 4% 99%
SIM theft 2d 11h 24m 15s 539 6,577 40 16 8 24 35 8% 95%

TABLE IX: Evaluation of our method in comparison to the
naive approaches.

TPR FPR Accuracy
Naive method: Last 2 digits ignored 63.2% 0.12% 81.5%
Naive method: Last 4 digits ignored 82.4% 5.82% 88.3%
Our method (w. 10-fold cross valid.) 96.4% 0.26% 98.1%

other features related to the destination country may still be
useful to assign a risk score for Wangiri fraud.
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Fig. 12: Feature importances of the random forest algorithm.
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Fig. 13: Overview of the proposed machine learning approach.

Finally, fraudsters might try to avoid detection by changing
their call patterns: Instead of generating large volume of calls
in a few hours, they can spread out the calls over a longer
time period, especially in the case of compromised PBX. This
could make our CDR-related features less useful and make
the calls more difficult to detect. On the other hand, it would
mean less profit for the fraudsters, as they would need to slow
down their operations instead of making the most profit in the
shortest amount of time.

VIII. RELATED WORK

In recent years, telecommunication fraud attracted a lot
of attention in the research community. As the topic is very
broad, covering many different types of fraud, some studies
try to systematize the information. In particular, Sahin et
al. [57] presents a taxonomy of telephony fraud, including
different types of revenue share fraud, abuses of call routing
and signaling, and fraud schemes that rely on bypassing call
routes in interconnection. Moreover, Tu et al. [63] explores
the voice spam ecosystem, describing the key challenges in
fighting it, and evaluating the existing detection techniques. In
addition, several studies focus on certain types of interconnect
bypass fraud. For instance, Reaves et al. [52] presents a
technique to detect illegitimate VOIP-GSM gateways in the
international call routes, by analyzing the quality degradations
in call audio. Another study [56] analyzes the impact of OTT
bypass fraud, where the fraudulent transit operators hijack
international phone calls and route them through Over-The-
Top service providers, bypassing the destination operator.

To the best of our knowledge, there is no study that
explores the IRSF ecosystem, in particular the test numbers
and test call logs available on IPRN providers’ websites. In
a whitepaper from TransNexus, authors contact 121 premium
rate number providers and gather information on the advertised
number ranges (countries), payout rates and location of the
company [9]. However, they do not look into the test IPRNs,
but only analyze the most frequently advertised countries and
compare the payout rates. Thus, our study is the first to shed
light on the ecosystem of test IPRNs.

Data mining and machine learning techniques have been
frequently used for fraud detection in different domains, in-
cluding telecommunications [40], [49]. In fact, telecommuni-
cations was one of the first industries that adopted machine
learning technologies due to the huge amount of high-quality
data they store [67]. Most of the academic work in this field
focus on applying machine learning on certain behavior pat-
terns extracted from CDRs to detect: subscription fraud [30],
[32], account takeover [33], [34], [55], simbox fraud [28], [43]
and voice spam [41]. As each fraud type exhibit different call
patterns, features used in these previous work varies. As we
mentioned in Section V-D, [42] attempts to detect IRSF with
anomaly detection, however this method suffers from a high
rate of false positives.

IX. CONCLUSION

This paper studies the long-standing, yet unsolved problem
of International Revenue Share Fraud (IRSF). IRSF can take
various forms depending on the fraud agreement, collaborating
parties, and the traffic generation methods employed by fraud-
sters. The complexity of IRSF increases even further with the
third party providers operating online. In this paper, we first
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analyzed the data we collected from such online providers to
understand how they operate and how they abuse international
phone numbers. By taking advantage of this information, we
then proposed a set of machine learning features that can be
used to detect IRSF calls. We finally validated this approach
on a real-world call dataset. We believe that continuously
monitoring the online IPRN providers would be very useful
in fighting IRSF proactively.
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X. APPENDIX

TABLE X: Top 10 countries for the number of newly adver-
tised IPRNs, per semester, in 2018 and 2019.

2018 1st Half 2018 2nd Half 2019 1st Half 2019 2nd Half
Latvia Iraq Iraq Congo
Russia Latvia Latvia Iraq
Cuba Guinea Guinea Latvia
Lithuania Sri Lanka Congo Bolivia
Somalia Somalia El Salvador Honduras
Guinea Saudi Arabia Tanzania Nigeria
Belarus Algeria Nigeria Algeria
Algeria Lithuania Bolivia El Salvador
Madagascar Tanzania Lithuania Italy
Tunisia Uganda Sri Lanka Cuba
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