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Abstract—Cross-spectrum face recognition, e.g. visible to ther-
mal matching, remains a challenging task due to the large
variation originated from different domains. This paper proposed
a subspace projection hashing (SPH) to enable the cross-spectrum
face recognition task. The intrinsic idea behind SPH is to
project the features from different domains onto a common
subspace, where matching the faces from different domains can be
accomplished. Notably, we proposed a new loss function that can
(i) preserve both inter-domain and intra-domain similarity; (ii)
regularize a scaled-up pairwise distance between hashed codes,
to optimize projection matrix. Three datasets, Wiki, EURECOM
VIS-TH paired face and TDFace are adopted to evaluate the pro-
posed SPH. The experimental results indicate that the proposed
SPH outperforms the original linear subspace ranking hashing
(LSRH) in the benchmark dataset (Wiki) and demonstrates a
reasonably good performance for visible-thermal, visible-near-
infrared face recognition, therefore suggests the feasibility and
effectiveness of the proposed SPH.

Index Terms—Cross-spectrum face recognition, visible to ther-
mal, visible to near-infrared, subspace projection hashing

I. INTRODUCTION

Face recognition (FR) operated on visible light has gained
a long-standing interest attributed to the comfort and non-
intrusive face image acquisition. Furthermore, recent advances
in deep neural network achieved the superior accuracy of FR,
e.g. Google FaceNet achieved 99.63% recognition accuracy on
Labelled Faces in the Wild (LFW) dataset [1]. On the other
hand, face images are often captured in other spectrum bands
such as thermal or near-infrared. Cross-spectrum FR performs
the matching of the face images from different modalities or
domains, e.g. visible to thermal, visible to near-infrared. In this
paper, the terms of ”spectrum”, ”domain” and ”modality” are
used interchangeably. Considering the scenario that thermal
face image could be effectively matched against the visible
face image of the same identity, it will be a great interest for
various applications such as surveillance [2] and forensics [3].

However, the performance of cross-spectrum FR can be
largely varied due to the variety of modalities. For instance,
visible (VIS) and thermal (TH) face demonstrate a large
modality variation. The accuracy of cross-spectrum FR be-
tween visible (VIS) and thermal (TH) images therefore can
be as lower as 60% [4], [5]. Whilst, the recognition rate
of FR between visible and near-infrared (NIR) images can
achieve 99.39% accuracy [6]. It can be seen that the matching

performance of VIS-NIR is significantly accurate compared to
the matching performance of VIS-TH. Zhang et al. [7] justified
this large discrepancy of performance that thermal image lost
the most of texture and edge information for the face images,
which leads to the poor accuracy, while near-infrared image
preserves the most similarities of visible image. This indicates
that thermal-visible FR is more challenging than NIR-visible
FR.

An ideal cross-spectrum FR aims several criteria: (i) a
cross-spectrum FR system should achieve good accuracy under
inter-domain situation; (ii) the matching accuracy under intra-
domain should be preserved simultaneously; (iii) the matching
process should be accomplished efficiently under the larger
scale searching scenario.

Generative adversarial networks (GAN) based approach is
one of the most popular approach for cross-spectrum FR. GAN
synthesizes the thermal or near-infrared face images based
on the corresponding visible face images, while it’s hard to
generate high quality thermal images by GAN with inade-
quate training samples; thus cannot guarantee the matching
performance [5]. Also, training of GAN is computationally
expensive and hard to converge [7], [8].

On the other hand, common subspace projection (CSP)
(also known as Hashing) is another well-known approach
for cross-spectrum FR. CSP projects features extracted from
different domains onto a common subspace [9], [10]. Matching
from different modalities can be performed in an identical
subspace. CSP requires neither network training nor large
datasets. Therefore, hashing may be a decent option that can be
adopted for cross-spectrum FR problem. However, the existing
hashing solutions for inter-domain retrieval such as canonical
correlational analysis (CCA) [11], bilinear model (BLM) [12]
and partial least squares (PLS) [13] merely consider inter-
domain similarity measures on common subspace. An ideal
inter-domain hashing requires that the samples from the same
identity are as close as possible while those from different
identities are far separated in the projected subspace [10].
These methods may perform cross-spectrum FR suboptimal
when intra-class variation is large. Therefore, both inter-
domain and intra-domain matching should be taken into ac-
count for cross-spectrum FR.

Inspired from the hashing method for media retrieval, i.e.

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 615



Fig. 1. The proposed SPH framework.

linear subspace ranking hashing (LSRH) [14], we proposed
a new hashing method namely subspace projection hashing
(SPH). A block diagram of SPH is illustrated in Fig. 1: (i)
face features are extracted as 512-dimensional vectors; (ii) the
hashing matrix WX and WY is generated by learning process;
(iii) the features are projected onto common subspace with
hashing matrix, to generate hashed codes HX and HY ; (iv) the
matching process is executed with hashed codes. SPH projects
the face features extracted from different domains, i.e. visible,
thermal and near-infrared onto a common subspace, thus
realizes cross-spectrum FR with reasonable gain of accuracy.
The projection matrix is learned based on a loss function
for inter-domain and intra-domain matching as discussed in
section IV. The generated hashed code is in binary/integer
form which is fast for matching [15], efficient for data storage
and retrieval [16] due to the pure involvement of the bit-wise
operations.

The contributions of this paper are:
• We proposed a new hashing method for cross-spectrum

FR task, namely SPH. The proposed SPH achieved sat-
isfied accuracy of FR on visible-thermal and visible-NIR
spectrum.

• A new loss function that optimizes both the inter-domain
and intra-domain similarities are introduced. Specifically,
visible-thermal and/or visible-near-infrared, and visible-
visible and/or thermal-thermal. The new loss illustrates an
improved performance with respect to the original LSRH.

• We performed a series of experiments on visible-thermal,
visible-NIR for FR. The proposed method shows a rea-
sonably good performance and validate the effectiveness
of the proposed method for cross-spectrum FR.

II. RELATED WORK

In literature, a number of methods were proposed to attempt
cross-spectrum FR challenge. These methods can be generally
divided into three distinct approaches [17], i.e. (i) hand-
crafted based approach, (ii) generative adversarial network
(GAN) based approach, and (iii) subspace projection (also
known as hashing) based approach. In this paper, we focus
on the subspace projection based approach. Hence, the related
works are restricted to the subspace projection based approach.
Briefly, the basic idea of subspace projection approach is to
seek a common subspace for multi-domain feature/variables,
and project each feature/variable from different domain onto
the common subspace. The projection can be completed by

two different mechanisms, (i) identified correlations, such as
canonical correlation analysis (CCA) [11] and partial least
squares (PLS) [13]), (ii) similarity labels, e.g. generalized
multi-view analysis (GMA) [10] and linear subspace ranking
hashing (LSRH) [14]. Ideally, hashing ensures that objects
with high similarity renders higher probability of collision
in the hashed domain; in contrast, the objects are far apart
from each other result a lower probability of hash collision.
Therefore, hashing is able to retain or even boost the matching
performance in subspace.

In literature, Klare et al. [18] proposed a VIS-NIR face
recognition method based on linear discriminant analysis
(LDA) [19]. A common feature-based representation for both
NIR images and VIS images are selected, then projected onto
random subspace. The matching process is implemented with
projected features using sparse representation classification.
Klare et al. [20] further developed a kernel prototype sim-
ilarities method, which is similar with earlier method [18]
but requires no common features. Kernel prototype similarities
method is tested on visible-NIR, visible-thermal and visible-
sketch cases. Jin et al. [17] reported a coupled discrimina-
tive feature learning (CDFL) method. CDFL directly learns
discriminative features from raw pixels. Then, the features
are encoded and projected onto one common space with
feature dimension reduction and matching accuracy improve-
ment. Sharma et al. in [10] suggest that ideal inter-domain
retrieval/classification requires that the samples from the same
identity are as close as possible while those from different
identities are far separated in the projected subspace. More-
over, Sharma et al. developed a cross-view face recognition
system, namely generalized multiview analysis (GMA), and
summarised the properties of a decent cross-view classification
method, i.e. (i) Supervised, (ii) Generalizable, (iii) Multi-view,
(iv) Efficient, (v) Kernelizable, (vi) Domain-Independent.

The proposed SPH is a ranking-based hashing method that
rank correlation measures are taken into account whereas the
aforementioned methods do not utilize the ordinary informa-
tion [21]. Compared to the pairwise-based hashing methods
[10], [17], [18], [20], ranking-based methods enjoy a su-
periority of performance as optimizing the ranking list can
directly improve the quality and efficiency of nearest neighbor
search [22]. From the viewpoint of loss function, SPH imposes
not only the inter-domain but also intra-domain similarity
measurement, which is rarely addressed in the literature. This
theory that results in good performances can be found and
justified in [10].

III. PRELIMINARIES

In this section, we give a brief introduction for LSRH, in
which the proposed SPH based upon. LSRH was originally
meant for inter-domain (e.g. image-to-text and text-to-image)
data retrieval.

A. Ranking-based hash function
Ranking-based hash function defines a family of hash func-

tion based on the max-order-statistics of feature projections
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onto a K-dimensional linear subspace. The name of ranking-
based hash function is originated from the ordinal of feature
dimensions rather than the precise numerical values [14]. The
ranking-based hash function h⇤(·) is defined as

h(z;W) = arg max
1kK

wT

k
z, (1)

where z is a set of D-dimensional feature vectors of samples
and W = [w1 . . .wK ]T 2 RK⇥D is a K-dimensional hashing
matrix.

B. Formulation of LSRH
Loss function of LSRH is designed for only inter-domain

matching purpose [14]. It would be part of our proposed
method.

Assume that X and Y are face images from two domains.
Let {xi}NX

i=1 and {y
j
}NY
j=1 represent a set of feature vectors

from each domain, where N⇤ denotes the number of samples
in the respective domain. ‘⇤’ is a place holder for X and Y .
Let hi

Z
represent hZ(zi;WZ), then (hi

X
, h

j

Y
) indicates the K-

ary ranking hashed codes of a inter-domain pair (xi, y
j
). Then

let ⇡ij be the probability of (hi

X
, h

j

Y
) pair taking same value

and sij be the similarity label (1 or 0) of (xi, y
j
). Therefore,

⇡ij is expected close to 1 when sij is 1. Otherwise, ⇡ij is
expected close to 0. The error function is defined as

˜̀
ij =

(
1� ⇡ij , sij = 1

�⇡ij , sij = 0
, (2)

where � controls the relative penalty of false-positive pairs.
Ranking-based hash function defined in (1) could be formu-
lated and approximated using the softmax function as

h(z;W) ⇡ �(Wz), (3)

where the function �(x)j represents the j
th dimension of the

output vector and is defined as:

�(x)j =
e
↵x

j

P
K

k=1 e
↵xk

, (4)

where j 2 {1, 2 . . .K} and ↵ controls the smoothness. Let p
i

represent �(WXxi) and q
j

represent �(WY y
j
) as the softmax

vectors. Therefore,
⇡ij = pT

i
q
j
. (5)

From the above formulations, the overall loss function of
LSRH is:

L̃↵(WX ,WY ) =
X

sij=1

(1� ⇡ij) +
X

sij=0

�⇡ij

=
X

sij2S

aijpT

i
q
j
+ const

= trace(PAQT ) + const

, (6)

where P =
⇥
p1 . . . p

NX

⇤
and Q =

⇥
q1 . . . q

NY

⇤
are K-by-N⇤

matrix with softmax vectors in each column, and a matrix A
with entries of NX -by-NY is defined as

aij = �� (�+ 1)sij . (7)

const is a fixed value, which equals to the amount of positive
similarity labels sij = 1. The training process aims to find

min
WX ,WY

L̃↵ = trace(PAQT ). (8)

IV. THE SUBSPACE PROJECTION HASHING
LSRH is proposed to measure the similarity of data from

different modalities, e.g. inter-domain for image and text
retrieval. It merely takes care of the inter-domain similarity on
the subspace (i.e. visible-thermal) [14]. However, Sharma et
al. [10] revealed that the performance can be improved if intra-
domain similarity (i.e. visible-visible and thermal-thermal) can
be taken into account. Therefore, a new hashing framework
SPH is proposed to capture our goal, i.e. inter-domain and
intra-domain similarity measurement, as Fig. 1 illustrates. SPH
is a ranking-based hashing and loss function is optimized for
both inter-domain and intra-domain matching.

First, the singular ranking-based hash function h⇤(·) of SPH
is defined as

hX(x;WX) = arg max
1kK

wT

Xk
x, (9)

hY (y;WY ) = arg max
1kK

wT

Y k
y, (10)

where W⇤ = [w⇤1 . . .w⇤K ]T 2 RK⇥D⇤ is a K-dimensional
hashing matrix. The hashed code length is defined as L,
which means L duplicates of h⇤(·). With a well-designed
hashing/projection matrix W⇤, two sets of L-dimensional
hashed codes for two domains can be generated by:

H⇤ =
�

hl

⇤
 L

l=1
. (11)

Next, we re-formulate (6) as a part of SPH loss, to preserve
the inter-domain similarity.

L̃cross =
X

sxiyj2SXY

axiyj pT

i
q
j
+ constXY

= trace(PAXY QT ) + constXY

, (12)

where AXY is defined as

axiyj = �� (�+ 1)sxiyj . (13)

sxiyj is the similarity label of (xi, y
j
) and constXY is a fixed

value of the amount of positive similarity labels sxiyj = 1.
Next, the intra-domain similarity preserving loss function

is introduced from (12) and (13). The intra-domain similarity
preserving loss is defined as:

L̃single =
1

2
(trace(PAXXPT ) + constXX

+trace(QAY Y QT ) + constY Y ),
(14)

where trace(PAXXPT ) and trace(QAY Y QT ) represent
intra-X and intra-Y domain, respectively, where AXX is de-
fined as

axixj = �� (�+ 1)sxixj , (15)

and AY Y is defined as

ayiyj = �� (�+ 1)syiyj . (16)
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sxixj and syiyj are similarity label of X and Y domain,
respectively. constXX and constY Y are fixed values of the
amount of positive similarity labels sxixj = 1 and syiyj = 1,
respectively.

To optimize projection matrix, an additional regularization
term, i.e. pairwise distance is introduced to the original loss
function. The pairwise distance penalty is computed based on
pairwise distance between each hashed code on a common
subspace. We define pairwise distance of a set of vectors Z =
[z1 . . . zN ] as

D(Z) = {dist(zi, zj)} , 8 i < j and i, j 2 N, (17)

where D(Z) 2 R1⇥C
2
N . C2

N
is the mathematical combination

calculation. It represents the number of different combinations
for selecting two items from N items collection, ignoring
the order of selection. Let Z = [hX(x;WX), hY (y;WY )].
Therefore, all pairwise distances of hashed codes are D(Z) 2
R1⇥C

2
NX+NY . D is normalized into (0,1). Since we expect to

maintain larger pairwise distance D(Z), the loss function is
defined as

L̃pdist = 1�
PC

2
NX+NY

i=1 Di(Z)
C

2
NX+NY

. (18)

The overall loss function of SPH is to fuse (12), (14) and
(18), as

L̃SPH(WX ,WY ) = L̃cross + �1L̃single + �2L̃pdist. (19)

�1 and �2 are the coefficients of new loss functions. We
can observe that when �1 = 0, the overall loss function
is optimal for inter-domain matching performance and when
�1 = �2 = 0, SPH is identical to LSRH. Thus, SPH is
a generalized form of LSRH. The outputs of SPH are two
sets of L-dimensional hashing functions/project matrices, i.e.
(WX ,WY ). The general algorithm is indicated in Algorithm
1.

V. EXPERIMENT

We conducted a series of experiments to demonstrate the
feasibility of the proposed SPH for cross-spectrum FR. We

Algorithm 1: Subspace Projection Hashing
Input : Face features X, Y and similarity labels S,

subspace dimension K, hashed code length L.
Output: K-dimensional hashing matrix WX and WY

1 Initialization: Set WX and WY to random values from
Gaussian distribution

2 repeat
3 Randomly select a training batch Xb and Yb,

obtain the batchwise label matrix SXbXb , SYbYb

and SXbYb accordingly;
4 Update WX and WY according to mini-batch

gradient decent method in [14].
5 until Convergence

have made our testing data and source code publicly available
for reproducing our results (https://github.com/azrealwang/
sph).

A. Dataset and matching protocol
Wiki dataset [23] is used for inter-domain performance

evaluation in LSRH [14]. To ensure a fair comparison, Wiki
is also adopted to validate the effectiveness of the proposed
loss function in SPH. Wiki dataset is based on Wikipedia’s
“featured articles” and involves 2,866 image-text pairs with
semantic labels of 10 categories. Each image is represented
as a 128-dimensions feature vector and each text document
is represented as a 1000-dimensions feature vector. We use
mean average precision (mAP) as a performance indicator, to
evaluate recognition accuracy.

EURECOM VIS-TH paired face dataset is a newly
released dataset dedicated for inter-domain FR, e.g. visible-
thermal. The samples of facial images are illustrated in Fig. 2.
EURECOM VIS-TH paired face dataset involves 2,100 face
images, including 50 identities with 21 visible-thermal pairs
for each identity [24]. Face features are extracted as a 512-
dimensions feature vector with public software InsightFace
[25]. Rank-1 recognition rate and equal error rate (EER) are
adopted to measure the recognition performance.

TDFace dataset includes more than 100 subjects of visible-
NIR face pairs [26]. Fig. 3 illustrates the samples in this
dataset. To increase the diversity of experiments, the face
features are presented as a 512-dimensions feature vector with
FaceNet [1]. Due to the failure of face image alignment, some
of the face images are excluded for experiment and eventually
3,180 images, including 106 identities with 15 visible-NIR
pairs. It is evaluated with Rank-1 rate.

B. Training strategy
To generate the training-set and testing-set, Weinberger et

al.’s protocol [27] is adopted in this paper. For EURECOM
VIS-TH paired face, 15 images from each identity are ran-
domly selected as training-set and the remaining 6 images are
used as testing-set. For TDFace, 11 images of each identity
are selected randomly as training-set, while the remaining 4
images are used for testing-set. To ensure the generalizability

Fig. 2. Samples in EURECOM VIS-TH paired face dataset [24].
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Fig. 3. Samples in TDFACE dataset [26].

Algorithm 2: Subspace Projection Hashing Incremen-
tal Learning
Input : Historical selected data Xh, Yh and Sh;

historical hashing matrix WXh and WY h;
unseen data Xu, Yu and Su.

Output: Hashing matrix WX and WY ; updated
historical selected data Xh, Yh and Sh

1 Set WX and WY with historical hashing matrix WXh

and WY h

2 Set X with combining Xh and Xu; set Y with
combining Yh and Yu; set S with combining Sh and
Su

3 Update Xh, Yh and Sh with randomly selecting one
image of each identity from X, Y and S

4 repeat
5 Using mini-batch gradient decent method in

Algorithm 1
6 until training is terminated with stop condition �

of experiment results, all images selection for each time
experiment is random and the experiments are repeated for 20
times (Table I). The average recognition accuracy is recorded
in Table II - V.

In reality, unseen identities (identities not used in training)
are commonly expected in a system, which will lead to a
poor recognition performance [10], [28]. Though a new model
can be re-trained by including the unseen identities and the
historical training data, the process of re-train can be time
costly and computation expensive. Hence an adaptive incre-
mental learning strategy (SPH-IL) is designed to update the
model incrementally with the unseen identities and part of the
history training data, as described in Algorithm 2. Specifically,
the new training-set is generated by combining the unseen
dataset and one randomly selected image of each identity in
the previous training-set. The weight in the pre-trained model
is used as the initial weight in the re-train process. The re-
train process is terminated with a stop condition �, when
the unseen identities recognition accuracy and the pre-trained
model matching accuracy is close.

Conventionally, two independent rounds of training con-
sume much time. The time consumption can be largely reduced
by applying incremental learning where only small number of
images (unseen identities and partial historical data) is required
for re-train training-set and re-train process is terminated
shortly. Therefore, the time of re-train would be no longer

TABLE I
PARAMETERS USED IN EXPERIMENTS FOR EACH DATASET.

Parameter WIKI EURECOM TDFACE
Duplicate of experiment 20
Hashed code lengths (L) 128 128 128
Subspace dimensions (K) 8 16 16

Smoothness of (4) (↵) 8 2 2
Penalty of (2) (�) 1 0.2 0.1

Influence index of L̃single (�1) 0 0.5 0.5
Influence index of L̃pdist (�2) 0.5 0.5 0.5

Stop condition (�) N/A 0.22 N/A

Fig. 4. Gradient decent of LSRH and proposed SPH for wiki dataset. Training
terminated when no significant error decreased between consecutive iterations,
in our case it’s less than 2�52 ⇡ 2.22e�16 (i.e. eps in Matlab). Note that
error of SPH is higher than LSRH is expected due to the additional loss
L̃single and L̃pdist in SPH.

a concern. Experiment results in section V-E demonstrates
the efficiency and effectiveness of the incremental learning
as opposed to the conventional training.

C. Parameters
The experimental parameters used in this paper are given in

Table I. Note that all parameter values in Table I are optimal
for best matching performance. Specifically, stop condition is
only adopted in visible-thermal experiments (EURECOM VIS-
TH paired face) for incremental learning testing. We conducted
an experiment to observe the performance with respect to the
length of the hashed code. Fig. 5 illustrates that the Rank-1
rate increases when the length of hashed code, L increases and
levels off when L reaches 128 dimensions. The increment of
rank-1 rate is insignificant when L is more than 128, whereas
the computational complexity becomes a concern.

D. Comparison between LSRH and SPH on image-text re-
trieval

With the new loss function employed, we investigated the
performance of SPH over LSRH for inter-domain (e.g. image-
text) retrieval. The experiment is conducted using Wiki dataset
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(a) Wiki (b) EURECOM VIS-TH paired face (c) TDFACE

Fig. 5. Recognition accuracy vs hashed code length for different datasets.

TABLE II
COMPARISON BETWEEN SPH AND LSRH.

mAP (%) Text query image Image query text
Proposed SPH 79.66 29.55

LSRH [14] 73.53 28.72

[14], [23] to ensure a fair comparison. The results shown in
Table II indicate that the proposed SPH outperforms its pre-
decessor LSRH. We examined the efficiency of convergence
with the new loss function. The loss gradient descent of each
iteration is plotted in Fig. 4. It is observed that the loss gradient
of SPH only costs around half iterations to convergence,
respect to LSRH. Thus, SPH is more training iteration efficient
than LSRH, which means, SPH is more efficient to obtain the
optimized hashing/projection matrices with an equal number
of iterations. In addition, the figure indicates that for both SPH
and LSRH, loss error has achieved a satisfied convergence after
100 training iterations, so our experiment setting of maximum
iterations is 100 to reduce unnecessary computational cost.
Note that training time of SPH is longer than LSRH since
the proposed loss function increases the computational cost
for each iteration. The time spent in seconds for the two lines
in Fig. 4 is SPH: 62 seconds for 257 iterations vs LSRH: 45
seconds for 505 iterations, with MATLABVer. 2019b, 2.7 GHz
Dual-Core Intel Core i5 CPU and 1867MHz 8GB RAM.

E. Performance of SPH on cross-spectrum FR

To evaluate the performance of SPH on VIS-TH FR,
experiments are carried out on EURECOM VIS-TH paired
face dataset with matching inter-domain (VIS-TH) and intra-
domain (VIS-VIS and TH-TH) faces. Table III presents the
Rank-1 recognition rate and matching EER between visible-
thermal, visible-visible and thermal-thermal faces. We ob-
served from Table III that the deep model underperformed for
visible-thermal FR, e.g. InsightFace achieved Rank-1 recogni-
tion rate and EER for visible-thermal are 23.95% and 28.20%
respectively. This is expected that the majority of the texture
and edge information are lost due to the large distinction
between visible and thermal spectrum as outlined in [7].

TABLE III
ACCURACY OF VISIBLE-THERMAL FR FOR EURECOM DATASET.

Rank-1 (%) VIS vs TH VIS vs VIS TH vs TH
InsightFace 23.95 91.43 82.52
NMDSH [4] 26.58 94.60 83.83

CRN [29] 54.23 91.65 18.00
LSRH [14] 88.92 91.08 88.88

Proposed SPH 89.62 91.38 89.25
EER (%) VIS vs TH VIS vs VIS TH vs TH

InsightFace 28.20 9.17 11.86
NMDSH [4] 27.88 5.48 9.75
LSRH [14] 7.56 7.28 7.78

Proposed SPH 7.06 6.95 7.21

TABLE IV
RANK-1 RECOGNITION RATE OF VISIBLE-NIR FR FOR TDFACE DATASET.

Rank-1 (%) VIS vs NIR VIS vs VIS NIR vs NIR
FaceNet 95.13 99.88 99.68

Circular with HOG [30] 96.82 Not applicable Not applicable
LSRH [14] 99.06 99.68 99.59

Proposed SPH 99.30 99.67 99.49

In contrast, SPH achieved the accuracy of 89.62% Rank-1
rate and 7.06% EER respectively, which suggests that the
proposed loss is effective for inter-domain matching (VIS-
TH). Additionally, two cross-spectrum (VIS-TH) FR methods,
i.e. non-linear multi-dimensional spectral hashing (NMDSH)
[4] and cascaded refinement network (CRN) [29] are chosen
for performance comparison, because both NMDSH and CRN
employed EURECOM VIS-TH paired face dataset that is
the same dataset the proposed SPH used. We note that the
experimental protocol used in CRN is that 45 subjects are for
training and 5 subjects are for testing respectively. Although,
this protocol is not exactly same to the protocol SPH used,
it is the most similar protocol to ours (section V-B). It can
be observed that the proposed SPH attains supreme accuracy
for VIS-TH and TH-TH FR over NMDSH and CRN. Fur-
thermore, while the recognition accuracy of SPH outperforms
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TABLE V
PERFORMANCE OF INCREMENTAL LEARNING.

Experiment settings Experiment results
Scenarios

Training-set Gallery Probe VIS vs TH VIS vs VIS TH vs TH

SPH without
unseen identities

Randomly selected 15
vis-th image pairs of each
identity ⇥ 50 identities

Remaining 6 images of
each identity in vis or th
domain ⇥ 50 identities

Remaining 6 images of
each identity in vis or th
domain ⇥ 50 identities

89.62 91.38 89.25

SPH with
unseen identities

Randomly selected 15
vis-th image pairs of each
identity ⇥ 40 identities

Randomly selected 6 images
of each identity in vis or th
domain ⇥ 10 unseen identities

Randomly selected 6 images
of each identity in vis or th
domain ⇥ 10 unseen identities

1.33 35.92 22.58

Remaining 6 images of each
identity in vis or th domain ⇥
50 (include 10 unseen) identities

Remaining 6 images of each
identity in vis or th domain ⇥
50 (include 10 unseen) identities

71.13 79.83 75.33

SPH-IL with
unseen identities

Initial: Randomly selected
15 vis-th image pairs of
each identity ⇥ 40 identities
Incremental: Combine one
randomly selected image of
each identity in initial training-set,
and randomly selected
15 vis-th image pairs of each
identity ⇥ 10 unseen identities

Remaining 6 images of each
identity in vis or th domain ⇥
50 (include 10 unseen) identities

Remaining 6 images of each
identity in vis or th domain ⇥
50 (include 10 unseen) identities

86.67 90.65 87.38

the recognition accuracy of other schemes under inter-domain
(VIS-TH), simultaneously, SPH also achieved the comparable
performance under intra-domain, i.e. 91.38% for VIS-VIS
and 89.25% for TH-TH. These results verified the theoretical
justification of the proposed loss described in Section IV,
where the proposed loss optimizes both inter-domain and intra-
domain similarity preservation, and converges with a more
optimized hashing matrix with same number of iterations.

For VIS-NIR, we conducted the experiments to examine
the performance on inter-domain (VIS-NIR) and intra-domain
(VIS-VIS and NIR-NIR) using TDFace dataset. Table IV
tabulates the Rank-1 recognition rate between visible-NIR,
visible-NIR and NIR-NIR faces. We can observe that despite
FaceNet achieved a 95.13% of Rank-1 recognition rate for
inter-domain (VIS-NIR), SPH even improved the Rank-1
recognition rate to 99.30%. This result is comparable to the
state-of-the-art deep model for inter-domain (VIS-NIR) [6].
In addition, we compared the performance of SPH with a
recently proposed method, namely circular with histogram
of oriented gradients (HOG) [30], which also used TDFace
dataset for VIS-NIR FR. The experimental results shown in
Table IV indicate that the proposed SPH achieved a higher
accuracy over HOG. Furthermore, similarly with intra-domain
experiment results of EURECOM VIS-TH paired face dataset,
intra-domain matching performance in TDface dataset is also
equivalently comparable with other methods. These results
confirms that SPH is effective on VIS-NIR FR.

As mentioned in section V-B, the poor recognition per-
formance for unseen identities is commonly expected in re-
ality. Unseen identities refer to the identities which do not
participate in the training process. To tackle with this issue,
we designed an adaptive incremental training strategy (SPH-

IL) and examined the effectiveness under this scenario. Table
V provides the performance comparisons between incremen-
tal learning strategy and conventional learning strategy for
unseen identities scenario. We can observe that the recog-
nition performance under the unseen identities scenario is
completely jeopardized (1.33%, 35.92% and 22.58% of Rank-
1 rate for VIS-TH, VIS-VIS, and TH-TH). In contrast, by
employing the incremental learning strategy, the recognition
performances can gain 86.67%, 90.65%, and 87.38% Rank-1
rate for VIS-TH, VIS-VIS, and TH-TH respectively. Overall,
the incremental learning strategy scarified an insignificant
performance reduction (i.e. -2.95% Rank-1 rate from Table V
) but gaining the capability of dealing with unseen identities
without requiring overwhelming computational overload.

F. Discussion

From the experimental results above, we can summarise that
the recognition accuracy of SPH performs well under inter-
domain scenario, i.e. visible-thermal and visible-NIR. This is
attributed to the proposed loss that generates a more optimized
projection matrix with same iterations. On the other hand, the
recognition accuracy of SPH is comparable (no significant
performance reduction) to the state-of-the-art deep models
under the intra-domain scenario (i.e. VIS-VIS, TH-TH and
NIR-NIR). Note that the deep models are specialized for intra-
domain FR. SPH could be comparable to deep models is due to
the proposed loss that additionally preserves the intra-domain
similarity.

VI. CONCLUSION

In this paper, we proposed a hashing method, namely SPH
that is extended from LSRH. Raw face features are hashed to
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less dimensional integer codes, which increases matching and
searching speed. We specially designed a new loss function
that preserves the inter-domain and intra-domain similarity.
Simultaneously, the pairwise distance as penalty is included
in the loss function to optimize projection matrix. Lastly, we
introduced the incremental learning procedure to tackle the
unseen identities problem. The experiment results on Wiki
dataset suggest that the new loss function achieved better
performance over LSRH and demonstrated less iterations to
convergence as well. For cross-spectrum FR, the experiments
on VIS-TH and VIS-NIR indicate that SPH outperforms LSRH
and deep learning approaches (e.g. InsightFace and FaceNet).
Moreover, the unseen identities problem has been largely
alleviated by the incremental learning procedure as indicted
by the experimental results.

In the future work, we are keen to investigate the feasibility
of SPH applying on other modalities such as visible-sketch
FR and 2D-3D model retrieval. We will also explore other
possible directions to design more sophisticated loss functions
such as modifying or fusing loss for cross-spectrum FR.
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