
1

A Cloud-Native Based Access and Mobility
Management Function Implementation in 5G Core

Keliang Du∗†, XiangMing Wen∗†, Luhan Wang∗†, Tien-Thinh Nguyen‡
∗Beijing Laboratory of Advanced Information Networks, BUPT, Beijing, China

† Beijing Key Laboratory of Network System Architecture and Convergence, BUPT, Beijing, China
‡ Eurecom, Biot, France

Abstract—The fifth generation of mobile communication net-
work(5G) core network(5GC) adopts microservice architecture,
overturning the original core network architecture, making it
easier for 5G networks to realize network slicing, supporting
large planning and high-speed terminal access. Many studies have
been constructed on 5G technologies, but it is difficult to validate
these theories and algorithms in a real-world environment.
Therefore, we aim to build the open-source end-to-end(E2E) 5G
mobile communication system platform. In this paper, we develop
a cloud-native based implementation of Access and Mobility
Management Function(AMF) under the OAI 5G Core project. We
firstly review the design principles of cloud-native applications
and its relationship with serviced 5G core network functions. And
then, the designed application architecture for the cloud-native
based AMF and detailed implementation of system procedures,
e.g. initial registration procedure, are described. In the end, the
AMF is tested in a real E2E 5G system for its functionalities.
Also, it’s deployed in a cloud environment, tested with simulated
gNB/UEs, for its stability and concurrency capacity.

Index Terms—5G Core Network; AMF; cloud-native; 5G-
AKA; E2E 5G SA system; modular design

I. INTRODUCTION

5G is defined as the converged network, supporting
diverse access technologies, heterogeneous networks,

and services for various need[1]. As the 5G standards continue
to mature, the implementation of 5G technologies has aroused
great interests of scholars either in academia or industry field.
Recent years, many studies have been constructed on 5G
technologies, e.g. Network Slicing. And many of these studies
need to be verified and corrected in the real environment.
Nowadays, the idea of open source begins to affect the mobile
communication field, which helps to provide some open-
source platforms for developers and researchers.

In this context, researchers can further validate their theo-
retical results and apply that into real applications, supported
by the open-source tools. However, the real open-source end-
to-end 5G mobile communication system in standalone(SA)
mode is still not avaliable. OpenAirInterface(OAI) Software
Alliance(OSA) is a large open-source community with many
contributors and consumers. It focuses on the E2E protocols
implementation of the mobile communication network and has
developed the E2E Long Term Evolution(LTE) system in the
past few years[2]. Now, they are working on the open-source
5G Next Radio(NR) and 5G Core Network(5GC)[3]. And the
AMF implementation mentioned in this paper is one of the
open-source 5G Core Network projects.

In the 5G/B5G(Beyond 5G) era, due to the convergence
of CT(Communication Technology), IT(Information Technol-
ogy), and DT(Data Technology) technologies, the Internet-
related mature technologies are becoming the basis of 5G
technology research and implementation. In the Internet field,
cloud-native technology is considered to support micro-service
architecture naturally in a cloud environment. The concept
of cloud-native was proposed by Matt Stine in 2013, which
means an application designed for “cloud”. And cloud-native
applications can naturally support deployment in a cloud
environment, leveraging cloud resources. Referring to 3GPP
TS 23.501[4], the 5GC is designed as a micro-service archi-
tecture, which is borrowed from the concept of servitization
of Internet. Hence, the cloud-native based 5GC network func-
tions(NFs) allows for flexible scheduling of resources of cloud,
thus enabling self-healing/self-extending/slicing.

In this paper, we develop the cloud-native based AMF,
which is the combination of ServiceMesh and service-oriented
application. Key functions of AMF in 5G Core are devel-
oped, including Initial registration procedure, PDU session
establishment procedure, and so on. Due to the lack of
Unified Data Management(UDM) and Authentication Server
Function(AUSF), we design the all-in-one 5G-AKA authen-
tication model. Besides, all related algorithms, e.g. Kaus-
f/Kamf derivation and so on, are implemented. And several
examples of necessary parameters/test data for the algorithms
are given. Moreover, the ITTI-based procedure processing
skeleton is designed to improve the concurrency capacity of
the system. And detailed protocol stack implementation and
message procedures are depicted. In the end, we build one
E2E 5G SA system using our own SMF and UPF, which
will also be open source in future, and commercial Huawei
CPE, Amari soft gNB to verify the AMF’s functionalities.
Moreover, extensive experiments are done to verify the AMF’s
stability and concurrency capacity supported by simulated
UE/gNB(only supports NGAP/NAS protocol, no Air interface
protocols).

Our contributions in this paper are as follows:
(1) A cloud-native based AMF architecture is designed and

implemented, which can be deployed in the cloud environ-
ment, leveraging cloud resources naturally.

(2) Modular design is applied in the development, including
data modules(e.g. ue context), functional modules(e.g. authen-
tication algorithms), and two libraries(libnas/libngap).

(3) A simualted UE/gNB is developed, supporting N-

2

TABLE I: The Cloud-based Software Development Model: 12 Factor

Base
Code Dependence Configuration Backend

Service
Build-
Release-Run Process Port

Binding Concurrency Easy
Handling

Environmental
Equivalence Log Management

Process

Cloud-Native
Applications X X X X X X X X X X X X

Cloud-Native
Based AMF X X X X X X X X

Service Mesh
or Kubernetes X X X X X X X X X

GAP/NAS protocols, to simulate multi-terminal registration
scenarios.

The remainder of the paper is organized as follows. Section
II describes the cloud-native based AMF overall architecture.
Section III describes the detailed implementation of the AMF’s
functionalities. Section IV describes two testbeds, the actual
E2E 5G SA system and virtualized environment based on
simulated UE/gNB, to verify its features and performance.
Section V concludes this paper and future research directions.

II. CLOUD-NATIVE BASED AMF ARCHITECTURE

The main design principle of the cloud-native based AMF is
the decouple between service and management, allowing func-
tional logic to evolve and optimize independently. Hence, the
features of 5G core network micro-service architecture shall
be supported by some common software infrastructures, e.g.
ServiceMesh. In 5GC, the network functions can be deployed
using dockers or virtual machines over the cloud infrastructure.
These are similar to the cloud-native based model, which is
composed of IaaS(Infrastructure as a Service), PaaS(Platform
as a Service), and SaaS(Software as a Service). For the design
of cloud-native applications, Heroku collated and proposed the
12 Factor to help developers design cloud-native applications.
From TABLE I, the combination of ServiceMesh and service-
oriented AMF design also meets the 12 Factor.

In this context, we design the cloud-native based AMF
architecture referring to the principles for cloud-native appli-
cations over the Internet, which is depicted in Fig. 1. The
cloud infrastructure(IaaS) can be provided by some public
clouds, e.g. Tencent Cloud, and/or private cloud built with
OpenStack. The management platform(PaaS) can be supported
by kubernetes(K8s), providing/managing basic dockers and
containers for each micro-service. ServiceMesh, one software
infrastructure(SaaS), can provide the features like service
registration/discovery/load balance for micro-services.

In such a software environment, we design the inter-
nal architecture of procedures’ processing. Pistache[5] is
used to implement service-based interface(SBI) protocol s-
tack. It’s a high-performance REST toolkit written in C++
and can provide user-friendly interfaces of endpoints. In
this paper, service operations, e.g. Namf Communication -
N1N2MessageTransfer, are implemented in the Pistache way.

For N1/N2 protocol stack implementation, InterTaskInter-
face(ITTI) is used as the main skeleton of system procedures’
processing. Each protocol instance has its own task, which is
implemented by one thread. For example, TASK AMF N1 is
the implementation of NAS protocol.

Besides, the modular design is applied to the implemen-
tation of the functional and data modules, which can make

each module evolve independently. Contexts for recording
communication status, database for storing user subscription
information, and configuration file for setting necessary param-
eters of the network are included in the common data layer.
And functional modules in the uppermost layer are responsible
for some logical processing of NAS or NGAP procedures.

Application

Functional Modules

Application

Common Data &

Libraries

Application

Protocol Skeleton

Application

Environment

Cloud PlatformsTencent Cloud Alibaba Cloud Google Cloud OpenStack

kubernetes

Dockers Containers

MESOS

Service Mesh(service discory/ Load balance)

Orchestrators

Virtual

Machines

ITTI-based N1/N2 protocol stack Pistache-based SBI protocol stack

libnas

libngapUe Context gNB Context Nas Contextamf.conf

Security Context PDU Session Context mysql

SCTP Server ngap app amf n2 amf n1 amf app

amf n11 Authentication-5gaka nas algorithms

Pod Service

Fig. 1: The Cloud-Native Based AMF Architecture

III. FUNCTIONAL PROCEDURES IMPLEMENTATION

In order to further decouple common modules from func-
tional procedures, we firstly design a set of libraries, includ-
ing libnas and libngap. Then, we implement the procedure
processing skeleton using ITTI and Pistache technologies.
Besides, we re-design the primary authentication and key
agreement model to authenticate the UEs in an all-in-one
manner. And we provide an example of setting the parameters
of the algorithms involved in the authentication procedure.

A. Pistache-Based AMF Services Generation

Referring to the 3rd Generation Partnership Project(3GPP)
standards, the AMF’s services are described by yaml files, e.g.
TS29518 Namf Communication.yaml, whose syntax follows
the openapi3.0 specification[6]. And OpenApiTools[7] is such
a tool to generate different server stubs from openapi3.0
specifications. In this way, the skeleton of the AMF, Pistache
Server, can be generated with yaml files using OpenApiTools.

B. Itti-Based Procedure Processing Skeleton

Itti(InterTaskInterface) is a lightweight middleware which
can provide services to the application. Services are Timer
facilities, Asynchronous Inter-task message facilities and I/O
events facilities. Each protocol instance or interface adapter
has been assigned with its own itti task.

Registration management[8] is the most important func-
tionality in the AMF, capable of managing and processing

3

the UE(s) registration requests. Its logic processing can be
divided into leveled sub-procedures. For NGAP level, they
are ng setup procedure, initial ue message procedure and
uplink/downlink nas transport procedure[9]. For NAS level,
they are registration procedure, primary authentication and
key agreement procedure, identification procedure[10]. And,
not only can itti-based skeleton allow for a clear division of
functional modules, but it also allows for the simultaneous
processing of multiple UE registration requests, taking advan-
tage of its high concurrency and asynchronous communication
mechanism features. Hence, we redesigned the registration
management procedure in the way of the itti mechanism. It
can be seen in Fig. 2.

TASK_AMF_N2 TASK_AMF_N1 TASK_AMF_N11 TASK_AMF_APP PISTACHE_SERVERSCTP_SERVER

buffer in

NG SETUP REQUEST

libngap

NG SETUP RESPONSE

libngapbuffer out

buffer in

INITIAL UE MESSAGE

libngap NAS binary message, NAS signaling connection

REGISTRATION REQUEST

libnas
AUTHENTICATION REQUEST

libnas
DOWNLINK NAS TRANSPORT

libngapbuffer out

buffer in

UPLINK NAS TRANSPORT

libngap
AUTHENTICATION RESPONSE

libnas

SECURITY MODE COMMAND(Encrypted)

libnas
DOWNLINK NAS TRANSPORT

libngap
buffer out

buffer in

UPLINK NAS TRANSPORT

libngap SECURITY MODE COMPLETE(Encrypted)

libnas

REGISTRATION ACCEPT(Encrypted)

libnas

INITIAL CONTEXT SETUP REQUEST

libngap
buffer out

buffer in

INITIAL CONTEXT SETUP RESPONSE

libngap
buffer in

UE RADIO CAPABILITY INFO INDICATION

libngapbuffer in

UPLINK NAS TRANSPORT

libngap

buffer in

UPLINK NAS TRANSPORT

libngap UL NAS TRANSPORT(Encrypted)

libnas

NAS SM binary message

Call SMF PDUSession CreateSMContext Operation

(PDU SESSION ESTABLISHMENT REQUEST binary message)

AMF

Response handlers

SMF

Call AMF Communication N1N2MessageTransfer Operation

(PDU SESSION ESTABLISHMENT ACCEPT binary message)

(PDU SESSION ESTABLISHMENT ACCEPT binary message)

DL NAS TRANSPORT(Plain)

libnasDL NAS TRANSPORT(Encrypted)

PDU SESSION RESOURCE SETUP REQUEST

libngap

buffer out

REGISTRATION COMPLETE(Encrypted)

libnas

buffer in

PDU SESSION RESOURCE SETUP RESPONSE

libngap

N2SM INFORMATION(UL Tunnel Info)

N2SM INFORMATION(DL Tunnel Info)

Call SMF PDUSession UpdateSMContext Operation

N2SM INFORMATION(DL Tunnel Info)

Response handlers

Fig. 2: Itti-Based Procedure Skeleton

As shown, the functionalities of each task are to receive/send
SCTP buffer, to process NGAP-level procedures, to process
NAS-level procedure, to consume other NF services, to man-
age the whole system, to expose the AMF capabilities from
the left to right. Each task runs independently, maintaining
one message queue. The external signaling messages, e.g.
NAS/NGAP messages, can be encoded/decoded by the support
of libnas/libngap. Also, itti messages with unique data struct
and id are transported among itti tasks.

C. Modular Design: Libngap and Libnas

Modularly designed libngap and libnas are developed to
encode/decode binary information, providing external inter-
faces for the procedure skeleton. Referring to 3GPP TS
38.413[9], NGAP messages are defined by Abstract Syntax
Notation One(ASN1), which can be generated by the ASN1
compiler(ASN1C). For NAS messages, 3GPP TS 24.501[10]

describes the buffer format for all messages. Each message
is designed as one object, providing core-type information
elements(IEs) and external interfaces.

D. All-In-One 5G-AKA Authentication Procedure

The AMF implements the primary authentication and key
agreement procedure in an all-in-one manner, which should
have been related to the AMF, AUSF, and UDM. For 5G cases,
this AMF supports the 5G-AKA authentication procedure[11].

UE AMF

REGISTRATION-REQUEST

1. SUCI to SUPI

2. Access MYSQL with SUPI to get OPC, SQN, KEY

3. Generate 16-octets RAND randomly

4. Calculate MAC_a by MILENAGE algorithm F1

5. Calculate XRES, CK, IK, AK by MILENAGE algorithms F2345

6. Calculate XRES* from XRES, referring to Annex A.4, 3GPP TS33.501

7. Generate AUTN, referring to Figure 7, 3GPP TS33.102

8. Calculate Kausf, referring to Annex A.2, 3GPP TS33.501

9. Generate authentication vector(5G HE AV)[RAND, AUTN, XRES*, Kausf]

10. Calculate HXRES*, referring to Annex A.5, 3GPP TS33.501

11. Calculate Kseaf, referring to Annex A.6, 3GPP TS33.501

12. Store XRES*, generate authentication vector(5G AV)[RAND, AUTN, HXRES*, Kseaf]

13. Calculate Kamf, referring to Annex A.7, 3GPP TS33.501

AUTHENTICATION-REQUEST(RAND, AUTN)

1. Calculate AK by MILENAGE algorithm F5

2. Calculate SQN； SQN = AUTN[1:6]^AK

3. Calculate XMAC by MILENAGE algorithm F1, input parameter AMF is AUTN[7:8]

4. Verify XMAC ?= MAC(AUTN[9:16])

5. Calculate RES, CK, IK by MILENAGE algorithm F234

6. Calculate RES* from RES, referring to Annex A.4, 3GPP TS33.501

7. Calculate Kausf, Kseaf, Kamf

AUTHENTICATION-RESPONSE(RES*)

SIM Card

Configuration:

OPC

KEY

IMSI/SUPI

14. Calculate HRES*, referring to Annex A.5, 3GPP TS33.501

15. Verify HRES* ?= HXRES* in AMF

16. Verify RES* ?= XRES* in AUSF

17. Select integrity and encryption algorithm from configuration file(amf.conf)

18. Calculate Knas_int and Knas_enc, referring to Annex A.8, 3GPP TS33.501

19. Encode SECURITY-MODE-COMMAND message

20. Protect SECURITY-MODE-COMMAND message by the selected integrity algorithm

Encrypted NAS

(SECURITY-MODE-COMMAND)

8. Parse the selected algorithm IE included in SECURITY-MODE-COMMAND message

9. Calculate Knas_int and Knas_enc, referring to Annex A.8, 3GPP TS33.501

10. Calculate the message authentication code(mac) using the selected integrity algorithm

11. Verify calculated mac ?= mac in the message

Fig. 3: All-in-one 5G-AKA authentication procedure and
algorithms

Fig. 3 shows detailed information about 5G-AKA authenti-
cation procedure. F1/F2/F3/F4/F5 are the key algorithms for
the whole procedure, which shall be consistent both in UE
and UDM. It is up to the operator to decide exactly how
these algorithms will be implemented. In this paper, we choose
“MILENAGE” as the kernel function[13]. Using F12345,
MAC, CK, IK, AK, RES/XRES can be calculated[12]. Dur-
ing the procedure, the AMF will derive several keys, e.g.
Kausf, and calculate the expected authentication response
parameter(XRES*). HMAC-SHA-256[14] is used as the Key
Derivation Function(KDF).

5G-AKA is a dual-authentication procedure and the UE
firstly decides whether to trust the network after receiving
the RAND and AUTN parameters. The UE may reject the
network by including “synch failure” or “MAC failure” in
the AuthenticationFailure message(NAS message). It means
either the authentication token(AUTN) is not fresh, or the
calculated MAC is not equal to that received. In this case,
the input parameters for MILENAGE algorithms or algorithms
themselves are to be checked.

After the authentication procedure, one security context has
been established both in the UE and AMF. To take this context
into use, another procedure, sercurity mode control(SMC)
procedure, is triggered. During the SMC procedure, all trans-
ported NAS meesages shall be protected. The chosen integrity

4

protection and encryption algorithms shall match the UE’s
security capabilities. This AMF supports 128-5G-NIA0/128-
5G-NIA1/128-5G-NIA2 and 128-5G-NEA0 algorithms[15].

There is an example of some important parameters set
during the whole 5G-AKA and SMC procedure. Given
that binary SUCI is 0x64F011000000001032547698.
Then the SUPI is the IMSI format[16], which is
“460110123456789”. And the serving network name(SNN)
shall be “5G:mnc011.mcc460.3gppnetwork.org”[10]. Both
SUPI and SNN shall be encoded into OCTET-STRING using
ASCII code. And for integrity protection algorithms input
parameters, the BEARER shall be 0x01 and the message
shall be the concatenation of sequence number and plain NAS
message buffer. DATA 1 is an overall test data for the whole
procedure, which can be used to correct each algorithm.

DATA 1 Test Data for 5G-AKA and SMC procedure

1: (1) Given OPC, KEY, RAND and SQN
⊕

AK
2: OPC: 0x000102030405060708090a0b0c0d0e0f
3: KEY: 0x00112233445566778899aabbccddeeff
4: RAND: 0x6a8959fb188c73308d679f7bc8313d65
5: SQN

⊕
AK: 0x97779b305686

6: (2) XRES* Derivation
7: Input S: 0x6b35473a6d6e633031312e6d63633436302e
8: 336770706e6574776f726b2e6f726700206a8959fb188
9: c73308d679f7bc8313d6500106283ace5e894a0ad0008

10: Key: 0x12757da1c0747d4a88b7d8b86446244b7f64a6
11: ccf95b98b25e9a41f007037d86
12: XRES*: 0x03f8627a004484086f35398f7c56df32
13: (3) Kausf Derivation
14: Input S: 0x6a35473a6d6e633031312e6d63633436
15: 302e336770706e6574776f726b2e6f72670020
16: 97779b3056860006
17: Key: 0x12757da1c0747d4a88b7d8b86446244b7f64a6
18: ccf95b98b25e9a41f007037d86
19: Kausf: 0x117cc3da749fb0b92c6fc4f4547a1e7af9
20: 499391028d80d75bfe88eb813ead4c
21: (4) Kseaf Derivation
22: Input S: 0x6c35473a6d6e633031312e6d636334
23: 36302e336770706e6574776f726b2e6f72670020
24: Key: 0x117cc3da749fb0b92c6fc4f4547a1e7af9
25: 499391028d80d75bfe88eb813ead4c
26: Kseaf: 0x4c888c8df5c4e76f7400f14503276a8a3
27: e35bfd9ac8b136c2768189a5a116d10
28: (5) Kamf Derivation
29: Input S: 0x6d343630313130313233343536373839
30: 000f00000002
31: Kamf: 0x20583705e4710990f71de4dbfcc2309c7d
32: baf2019bd3aae407c8749ba5a72155
33: (6) Knas int Derivation for 128-5G-NIA1
34: Input S: 0x69020001010001
35: Knas int: 0x9af45e60d402b8674c4f4767bd737e0f
36: (7) 128-5G-NIA1 Algorithm Parameters
37: bearer: 0x01
38: direction: 0x0 for uplink, 0x1 for downlink
39: message: 0x007e005d010102f0f0e1360102
40: Output mac: 0x33054cb4

E. Function Set and Common Data

Aiming to improve the portability, the contexts and logical
functions are designed as modules. Each module is equipped
with one or more related functionalities. For example, class
amf n2 is designed to encode/decode NGAP messages and
process the corresponding message procedures. The modular
contexts are used to manage the system procedures clearly,
each with unique keys. The mapping of the contexts and
keys are listed in TABLE II. Besides, some supportable
features of the AMF are configured in amf.conf. And the UEs’
subscription information, e.g. Key and OPc, is stored in the
local MYSQL database, OAI DB.

TABLE II: Mapping of the contexts and keys

Contexts Keys Descriptions

gnb context
sctp assoc id During the NG Setup proce-

dure

Global gNB ID After the NG Setup proce-
dure

nas context
5G-GUTI After RegistrationAccept

message

5G-S-TMSI After the initial registration
procedure

AMF UE N-
GAP ID

During the initial registra-
tion procedure

nas securi-
ty context ngKSI During the authentication

and SMC procedures

pdu ses-
sion context

SUPI/IMSI and
pduSessionId

During the UlNasTransport
procedure for N1 SM mes-
sage

IV. FUNTIONALITIES AND PERFORMANCE ANALYSIS

In this section, the real end-to-end(E2E) 5G standalone(SA)
testbed is discussed for testing the AMF’s functionalities.
Moreover, extensive experiments are designed to analyze the
system performance. In this case, the AMF is deployed in a
cloud-native environment and simulated UE/gNB is used.

A. Testbed: Deployment and Functional Testing

As shown in Fig. 4, the E2E system is composed of
UE, gNB, AMF, SMF, UDM, and UPF. Huawei CPE, one
commercial 5G user equipment, supports SA/NSA mode. And
the USIM card is programmable. In this testbed, we use the
SA mode and the card is configured the same information with
that in MYSQL, in the AMF. The soft gNB supports 5G NR
and is equipped with two Network Interface Controllers(NICs)
for signaling and data transportation respectively. The SMF
and UDM are the open-source projects of OSA, deployed in
the virtual machines. The UPF is also an element of the open
source 5G core project, supporting full-stack PFCP protocols
and data plane establishment. In this testbed, Huawei CPE can
be registered in the network with the AMF. And also, the AMF
can transport NAS session management(SM) messages from
the CPE to the SMF transparently.

5

Soft gNB

2x2 MIMO antenna

Physical server

VM for AMF

VM for SMF

VM for UDM

VPP-based UPF

Huawei CPE
Router

Direct network connection

(data plane -- N3)

192.168.20.11

192.168.2.157

192.168.20.136

192.168.2.115

(192.168.2.238)

(192.168.2.189)

(192.168.2.100)

Bridge Mode

Fig. 4: Testbed for the AMF Functionalities

Fig. 5: Wireshark packets for the AMF functional test

For the AMF’s functional test, the results are given as a pcap
file. We can see from Fig. 5, the AMF supports the NG Setup
procedure, exchanging application-level data needed with the
gNB node. For the UE-requested registration procedure, the
AMF supports the authentication and security mode control
sub-procedures. After successful registration, the UE will
request to establish a PDU session for data traffic. That will be
supported by the DL/UL NAS transport procedure of the AM-
F. UL-NGU-UP-TNLInformation and dLQosFlowPerTNLIn-
formation can be found in PDUSessionResourceSetupRequest
and PDUSessionResourceSetupResponse messages respective-
ly. In this case, the UE can enjoy downlink/uplink data traffic.

B. System Performance: Experiments and Analysis

Unlike the functional test in the real E2E system, we analyze
its performance with simulated gNB and UEs. The simulated
gNB/UE supports only NGAP and NAS protocols, without
air signalings. And the AMF is deployed in a cloud-native
environment with the ability to customize host configurations
on demand. In this context, extensive experiments are done to
check the AMF’s capabilities.
(1) High Stability

In this experiment, the AMF is deployed in a virtual ma-
chine with one-core CPU. And 1000 UEs initiated registration
requests(RRs) at 10us intervals(equally, RR rate is 105/s).
Fig. 6 depicts the life cycle for one UE’s registration request.
There are 16 signaling interactions and each one shall be
processed successfully to finish the registration procedure. The
AMF can handle 16× 1000 signalings under 1000 RRs with
basic hardware configuration(one-core CPU), showing its high
stability.
(2) Concurrency Capacity V.S. Virtual Machine Configuration

In this experiment, the AMF is deployed in virtual machines
with different number of CPU cores. Also, the RR rate is
105/s and total RRs are 1000. We are using the time interval
after one RR is sent and one registration accept message is

gNB/UE

sctp server TASK_AMF_N2 TASK_AMF_APP

TASK_AMF_N1

2
3

4
1

7

8

5
9106

11
12

13

14

15

16

Fig. 6: Life cycle for one UE’s registration request

received at the simulated gNB/UE as one registration time.
Fig. 7 shows the impact on the registration time with different
number of CPU cores. As shown, 1) registration time trends
are consistent and it will peak in the central portion of UEs; 2)
with more CPU cores, the arrival of the peak registration time
will be delayed and overall registration times are much lower;
3) no significant difference in registration time beyond eight-
cores CPU. From the results, we can improve the concurrency
capacity by adding more CPU cores for the virtual machine.

0 100 200 300 400 500 600 700 800 900 1000

UE with unique ID (ran_ue_ngap_id)

0

500

1000

1500

2000

2500

R
e

g
is

tr
a

ti
o

n
 T

im
e

 f
o

r
e

a
c
h

 U
E

(m
s
)

one-core CPU

four-cores CPU

eight-cores CPU

sixteen-cores CPU

thirty-two-cores CPU

Fig. 7: Registration Time Distribution Under different
number of CPU cores

(3) Registration Time Consumption V.S. RR rate
In this experiment, the AMF is deployed in a virtual

machines with one-core CPU. We analyzed the effect of
different registration request(RR) rates on the registration time
under 1000 registration requests. From the analysis in Fig.
8, the registration request rate greatly affects the registration
time. When the request rate drops, the registration time drops
significantly.
(4) Average Registration Time Consumption V.S. Total Reg-
istration Requests at unit time interval

In this experiment, we deploy the AMF in a virtual machine
with 32-cores CPU. We count the average registration time for
different RR rates and RRs, as shown in Fig. 9. This experi-
ment simulates a population distribution scenario with differ-
ent densities, e.g. the high-density crowd scenes in Tiananmen
Square. When the RRs is the same, the shorter the request time
interval, the longer the average registration time. However,
when the request interval is around 500us(2 × 103RRs/s),

6

the average registration time under different RRs is almost the
same.

0 100 200 300 400 500 600 700 800 900 1000

UE with unique ID (ran_ue_ngap_id)

0

500

1000

1500

2000

R
e

g
is

tr
a

ti
o

n
 T

im
e

 f
o

r
e

a
c
h

 U
E

(m
s
)

2x104 Registration Requests per second

2x103 Registration Requests per second

2x102 Registration Requests per second

2x101 Registration Requests per second

1x105 Registration Requests per second

Fig. 8: Registration Time Distribution Under different
Registration Request Rates

1x10
5
 2x10

4
 2x10

3
 2x10

2
 2x10

1

Registration Request rate(RRs/s)

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 R

e
g
is

tr
a
ti
o
n
 T

im
e
(s

)

100 RRs

1000 RRs

10000 RRs

Fig. 9: Average Registration Time Distribution Under
100/1000/10000 Registration Requests

In summary, the AMF is capable of registring network-
unknown UEs into the 5G core network and transporting NAS
SM(session management) message to the SMF transparently.
Besides, the AMF has high stability and high concurrency
capacity, and can be suitable for many service scenarios.

V. CONCLUSION

In this paper, the minimum functions of 5GC AMF are
implemented, and procedures/performances are also verified
in either simulated environment or real environment with
commercial UE and gNB. Specifically, the ITTI-based proce-
dure processing skeleton is of high concurrency capacity and
stability, which can process signallings effectively. Besides,
the all-in-one 5G-AKA authentication model enables the AMF
to authenticate registering UEs locally, simplifing the 5G-
AKA procedure. Examples regarding the parameter settings
of authentication algorithms during the 5G-AKA procedure

provide explicit parameter details for the validation of 5G-
AKA-related algorithms. In the end, the E2E 5G system in
standalone(SA) mode, built with other open-source and/or
commercial components, confirms the AMF’s functionalities.
Moreover, several experimental environments for simulating
multi-UE registration requests scenario, built with simulated
gNB and UE, confirm the AMF’s high stability and concur-
rency capacity. However, current AMF still lacks of many
important functions, such as handover, mobility registration,
roaming, etc. In our future work, we will focus on improving
the completeness of AMF.

VI. ACKNOWLEDGEMENT

This work is supported by National Key R&D Program
of China, under grant 2019YFB1803301, Intergovernmen-
tal international science and technology innovation coop-
eration key project under Project 2017YFE0121300-2, and
Beijing Nova Program of Science and Technology under
grant Z191100001119028. Meanwhile this work is supported
by WG:OAI-5G-Core, OSA(OpenAirInterface Software Al-
liance).

REFERENCES

[1] N. Alliance, “5G White Paper,” Next Generation Mobile
Networks, white paper, 2015.

[2] OpenAirInterface 4G: An Open LTE Network in a PC.
[3] Florian Kaltenberger, Aloizio P. Silva, Abhimanyu Go-

sain, Luhan Wang and Tien-Thinh Nguyen, “OpenAir-
Interface: Democratizing innovation in the 5G Era”,
Computer Networks, 2020.

[4] 3GPP TS 23.501:“System Architecture for the 5G Sys-
tem”.

[5] “https://github.com/oktal/pistache”.
[6] “https://swagger.io/specification/”.
[7] “https://github.com/OpenAPITools/openapi-generator”.
[8] 3GPP TS 23.502:“Procedures for the 5G System”.
[9] 3GPP TS 38.413:“NG-RAN; NG Application Protocol

(NGAP)”.
[10] 3GPP TS 24.501:“Non-Access-Stratum (NAS) protocol

for 5G System (5GS)”.
[11] 3GPP TS 33.501:“Security architecture and procedures

for 5G system”.
[12] 3GPP TS 33.102:“3G Security; Security architecture”.
[13] 3GPP TS 35.206:“key generation functions f1, f1*, f2,

f3, f4, f5 and f5*; Document 2: Algorithm specification”.
[14] 3GPP TS 33.220:“Generic Authentication Architecture

(GAA); Generic Bootstrapping Architecture (GBA)”.
[15] 3GPP TS 33.401:“3GPP System Architecture Evolution

(SAE); Security architecture”.
[16] 3GPP TS 23.003:“Numbering, addressing and identifica-

tion”.

