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ABSTRACT

The 5" generation of the cellular mobile communication system
(5G) is in the meantime stepwise being deployed in mobile carriers’
infrastructure. Various standardization tracks as well as research
activity are investigating the exploitation of the very flexible 5G
system architecture for customized deployments, meeting require-
ments of the vertical industry, such as for automotive, factory, or
smart city. A very common base is a cloud-native development and
decentralized deployment of the 5G system along with services in
distributed resources per the Multi-Access Edge Computing (MEC)
architecture to locate services topologically close to (mobile) users,
e.g. along public roads, and to enable low-latency communication
with local services. Automated management of such a distributed
deployment in an agile environment is a prerequisite. This paper
investigates the use of Recurrent Neural Networks (RNN) for accu-
rate user mobility prediction in an automotive scenario. By the use
of simulated vehicular traffic, a suitable RNN configuration using
Long Short-Term Memory (LSTM) has been found, which provides
accurate prediction results. Proof of value has been accomplished
by an experimental decision algorithm, which balances the use of
available distributed resources through service scale, migration or
replication decisions while meeting mobile users’ expectation on
the experienced service quality.
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1 INTRODUCTION

A first stable release of the cellular mobile communication system’s
5!7 generation is currently being built and stepwise deployed. Its
design follows a clean separation of control- and data plane func-
tions, which can be flexibly deployed in a centralized or distributed
manner. Various research projects as well as standardization tracks
investigate a cloud-native as well as a customized deployment of
the 5G system in support of the vertical industry’s demand. As ex-
ample, the European Commission is funding three cross-corridor
projects, such as the 5G-CARMEN project [12], which investigate
deployment options and extensions to the 5G system for the au-
tomotive industry towards connected, cooperative and automated
mobility (CCAM). In order to meet associated communication re-
quirements of vehicles, a distributed deployment of the 5G sys-
tem’s data plane functions along with distributed automotive ser-
vice functions topologically close to the cars enables short commu-
nication paths between a service and a car as its consumer, which
can result in low-latency communication.

A cloud-based and distributed deployment of compute, network-
ing and storage resources, which can instantiate and offer virtual-
ized network- and service functions close to mobile users, is de-
noted as Multi-access Edge Computing (MEC) and is standardized
in the ETSI ISG MEC [3]. Research activities go far beyond MEC
deployment in large and powerful data centers, but consider highly
distributed, though resources- and energy constrained MEC plat-
forms, such as lightweight and low-power micro-data centers or
even system-on-chip (SoC) solutions for deployment along roads
or even on drones [4]. Such distributed MEC deployment requires
thorough management of scarce resources. Furthermore, in order
to enable service continuity as well as low-latency services in such
a highly dynamic environment, a mobile user may need to be re-
located from a service running on a currently used MEC platform
to another MEC platform and service to keep topological distance
and associated communication latency low. Continuous adoption
to such agile environment requires automated monitoring, assess-
ment and re-configuration of connectivity as well as the virtualized
network- and service deployment.

This paper investigates the use of Recurrent Neural Networks
(RNNs) for accurate user mobility prediction in an automotive sce-
nario to allow proper management of distributed MEC resources.
From various configurations, a best match in terms of RNN com-
plexity, learning phase convergence and prediction accuracy is de-
termined. Network services are treated as virtualized service in-
stances, which can be deployed on each MEC platform, consuming
defined resources and serving a limited number of users. Adding or


https://doi.org/10.1145/3416010.3423246
https://doi.org/10.1145/3416010.3423246

removing service instances (scaling) or moving instances from one
MEC platform to another one (migration) in order to maintain low-
latency and keep a service "local’ to the user can be aligned with
predicted number of users in a particular geographic area, which
is served by a dedicated MEC platform, in order to optimize the
utilized distributed MEC resources. An experimental decision al-
gorithm is used to proof the value of accurate mobility prediction
for service deployment runtime decisions, achieving a best match
between users’ expected service quality (i.e., low-latency) and op-
timized utilization of MEC resources.

2 RELATED WORK

Multi-Access Edge Computing (MEC) [3] is a strongly emerging
approach allowing for offloading of latency-critical services to MEC
platformslocated in proximity of users, therefore potentially achiev-
ing lower latency and traffic offloading. Whereas details on the po-
sitioning and number of MEC platforms adopted strongly varies
based on the specific deployment [10], leveraging such MEC loca-
tions by being able to constantly allocate latency-critical services
near to the final user offers a strong occasion for powering future
mobile networks [11]. This results also in the necessity to find a
trade-off between both the available constrained resources of MEC
locations (e.g., storage, computational power) and strict require-
ments demands from mobile users. Taking service allocation deci-
sions among different MEC platforms therefore would benefit from
the capability to anticipate the future needs of the network and in
particular of mobile users populating it [9]. By doing this, services
can be allocated in MEC locations proactively. Assuming the scope
is to keep the topological distance between the service and the user
short, the main enabler for a proactive management of services in a
distributed MEC environment is given by user mobility prediction.
Many works focus on user mobility prediction, for instance pre-
dicting the presence of a specific mobile user in a Point of Interest
(Pol), e.g., Home, Work. [5] does this extending Mobility Markov
Chains (MMC), [13] uses Neural Networks (NNs), while [8] Spatial-
Temporal extended Recurrent Neural Networks (RNNs) applied on
a dataset obtained through Gowalla.! All the aforementioned works
achieve good accuracy but request for an high amount of historical
information per user. Other solutions use a grid-based approach,
in which the user location is bound to a specific cell of a grid (e.g.,
mapped to the nearest base station): both [15] and [14] use RNN
Long Short-Term Memory (LSTM) to perform user mobility predic-
tion, the latter in order to allow dual-connectivity on base stations.
The cited works focus on the prediction of mobility for each
user: therefore, this results in the need of predicting singularly the
future movements of each user in order to have an overall picture
of user density for each location. In a dense-populated distributed
MEC scenario (i.e., thousands of mobile users moving between dif-
ferent MEC locations), this approach is highly complex and poorly
scalable. Whereas some solution taking in account specifically op-
timization for application relocation in MEC (i.e., using deep re-
inforcement learning) exists, it is based on a waypoint mobility
model in which users are simply assumed to move constantly be-
tween two randomly generated points [2]. In our solution, we fo-
cus as well on a prediction oriented towards the need of service

lusers voluntarily “check-in” at different geographical locations when visiting them.

management in MEC, but considering the density distribution of
users in a grid-based environment rather than a single user mobil-
ity pattern; more, we then consider a real map with urban streets
and highway in order to make a more proper evaluation.

3 RNN-BASED AUTOMATED MANAGEMENT
OF DISTRIBUTED MEC RESOURCES

In order to proof the value of an accurate prediction, we utilize an
experimental decision algorithm to decide when allocating or re-
moving instances of a service on a MEC location (i.e., a geograph-
ical region served by dedicated MEC resources). The defined al-
gorithm takes into account service requirements, MEC-related pa-
rameters and in particular the expected number of users for each
location. To properly obtain the latter, it is important to have a
strong prediction method which can assure a significantly accurate
prediction of the number of users per location. Based on this infor-
mation, the decision algorithm is used to take any of the following
decisions for each location : (1) Migration: move instances from
neighbor locations to the current location (i.e., migrating instances
of the service), (2) Replication: replicate a service instances on the
current location without removing an instance on neighbor loca-
tions, (3) Scale: add/remove one or more service instances at the
current location, or (4) Retain: keep the current allocation as it is.

3.1 Prediction Algorithm

The objective of the prediction algorithm is to predict the future
number of users in a specific location (i.e, grid cell), given histori-
cal data on the density of users in those locations in the previous
time samples. This can be summarized as a time series prediction,
for which a typical solution is given by Recurrent Neural Network
(RNN). RNNss are able to detect patterns in sequential information,
by learning the relationship between present inputs and previous
ones: this is done using hidden layers and a recursively hidden
state (h;), which is at each time reused as input for the next time
computation, therefore keeping memory of the sequence history.

Basic RNNs however suffer a well-known problem: most recent
inputs in time are strongly prioritized while old inputs are easily
forgotten, resulting in a kind of "short memory” behavior. This can
be avoided by using a special Long Short-Term Memory (LSTM) unit
for the RNN [6], which enforces a set of operations carrying infor-
mation of previous inputs. In particular, this is done using an ad-
ditional state called cell state (c; ), which is at each step partially or
totally forgotten based on its importance and then updated with
the new input, through the use of sigmoid and tanh functions re-
spectively. The output hidden state (h;.1) takes into account the
effect of the cell state. An alternative to LSTM is given by Gated
Recurrent Unit (GRU), which offers a simplification to LSTM com-
plexity by implementing a similar behavior but with a reduced set
of operations and without the need of the additional cell state [1].
Whereas for some particular cases [1] GRU could offer similar ac-
curacy as LSTM but with a reduced complexity, this is not always
true and depends on the specific configuration and dataset utilized.
In this paper we compare LSTM and GRU in terms of learning time
and prediction accuracy. The configuration with the best match has
been selected for deployment and evaluation with the experimen-
tal decision algorithm.



3.2 An Experimental Decision Algorithm for
the Management of Distributed Services

The objective of the experimental decision algorithm is to mini-
mize the amount of overall utilized resources while meeting users’
service delay bounds. We assume that none, one or multiple in-
stances of a service are allocated in a cell and each instance can
serve a limited number of users (capacity bounds). A finite amount
of available resources for service instances (resource bounds) is
available at each MEC location. A user will always be served by
the nearest available service instance relative to its position, which
can be either at its current MEC location, resulting in lower com-
munication delay, or in a neighbor location, resulting in saving re-
sources at its current MEC location. If there is an instance with suf-
ficient capacity allocated in the same cell of a user, he will be served
by the co-located instance at the minimum latency. Whenever this
will not be possible (e.g., no instance allocated in the cell or all in-
stances have already reached the maximum number of users), the
user will be served from a neighbor cell with higher latency.

Inputs:

Uscur

[Uspreq , @cc] Output:
Neighbours[n;..ng] Migration or
[Usprea(n), acc(n)] B) Repiication or
req_lev Scale or
[stut, stut(n;)] Retain
acc_rel

Inst,joc, Inste,,

Figure 1: Decision Algorithm input and output parameters.

Fig.1 depicts input (i.e., parameters based on which a decision
is made) and output (i.e., the decision outcome) of the algorithm,
which runs for each cell and takes a decision whether or not to allo-
cate one or multiple instances of the service. A migration consists
in allocating an instance and removing it from a neighbour cell,
whereas a replication consists in allocating a new instance without
removing it from a neighbour cell. The latter case allows serving
more users locally with reduced latency but at the cost of utilizing
more resources. Increasing or reducing the number of instances is
also a possibility (scale), as well as not changing anything (retain).

Input includes the current number of users for the cell Uscyrr,
and both the predicted number of users for the cell Us,,.4 and all
neighbor cells Usp,eq(ni), as well as the estimated accuracy for
each prediction (acc and acc(n;)) and a list of all Neighbours cells.
An accuracy relevance acc_rel parameter is used to keep more or
less in consideration the estimated accuracy, while a requirement
level req_lev parameter is used for each service to indicate how
strong the low-latency requirements are for that service in being
deployed locally at a user’s current MEC location (e.g., an higher
value forces the decision towards the local allocation of instances
despite the potential drawback in terms of resource consumption).
Finally, resource-related parameters include the storage utilization
for the cell and the neighbour cells (stut) and the number of in-
stances already allocated for the service in the cell Inst ;.. as well
as the maximum capacity of instances Instcap.

The algorithm pseudo-code is depicted in Algorithm 1. There are
two main conditions based on which a decision is made. In the first
condition (Uspred > p*Uscyrrent), the predicted number of users
for the cell is compared with the number of users at the current

Algorithm 1: Experimental Decision Algorithm

Result: Migrate/Replicate/Scale/Retain
Uspreq = Run prediction algorithm for the cell
if Instajiocated < USpred/Insteapacity then
p = stut/req_lev + acc_rel/acc
if Uspreq > p * Uscurrent then
Ny = (Uscurrent_F*Uspred)/InStcap
Try allocating [N, ] instances in current cell
foreach n in Neighbors do
p = req_lev/stut(n) + acc_rel/acc(n);
if Uspreq > p * Usprea(n) then
N= = (Uspred = p * Uspred) [ Insteap
Remove| N_ |instances in neighbor cell

time: a significant increase of the number of users predicted for
the next time sample results in the need to allocate new instances
of the service. This condition takes into account a weight factor
1, calculated based on parameters such as the storage utilization
stut to allocate instances in the cell, the requirement level req_lev
of a low-latency service (higher value means higher requirement
for low-latency and therefore higher probability to be served by a
local instance) and the accuracy of the prediction acc. If the local
storage utilization is high, it is more likely that the decision will
be to avoid a new allocation. In case the first condition has a posi-
tive value, the number of instances N, to be allocated is calculated
based on the actual variation of users, the capacity of the existing
instances Instcqp and the available storage. The second condition
(Uspred > p*Uspreq(n)) is used to decide whether or not to remove
one or multiples instances from a neighbor cell. This condition is
checked for each neighbor cell. A comparison between the num-
ber of users predicted for the current cell Us,,eq and the number
of users predicted for neighbor cells Us,¢q(n) is made. Again, this
condition takes in account a weight factor p considering similar pa-
rameters of the previous multiplier y. For instance, a high storage
utilization for the neighbor cell results in a low p value and there-
fore the decision algorithm will more likely remove instances of
the service from the neighbor cell and keep it only on the current
cell. If this happens, an instance migration has occurred and there-
fore all users connected to the service instance in the neighbor cell
are now forced to use an instance of the service from a different
cell (user migration). Similarly to the previous first condition, the
number of instances to remove N_ is calculated and such number
of instances are removed from the neighbor cell.

4 EVALUATION AND RESULTS ANALYSIS

As aprerequisite for the targeted evaluation, we generated realistic
vehicles’ positions data using Sumo simulation tool [7] and a real
map in Germany including urban and roads and a highway. Then
we evaluate different RNN configurations (i.e., LSTM and GRU)
with different settings (i.e., number of layers) to identify the best
configuration for our type of data. Finally, we use the predicted
data to feed the decision algorithm and evaluate the gain in terms
of service delay and storage consumption with the predicted data.
Details of each phase are described in the following sections.
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Figure 2: Real map used (a), street map imported in Sumo (b)
and grid cell division of the map (c).

4.1 Creating vehicle mobility data with SUMO

The map used, depicted in Fig. 2, has been selected through Open-
StreetMap? tool, and comprises a 20 km segment of highway A5
in Germany, between Heidelberg and Weinheim cities, including
three exits and three entrances on both side of the highway and
three correspondent small urban areas (less than 500 nodes each).

Vehicles are injected using SUMO simulation tool [7], for a to-
tal duration of 24 hours, in which three different families of flows
are injected: (1) Highway traffic, comprising flows of vehicles on
the highway (or entering the highway at a random entrance in the
map) and driving all along the highway (or exiting at a random exit
in the map), generated at various rates during the different periods
of the day; (2) Urban traffic, comprising vehicles moving along 12
different routes between different points of the same urban area,
generated only during daylight hours at a rate of 1 vehicle every 10
seconds; (3) Background random traffic, comprising additional vehi-
cle flows moving using a totally random pattern, generated during
the entire simulation at a 1 vehicle every 30 seconds rate. Speed of
vehicles is defined with a normal distribution having mean value
as 0.8 of the max street speed limit (e.g., 50 m/s on the highway)
and std.dev. equal to 0.2 of said speed limit.

The map is then divided into 500x500 meters squared cells, each
representing a MEC location, and for each cell the vehicle density,
every time sample of 10 second, is considered. Fig. 2 depicts the
original map portion selected, the node graph of streets obtained
once imported in SUMO and the division in cells of the map.

4.2 Selection and tuning of RNN configuration

In order to choose the best configuration for our generated data
set, we train and test in TensorFlow> our RNN network compar-
ing results between LSTM and GRU configurations with 2, 3 or 4
layers (with 50 units for each layer). In particular, we consider a 2
hour interval (i.e., 16016 samples in total), collected from all cells

2online tool - https://www.openstreetmap.org/
3tensorflow: https://www.tensorflow.org/
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Figure 3: Accuracy and loss for training and test in RNN, us-
ing LSTM and GRU with different number of layers.

‘ 2 layers 3layers 4 layers
LSTM | 3341s 3847s 5347s
GRU 3434s 5344s 14536s
Table 1: RNN training time (s)

in the map and aggregated in chunks of 20 samples each: there-
fore, 20 previous samples are used to predict the next (21st) sample.
The number of epochs is fixed to 20, dropout value to 0.2 and opti-
mizer and output layer activation function respectively to ’adam’
and ’softmax’ configuration.

Figure 3 shows both training accuracy and loss for each epoch,
as well as accuracy and loss in the testing phase, the latter based
on experiments made on 10 different data sets. Results show in
general better performances achieved through LSTM: in particu-
lar, lower training accuracy values are achieved using GRU with 2
layers (around 0.68 after more than 15 epochs), while the highest
accuracy is achieved using LSTM with 3 layers (above 0.80 after 3
epochs and around 0.85 after 10 epochs). In line with this, loss is
lower in the case of LSTM configurations.

Finally, Tab. 1 depicts the time in seconds needed to train each
of the different networks. Once more, LSTM seems to outperform
GRU with in average a lower time (similar when considering 2 lay-
ers, about -30% for 3 layers and more than 120% less for 4 layers).
Such results were obtained with a 32Gbyte RAM HP Aspire laptop.

4.3 Prediction evaluation

In order to evaluate the prediction performed on a distributed MEC
environment, we feed the experimental decision algorithm with
predicted data and we evaluate: (1) the overall delay for all cells at
each time step, calculated as the average delay of every vehicle con-
nected to the service, assuming said delay to be equal to d, 2d or 3d
based on if the vehicle is served respectively by a service instance
located in its same cell, in a neighbor cells, or elsewhere; (2) the per-
centage of storage available for each time sample, calculated as the
total of the available storage of all cells; and (3) an Efficiency value,
defined as the ratio between the available storage and the overall
delay for all cells at a given time sample, normalized between 0 and
1. A higher efficiency value represents an higher capability of find-
ing an advantageous trade-off between keeping latency low and
storage availability high.

We compare the decision algorithm, which is fed with LSTM-
based predicted values, with two other configurations: in one con-
figuration, the algorithm is fed with past historical data, hence the
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Figure 4: Decision algorithm overall delay, available storage and efficiency evaluation, against different req_lev values.

two main conditions of the algorithm are based on the variation of
number of users at each location in past time samples (no predic-
tion). This allows a comparison with the algorithm without lever-
aging proactive service management. In a further configuration we
evaluate the ideal case in which the predicted number of vehicles is
100% accurate, as we feed the algorithm with real future data avail-
able from the simulation data set. This configuration determines
the upper bound KPIs for comparison.

Fig.4 shows results referred to the 3 KPIs described, against dif-
ferent values of req_lev (i.e., =3, =10 and =20), and considering a
total of 120 time samples (i.e., 20 minutes is the overall simulation
time). The initial available storage is generated randomly between
1 and 10, while each instance of a service always consumes 1 stor-
age unit and is able to serve a maximum of 10 vehicles. In order
to simplify the readability of the results, the graphs depicting over-
all delay and available storage consider average values every 10
samples. In general, it can be observer that a higher req_lev results
in a lower delay for vehicles, as well as in a decrease of the avail-
able storage; this is due to the fact that the service is recognized
to have higher low-latency requirements and therefore more in-
stances are allocated (i.e., relaxing the resource constraints), in or-
der to allow vehicles to be served by locally deployed instances. Fig.
4 also shows that the decision algorithm leveraging LSTM-based
predictions offers a strong gain compared with the case in which
past data variation are used. In particular, whereas the case with-
out prediction shows to be a bit less aggressive in utilizing avail-
able storage (about 2% less), it results in significantly higher delay
values, (about at least 10% more). Therefore, using data predicted
through our RNN LSTM algorithm guarantees higher efficiency,
meaning it is able to find a better trade-off between latency require-
ments and storage utilization, as can be seen in the efficiency graph
still in Fig. 4. More, our algorithm using predicted data behaves
very similar to the ideal case: all KPIs results to be very similar
and the difference in terms of efficiency is in average less than 3%.
This is due to the high accuracy of our predicted values.

5 CONCLUSIONS AND FUTURE WORK

In this work, we test different RNN LSTM and GRU configurations
in order to make a significantly accurate prediction of mobile users
density in a distributed MEC environment. We evaluate such pre-
dictions with an experimental decision algorithm, managing dis-
tributed services in order to find a trade-off between MEC-related
parameters and service requirements. Whereas the results depicted

show the effectiveness of the predictions performed, further steps
may be done towards a more concrete deployment and an associ-
ated tailored and improved resources optimization algorithm.
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