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Abstract—One of the famous problems in communications was
the so-called “PN” problem in the Broadcast Channel, which
refers to the setting where a fixed set of users provide perfect
Channel State Information (CSI) to a multi-antenna transmitter,
whereas the remaining users only provide finite precision CSI
or no CSI. The Degrees-of-Freedom (DoF) of that setting were
recently derived by means of the Aligned Image Set approach. In
this work, we resolve the cache-aided variant of this problem (i.e.,
the “PN” setting with side information) in the regime where the
number of users providing perfect CSI is smaller than or equal
to the number of transmit antennas. In particular, we derive the
optimal rate-memory trade-off under the assumption of uncoded
placement, and characterize the same trade-off within a factor
of 2.01 for general placement. The result proves that the “PN”
impact remains similar even in the presence of side information,
but also that the optimal trade-off is not achievable through
independently serving the two sets of users.

I. INTRODUCTION

Coded caching has emerged as a promising tool for coping
with the challenging increase of content demand in wireless
networks. Initially, the benefit of coded caching was identified
for the setting in which a server communicates to K users
through an error-free single-stream shared link of fixed capacity
[1]–[3]. In this setting, the server has access to a library of N
files, and each user has access to a local memory (cache) of size
equal to the size of M files, where it can store content from
the library. In the aforementioned scenario, it was shown in
[1]–[3] that coded caching provides a speed-up factor (or coded-
caching gain) of KM

N +1 as compared to uncoded caching,
since it allows us to simultaneously serve KM

N +1 users.
The promising gains of coded caching in this initial setting

fostered the interest in understanding how these gains could
be translated into wireless networks, which was analyzed e.g.
by considering uneven link capacities [4], [5] or multi-antenna
transmissions [6], [7]. The context of multi-antenna coded
caching has recently received considerable attention, especially
after the latest results in [8], which reveal that multi-antenna
coded caching systems provide all the massive gains of coded
caching, together with all the multiplexing gains of multi-
antenna systems, and can do so without the hindrance of
the subpacketization bottleneck that has previously kept such
technologies from taking off.

In the multi-antenna context, it is crucial to characterize the
impact of CSI availability. Toward this, among other works, [5]

This work is supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929 (ERC project DUALITY).

considered partial CSI at the transmitter (CSIT) on the cache-
aided MISO Broadcast Channel (BC), [7] analyzed the CSIT
required to maintain the ideal caching gains in multi-antenna
settings, [9] studied cache-aided interference management with
no CSIT, and [10] focused on the delayed CSIT setting.

In this work, we consider the cache-aided variant of a classical
CSI-related problem: the MISO BC in which the L-antenna
transmitter has perfect CSI only for the channel of a fixed set
of KP users, whereas the CSI of the other K − KP users
is available only up to finite precision1 [11]. This scenario is
equivalent to the so-called “PN” BC setting [11], [13], [14], but
with the non-trivial extension of considering side information
at the users. The original “PN” BC remained an open problem
for many years, and its DoF were finally derived by Davoodi
and Jafar in [11] by means of the Aligned Image Set (AIS)
approach. By incorporating the AIS approach into the derivation
of the delivery time of coded caching, we obtain the optimal
rate-memory trade-off of this setting under the assumption
of uncoded placement when KP ≤ L, and characterize the
same trade-off within a factor of 2.01 for general placement.
Moreover, we show that the optimal trade-off is not achievable
through separated transmission to the two sets of users.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Communication Channel
We consider the L×K MISO BC in which a transmitter (TX)

with L transmit antennas serves K single-antenna cache-aided
users. The received signal at user i is written as

Yi(t) =
∑L

j=1
hi,j(t)Xj(t) + ζi(t), (1)

where Xj(t) is the transmit signal from the j-th antenna of the
transmitter, normalized such that E[|Xj(t)|2] ≤ P , and where
P is the nominal SNR value which in the DoF framework is
allowed to approach infinity [11]. Furthermore, ζi(t) is the
i.i.d. additive white Gaussian noise (AWGN), and hi,j denotes
the fading coefficient between the j-th antenna of the TX and
user i. We assume that |hi,j | is bounded away from zero and
infinity. The channel vector from the L transmit antennas to
user i is denoted by hi, and the global channel matrix by H.
We will make use of the notation [n] = {1, 2, . . . , n}. We
further define the vectors X(t) , (X1(t), . . . , XL(t)), X [τ ]

j ,{
Xj(t)

}
t∈[τ ]

, X[τ ] ,
{
X(t)

}
t∈[τ ]

, and Y [τ ]
i ,

{
Yi(t)

}
t∈[τ ]

.

1For the DoF metric, the results obtained assuming finite precision CSIT
(see [11], [12] for a rigorous definition) also hold if there was no CSIT for the
users with finite precision CSIT [11]. Thus, we omit the latter for concision.



B. Cached-aided Network

We consider a cached-aided scenario in which the TX has
access to a content library of N files, each one of size equal to
B bits. We assume that N ≥ K, and we denote the n-th file
of the library as Wn, n ∈ [N ]. Each user has a local memory
cache of size MB bits, with M ∈ {0, 1, . . . , N}, in which it
stores (coded or uncoded) data from the library. We denote
the normalized cache size with respect to the library size as
γ , M

N , and the cache available at user i as Zi, |Zi| = MB.
Coded caching systems operate in two phases: the placement

phase, in which the users fill their cache with content from the
library, and the delivery phase, in which each user requests
a library file to be delivered by the TX. The file requested
by user k is denoted as Wdk , dk ∈ [N ], and the vector of
requested file indexes is denoted by d , (d1, . . . , dK) ∈ [N ]K .
We allow coded cache placement, but we also analyze the
particular case in which only uncoded placement is allowed.2

C. Hybrid CSIT

We focus on the MISO BC scenario3 in which the TX only
obtains perfect CSI for the channel of a subset of KP users,
whereas the CSI of the other KF , K−KP users is available
only up to finite precision. We assume that KP ≤ L.4

We remark that this setting is fundamentally different from
that in [7], where it was shown that, in the L×K cache-aided
MISO BC, we can achieve the optimal coded-caching gain
under one-shot linear schemes (Kγ + L) even if the TX has
CSI for only L served users at a time. The difference resides
in the fact that, in [7], the TX needs CSI from only L users at
a time, but the users who are providing the CSI can (and do)
change when the subset of served users changes. Hence, [7]
derives the minimum instantaneous CSI requirements for a
setting where all users must eventually provide CSI. In contrast,
we consider in this work that a fixed subset of users provide
CSI, and this subset does not change throughout the whole
transmission. Thus, there are two classes of users according to
the quality of the provided CSI.

D. Problem Definition

We present the formal definition of the rate-memory trade-
off considered. Let {Wn}n∈[N ] be N i.i.d. random variables,
each uniformly distributed over [2bBc], and let us introduce the
notation W[k] = {Wn}n∈[k], k ≤ N . We scale the size of the
files proportionally to the number of channel uses τ as B , τR,
where R is the transmission rate in bits per channel use.

A code C(τ,R,M) consists of a prefetching strategy, an
encoding scheme and K decoding functions, which are ex-
plained in the following. We characterize a prefetching strategy
φ by its K caching functions φk, φ , (φ1, . . . , φK), each

2A prefetching scheme is called an uncoded prefetching scheme if each user
stores MB bits from the database without coding.

3Although [5] studied also the cache-aided MISO BC, in [5] all users
provide the same level of (possibly imperfect) CSI, while here we consider
different CSIT level for different users.

4Cases where KP = 0 or KF = 0 are not comprised within the cases
with hybrid CSIT, but we include them for completeness.

of which is a function that maps the library content into the
cache content of one user during the placement phase. Thus,
φk : [2bBc]N → [2bMBc], and Zk , φk(W1, . . . , WN ). The
encoding scheme ψ : [N ]K×[2bBc]N → CL×τ maps a demand
vector d and N files into a codeword vector X[τ ] , ψ(d,W[N ])
satisfying the average power constraint E[|Xj(t)|2] ≤ P . Fi-
nally, a decoding function µk : [N ]K×Cτ× [2bMBc]→ [2bBc]

maps a requested demand, the signal received Y
[τ ]
k , and the

cache content Zk into an estimate Ŵdk , µk(d, Y
[τ ]
k , Zk) of

Wdk . The probability of error is defined as

Pe,τ , maxd∈[N ]K maxk∈[K] Pr(Ŵdk 6= Wdk). (2)

Note that (2) reflects a worst-case metric over all possible de-
mands. Thus, we consider that each user requests a distinct file.

We want to characterize the channel uses required to transmit
a single bit of content to each user [1], [5]. This delay will
be referred to as the delivery time, and it is given by T , 1

R .
More rigorously, for a given prefetching strategy φ, a delivery
time Tε,φ(M) is said to be ε-achievable if and only if, for
every ε > 0 and big enough file size B, there exists a code
C(τ,R,M) with probability of error less than ε.

For a given memory constraint M , the rate-memory trade-
off T ?(M) is defined as the minimum delivery time that can
be achieved by any prefetching scheme with vanishing error
probability and for sufficiently large file size. Thus, it is defined
as T ?(M) , supε>0 lim supB→∞minφ T

?
ε,φ(M). We omit

hereinafter the dependence on M due to space constraints.
In pursuit of highlighting the impact of the multi-user

interference, we consider the fundamental limit where P →∞.
Therefore, we consider the optimal Normalized Delivery Time
(NDT), which is defined as the ratio of the optimal delivery time
T ? over the time required to deliver a single bit to a cache-less
user, in the absence of interference, as P approaches infinity
[4], [15]. Consequently, it is defined as

NDT , lim
P→∞

T ?

1/logP
= lim
P→∞

T ? logP. (3)

Let us introduce also the Degrees-of-Freedom [11] (DoF)
metric, which are defined as DoF , limP→∞

C(P )
logP , where

C(P ) denotes the capacity of the setting. Hence, the NDT

can also be written as NDT = K(1−γ)
DoF .

The metrics presented above are similarly defined when con-
sidering only uncoded prefetching, in which case we will just
insert a sub-index u (e.g. NDTu, Tu,ε,φ). Furthermore, when
necessary, we will use the full notation NDT(K,L, γ,KP )
to reflect the particular network configuration. For example,
the result for the well-known K-user SISO BC with uncoded
prefetching would correspond to NDTu(K, 1, γ, 0).

III. MAIN RESULTS

We will henceforth make use of the term (K,L, γ,KP )
MISO BC to denote the L × K cache-aided MISO BC in
which only a fixed set of KP ≤ L users provide perfect CSIT,
whereas the other KF = K−KP users provide finite precision
CSIT. We begin with the characterization of the optimal rate-
memory trade-off for the particular case of uncoded placement.



Theorem 1. Under the assumption of uncoded prefetching, the
optimal normalized delivery time of the (K,L, γ,KP ) MISO
BC when KP ≤ L is given by5

NDTu(K,L, γ,KP ) = Conv(KF +1)γ

( (KF + 1)(1− γ)

(KF + 1)γ + 1

)
= NDTu(KF + 1, 1, γ, 0). (4)

where KF = K −KP and ConvA
(
f(A)

)
denotes the lower

convex envelope of the points
{(
A, f(A)

)
|A ∈ {0, 1, ...,K}

}
.

Proof. The achievable scheme and the converse are presented
in Section IV and Section V-B, respectively.

Remark 1. The NDT required to serve KF +KP users (KP ≤
L) from a multi-antenna TX is the same as the one required to
serve KF + 1 users from a single-antenna TX. Thus, starting
from a cache-aided setting with KF users and finite precision
CSIT, we can add as many as L users who provide perfect
CSI at the cost of a single finite-precision-CSIT user.

Remark 2. The NDT in (4) is not achievable through separate
transmission to the two classes of users, since that approach
attains a NDT of KF (1−γ)

1+KF γ
+ (1− γ), which is strictly bigger.

Remark 3. Theorem 1 also implies that perfect CSIT for a
single user does not improve the NDT with uncoded prefetching
w.r.t. the case where all users provide only finite precision CSIT.
This is analogous to the collapse of DoF proved in [11] for
the cacheless setting with perfect CSIT for only one user.

Next, we remove the assumption of uncoded prefetching,
and we show that the proposed scheme is within a factor of
2.01 from the optimal.

Theorem 2. The optimal normalized delivery time of the
(K,L, γ,KP ) MISO BC when KP ≤ L satisfies that

NDTu(KF + 1, 1, γ, 0) ≥ NDT(K,L, γ,KP )

≥ 1/2.00884 NDTu(KF + 1, 1, γ, 0). (5)

Proof. The achievable scheme is the same as for Theorem 1,
whereas the converse is presented in Section V-C.

While the achievable scheme can be directly generalized for
the case where KP > L, the generalization of the bounds is
not straightforward. Nevertheless, it is expected that the insight
in Remark 1 will hold (i.e., that we can add KP perfect-CSIT
users at the cost of dKP /Le finite-precision-CSIT users).

IV. ACHIEVABILITY OF THEOREM 1 AND THEOREM 2
We denote the set of users providing perfect CSI as KP ⊆

[K]. In the scheme, our aim will be to provide the users in
KP with both full spatial multiplexing gains and full coded
caching gains, which will naturally surpass the performance
of a simple separate transmission to the two user sets. As it
turns out, the way to achieve these gains is allocating identical
caches at all users in KP , and thus the scheme assumes only
Λ , K−KP + 1 different cache states. This is clarified below.

5For sake of readability and concision, we omit the fact that the NDT
is naturally upper bounded by (1 − γ); for example, in (4), it holds that
NDTu(K,L, γ,KP ) = min

(
(1− γ),Conv(KF+1)γ

( (KF+1)(1−γ)
(KF+1)γ+1

))
.

A. Placement

We consider Λ cache states of size MB bits, and denote them
as Z(c)

i , i ∈ [Λ]. Let Λγ be an integer and T the set of
(

Λ
Λγ

)
subsets in [Λ] of size Λγ, i.e., T ,{τ ⊂ [Λ] : |τ |= Λγ}. First,
we split each message Wn, n ∈ [N ], into |T | ,

(
Λ

Λγ

)
non-

overlapping subfiles of equal size, such that Wn → {Wn,τ :
τ ∈ T }, and we assign the content of each of the Λ caches
as Z(c)

i = {Wn,τ : i ∈ τ, τ ∈ T }Nn=1. Although the sub-
packetization is analogous to the one developed by Maddah-Ali
and Niesen in [1], in our case the cache assignment is different:
Let us first assume that the users providing perfect CSI are the
last ones, i.e., KP = {KF + 1, . . . ,K}. Then, all the users
in KP store the content of the last cache state, Zi = Z

(c)
Λ ,

∀i ∈ KP , while each of the other users stores a different cache
state, such that Zi = Z

(c)
i , ∀i ∈ [Λ− 1]. Hereinafter, we refer

to the set of users that share the same cache as a cache group,
even if only one of these groups has more than one user.

B. Transmit Signal

During the delivery phase, the TX simultaneously serves
Λγ + 1 cache groups. Let X , {χ ⊆ [Λ] : |χ| = Λγ + 1} be
defined as the set of |X | =

(
Λ

Λγ+1

)
subsets of size Λγ + 1

in [Λ]. The delivery consists in |X | sequential transmissions,
one for each χ ∈ X . Let Wdj ,χ\cj denote the part of the file
requested by user j that is stored in all the caches in χ except in
the cache allocated at user j (cj). Note that cj = j if j /∈ KP ,
and cj = Λ if j ∈ KP . For each such χ, the transmit signal
takes a different expression depending on whether Λ ∈ χ or
not (recall that all users in KP store the Λ-th cache state).

1) Case Λ /∈ χ: The transmit signal when the Λ-th cache
group is not in χ is given by X(t) = v0(t)

∑
g∈χWdg,χ\g,

where v0(t) is a randomly chosen L× 1 precoding vector.
2) Case Λ ∈ χ: In this case, we have that

X(t) = v0(t)
∑

g∈{χ\Λ}

Wdg,χ\g +
∑
p∈KP

vKP \p(t)Wdp,χ\Λ, (6)

where vKP \p(t) is an L × 1 precoding vector designed to
belong to the null space of the KP − 1 users in {KP \p}.

C. Received Signal

1) Case Λ /∈ χ: The received signal at user i is given by

Yi(t) = hi(t)v0(t)
(∑

g∈χ
Wdg,χ\g

)
+ ζi(t). (7)

Note that, for any i ∈ χ, user i can remove all the undesired
messages because they are cached in Zi. Thus, user i obtains

Y ′i (t) = hi(t)v0(t)Wdi,χ\i + ζi(t), (8)

and it can decode the intended subfile Wdi,χ\i.
2) Case Λ ∈ χ: Any user not in KP can decode its subfile

as in the previous case, since all the non-intended subfiles are
available in its local cache. For users in KP , they can remove
the messages intended by the finite-precision-CSI users, which
are available in their local cache, thus obtaining

Y ′i (t) = hi(t)
(∑

p∈KP

vKP \p(t)Wdp,χ\Λ
)

+ ζi(t). (9)



By definition of vKP \p(t), it holds that hi(t)vKP \p(t) = 0 for
any i ∈ KP : i 6= p. From that, it follows that

Y ′i (t) = hi(t)vKP \i(t)Wdi,χ\Λ + ζi(t), (10)

and thus, user i can decode its intended subfile Wdi,χ\Λ.

Remark 4. The users must decide whether they will provide
perfect CSIT at the placement phase to be able to correctly
assign the cache states. Yet, the optimal NDT is also achieved
if only a subset K′P ⊂ KP of users in KP appear for delivery.

For the case where KP > L, the scheme is generalized by
having dKP /Le cache groups with several users.

D. Degrees-of-Freedom

This scheme always serves Λγ + 1 groups simultaneously.
However, the number of served users depends on whether
Λ ∈ χ or not: the TX serves Λγ + 1 users if Λ /∈ χ, but
Λγ +KP users if Λ ∈ χ. Let XΛ , {χ ∈ X : Λ ∈ χ} denote
the set of those χ ∈ X that include Λ. Then, it follows that

|XΛ| = |{χ ∈ X : Λ ∈ χ}| =
(

Λ− 1

Λγ

)
. (11)

Since all the subfiles have the same size, the time required for
decoding each of them is the same, no matter which user-set
χ is being served. Thus, from (11) it follows that

DoF =

(
Λ−1
Λγ

)
(Λγ +KP ) +

((
Λ

Λγ+1

)
−
(

Λ−1
Λγ

))
(Λγ + 1)(

Λ
Λγ+1

)
= (1 + Λγ) + (KP − 1)

Λγ + 1

Λ
. (12)

By applying that Λ = K −KP + 1 into (12), we obtain that

DoF = 1 +Kγ +
KP − 1

K −KP + 1
. (13)

Since the NDT can be written as NDT = K(1−γ)
DoF , by applying

that Λ = K −KP + 1 = KF + 1 into (13) yields

NDT =
Λ(1− γ)

1 + Λγ
= NDTu(KF + 1, 1, γ, 0), (14)

which concludes the achievability proof for the cases in which
Λγ = (KF + 1)γ is an integer. In other cases, the NDT can be
achieved through the usual memory-sharing approach [1]–[3].

V. CONVERSE OF THEOREM 1 AND THEOREM 2

We first present two useful lemmas that are instrumental for
the converse of both theorems. This will be followed first by
the converse of Theorem 1 and later by that of Theorem 2.

A. Lower Bounding the Achievable Delivery Time

In the following, we derive a lower bound for any ε-
achievable delivery time. Before presenting the result, we
introduce the notations Z[j] , {Zi}i∈[j], W[j] , {Wdi}i∈[j],
and H , {hi,j(t)}i∈[K],j∈[L],t∈[τ ]. We start by focusing on the
“PN” problem with side information. This important setting
can be characterized by the following key lemma.

Lemma 1. Consider the (K,L, γ,KP = 1) MISO BC where
the TX has perfect CSI only for one user. Then, it holds that

H(Y
[τ ]
k |Z[k],W[k],H)−H(Y

[τ ]
k+1|Z[k],W[k],H)

≥ τ o(logP ) ∀k ∈ [K]. (15)

Proof. The proof follows from a new application of the Aligned
Image Set approach. Due to space constraints, the proof is
relegated to the extended version [12].

The previous lemma is instrumental in the derivation of the
next lower bound on the delivery time. Before presenting the
lemma, let us define K ′ , min(N,K).

Lemma 2. Consider the (K,L, γ,KP = 1) MISO BC where
the TX has perfect CSI only for one user. For any prefetching
scheme φ and any demand d, the ε-achievable delivery time
Tε,φ is lower-bounded by

Tε,φ
(

log(1 +KP ) + o(logP )
)

≥ 1

B

∑K′

k=1
H(Wdk | Z[k],W[k−1])−K ′

( 1

B
+ ε
)
. (16)

Proof. Let us consider that a particular delay Tε,φ is ε-
achievable. Then, for any request d = {d1, d2, . . . , dK},
there exists a transmitted signal vector X

[τ ]
d such that each

user k ∈ [K] can decode Wdk from Zk and Y
[τ ]
k with

probability of error at most ε. From Fano’s inequality and
the fact that conditioning reduces entropy, it follows that

H(W dk | Y
[τ ]
k ,Z[k],W[k−1],H) ≤ 1 + εB, (17)

for any k ∈ [K]. From the above, it follows that

H(Y
[τ ]
k | Z[k],W[k−1],H) ≥ H(W dk | Z[k],W[k−1],H)

+H(Y
[τ ]
k | Z[k],W[k],H)− (1 + εB), (18)

for any k ∈ [K]. Summing up the previous inequality for all
k ∈ [K ′] and re-ordering terms yields

H(Y
[τ ]
1 |Z1,H) ≥

K′∑
k=1

H(W dk |Z[k],W[k−1],H)−K ′(1 + εB)

+

K′−1∑
k=1

H(Y
[τ ]
k |Z[k],W[k],H)−H(Y

[τ ]
k+1|Z[k+1],W[k],H). (19)

Note that the LHS of (19) can be upper-bounded as H(Y
[τ ]
1 |

Z1,H) ≤ τ log(1 +KP ). Moreover, from the fact that condi-
tioning reduces entropy, the RHS of (19) can be further lower-
bounded by applying H(Y

[τ ]
k+1|Z[k+1],W[k],H) ≤ H(Y

[τ ]
k+1 |

Z[k],W[k],H). This, together with Lemma 1, leads to∑K′

k=1
H(W dk |Z[k],W[k−1])−K ′(1 + εB)− τ o(logP )

≤ H(Y
[τ ]
1 | Z1,H) ≤ τ log(1 +KP ), (20)

where we have removed the condition on H because both
messages and caches are independent of the channel H. Since
τ = Tε,φ B, we obtain Lemma 2 by rearranging the terms.

Lemmas 1-2 are the key contribution of this work, and
they are essential for proving both Theorem 1 and Theo-
rem 2. Lemma 2 can be seen from two perspectives: First,



it represents the non-trivial extension of [3, Lemma 2] from
the single-server error-free shared-link setting of [3] to the
(K,L, γ,KP ) MISO BC with KP = 1. As explained in [3],
these lemmas represent an enhanced cut-set bound that im-
proves the compound cut-set bound previously used in other
works [1]. Second, it extends the results of the “PN” BC setting
to the important case with receiver side information.

B. Proof of Theorem 1
We now proceed to prove Theorem 1. Some steps, especially

those that draw from the proof in [2, Section V], are omitted
and can be found in the extended version of this work [12].

As a first step, let us restrict ourselves to the case KP = 1,
and let K ′ , min(N,K). Before applying the derivation, recall
that the bits in the library are i.i.d. and uniformly distributed.
Let Bn,b denote the b-th bit of file n, and let B(k)

dk,b
represent

the event that Bdk,b is not cached by any user in the set {i}ki=1.
Then, it follows (cf. [2]) that∑K′

k=1
H(Wdk |Z[k],W[k−1]) ≥

∑K′

k=1

∑B

b=1
1
(
B(k)
dk,b

)
(21)

where 1(·) denotes the indicator function. Thus, by applying
the same steps as in [2, Appendix A], and from Lemma 2, the
value of T ?u,ε,φ is lower bounded by

T ?u,ε,φ
(

log(1 +KP ) + o(logP )
)

≥ ConvKγ

(K(1− γ)

Kγ + 1

)
−K ′

( 1

B
+ ε
)
. (22)

Since T ?u = supε>0 lim supB→∞minφ T
?
u,ε,φ, it follows that

T ?u
(

log(1 +KP )+o(logP )
)

= ConvKγ

(K(1− γ)

Kγ + 1

)
. (23)

Now, applying NDTu(K,L, γ, 1)=limP→∞ T ?u logP yields

NDTu(K,L, γ, 1) = ConvKγ

(K(1− γ)

Kγ + 1

)
, (24)

and thus yields that NDTu(K,L, γ, 1) = NDTu(K, 1, γ, 0),
which proves Theorem 1 for the case KP = 1.

Let us now consider the general case in which KP ≤ L.
We start by considering the reduced setting in which we only
serve the K −KP users for which there is finite precision or
no CSIT and only one additional user among the KP users
providing perfect CSIT. The optimal delay on this reduced
scenario will clearly lower bound the optimal delay of the
whole setting. This optimal delay of the reduced scenario is
given by (24) after setting the total number of users to be
K −KP + 1. Then, it follows from (24) that

NDTu(K,L, γ,KP ) ≥ NDTu(K −KP + 1, L, γ, 1) (25)
= NDTu(K −KP + 1, 1, γ, 0), (26)

which concludes the proof of Theorem 1.

C. Proof of Theorem 2
From the derivation of Lemma 2, the converse of Theorem 2

follows a similar path as the proof of Theorem 2 in [3] for the
error-free symmetric setting (see [3, Section V]). Consequently,
for the sake of space, its details will be found in the extended
version of this work in [12].

VI. CONCLUSIONS

We have considered the cache-aided L×K MISO BC where
only a fixed set of KP ≤ L users provide perfect CSI to the
transmitter, whereas the remaining users provide finite precision
CSIT. This setting also corresponds to the side-information
variant of the well-known “PN” BC setting. For this setting,
we have derived the optimal rate-memory trade-off at high
SNR under uncoded placement, and characterized the same
trade-off within a factor of 2.01 for coded placement. The
proposed scheme capitalizes on the fact that the optimal trade-
off cannot be achieved through separate transmission between
the users that provide different CSIT level. The derived limits
clearly show that coded-caching and multi-antenna gains are
synergistic and schemes should integrate both aspects, but also
that the existence of users that provide only finite precision
CSIT greatly reduces the performance, which is in line with the
results of the “PN” setting without side information. Analyzing
the case KP > L is a meaningful extension currently under
investigation, and finally, considering partial or heterogeneous
CSI settings are also interesting research directions.
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