
Complete Quality Preserving Data Hiding
in Animated GIF with Reversibility
and Scalable Capacity Functionalities

KokSheik Wong1(B), Mohamed N. M. Nazeeb1, and Jean-Luc Dugelay2

1 Monash University Malaysia, Subang Jaya, Selangor, Malaysia
wong.koksheik@monash.edu, mnmoh48@student.monash.edu

2 EURECOM, Sophia Antipolis, France
jean-luc.dugelay@eurecom.fr

Abstract. A technique is put forward to hide data into an animated
GIF by exploiting the transparent pixels. Specifically, a new frame is
crafted based on the data to be embedded. The newly crafted frame is
inserted between 2 existing frames, and the delay time of the affected
frames are adjusted accordingly to achieve complete imperceptibility. To
the best of our knowledge, this is the first attempt to hide data into
an animated GIF by exploiting the transparent pixel. Irregardless of the
characteristics of the animated GIF image, the proposed method can
completely preserve the quality of the image before and after hiding data.
The hiding capacity achieved by the proposed method is scalable, where
more information can be embedded by introducing more frames into the
animated GIF. While file size expansion is inevitable, reverse zero run
length is adopted to suppress the expansion. The proposed method is
reversible, i.e., the original image can be recovered.

Keywords: Transparent pixel · Animated GIF · Complete quality
preservation · Data hiding · Reversible

1 Introduction

Graphic interface format (GIF) is a highly portable and platform-independent
image file format designed to show moving pictures through low bandwidth Inter-
net. It was developed by CompuServe in 1987, where further innovations such
as dirty rectangular and transparent pixel took place after the disclosure of the
GIF 89a specifications [1]. Although animated GIF contains no sound/voice, the
short visual content shows dynamic content, tells story, and captures emotion [4].

The popularity of animated GIF has been decaying, but recently social net-
working service platforms and online advertisers are making good use of ani-
mated GIFs despite broadband network connectivity. These creative utilizations
of animated GIF give new life to the originally dull image, including the transi-
tion of different combinations of outfit/shoes on the same model, handbag of a
specific model in different colors, to name a few. Furthermore, animated GIFs

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69449-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-69449-4_10

can be easily generated nowadays thanks for the availability of freely available
encoder in many platforms, including online websites. There are also dedicated
websites to blog about, share, search, and create animated GIFs [2,5]. Moreover,
users also use animated GIFs in instant messaging platform and online forum to
show reactions or emotions.

Due to its popularity and large number in existence, many data hiding meth-
ods are designed to better manage GIFs over the years. Traditionally, data is
hidden into a digital content such as image to convey secret message [6,10]. One
of the earliest techniques designed for GIF is proposed by Kwan, where the color
palette is arranged in certain way to convey a secret message [8]. However, the
hiding capacity is low. In another technique called EzStego, Machado [9] pro-
posed to analyze the color palette of a GIF image and sort the indices based on
luminance. If an index needs to be replaced for hiding data, the nearby indices
(post- sorting) are considered. Later, Fridrich et al. [3] proposed to match the
parity of the sum of RGB triplet values to the data bit. The nearest RGB triplet
with matching sum is selected to represent the message bit. Data can also be
hidden without causing any distortion (i.e., complete quality preservation [16]),
but the requirement is to start with a GIF with at least 1 un-referenced indice.
Kim et al. is able to hide up to 8 bits per pixel without causing distortion when
there at least 128 un-referenced indices [7]. Recently, Wang et al. put forward
a technique to quantize colors in GIF [14]. Two similar colors C1 and C2 in
the color palette are combined by taking their weighted average to generate a
new color, where the notion of similarity is defined by some risk function. Pixels
having the index value of C1 or C2 are manipulated to hide data.

Although there are techniques designed to hide data into animated GIF,
they are treating each frame as a static image, where existing techniques such
as EzStego [9] and Fridrich et al.’s method [3] are deployed to hide data into the
selected frames. In other words, the conventional techniques either modify the
pixel index, color table entries, or the combination of both, where distortion is
inevitable. In spite the fact that LZW compression is exploited to hide data in
GIF [12], other parts of the GIF structure remain unexplored, particularly the
parts related to animation in GIF. Therefore, in this work, we propose to hide
data into an animated GIF file, where new frames are crafted based on the data
to be hidden. To the best of our knowledge, our technique is the first of its kind
to hide data by inserting new frames and using transparent pixel.

While the conventional techniques surveyed above are mostly designed for
steganography, our proposed method can be utilized in the applications of data
hiding such as fragile watermark for tamper detection and annotation. In addi-
tion, one may envisage a spectacular demo by using the proposed method in ani-
mated GIF thanks to its scalable capacity functionality. For example, a binary
animation can be hidden in an animated GIF, which is apparently normal.

(a) File structure

(b) Graphic Control Extension.
Reproduced from [11].

Fig. 1. File structure of animated GIF and its graphic control extension.

2 Overview of GIF File Structure

Figure 1(a) shows the structure of a GIF file, which consists of protocol blocks
(for set-ups) and sub-blocks of graphics. Specifically, an animated GIF A of
dimension M × N pixels consists of an assemble of frames Af so that A = {Af}
for f = 1, 2, · · · , F , where F is the total number of frames. The logical screen
descriptor contains information such logical screen width and height, background
color index, etc. [1]. On the other hand, the global color table consists of 256
entries of RGB-triplets, and there is a function C that maps index to integer
RBG-triplet, i.e., C : [0, 255] → [0, 255] × [0, 255] × [0, 255]. To facilitate the
presentation, let Af (x, y) ∈ {0, 1, · · · , 255} denote the index at position (x, y)
within frame Af , where 1 ≤ x ≤ M and 1 ≤ y ≤ N . Each frame Af consists
of three data blocks, namely: graphic control extension, image descriptor, and
image data - see Fig. 1(b) [11].

Next, we focus on Transparent Color Flag (TCF) within the Packed Field
and Transparent Color Index (TCI). When TCF is set to TRUE, it enables an
index to be utilized as the transparent pixel, where color from a previous frame
is rendered instead of the color associated with the index. When TCI = τf =←
169 for example, the index ‘169’ is reserved and utilized for transparent pixel.
Therefore, if Af (x, y) = 169 = A916, the color C(169) (i.e., triplet of RBG
value) will not be displayed at position (x, y) in frame Af . Instead, the color
from the same location in the previous frame, i.e., Af−1(x, y), will be rendered.
The transparent pixel concept is introduced for compression purposes. Although
its performance varies depending on the characteristics of the animated GIF, a

Fig. 2. Illustration of Af ′(x0, y0) referring to Af (x0, y0) = τf , i.e., transparent pixel.
The actual color (i.e., index 213) is traced and retrieved from Af−1. Here, (x0, y0) refer
to the center of the 3 × 3 image block.

compression ratio of 1.63:1 is reported in [13]. On the other hand, the disposable
method informs the decoder what to do with the current frame Af when the
decoder moves on to the next frame Af+1. A value of ‘0’ implies that the image
is static and the decoder cannot draw anything on top of it. This value is used
for non-animated (i.e., static) GIF. On the other hand, a value of ‘1’ informs the
decoder to leave the current image on screen and draw the next image on top of
it. There are other modes of operation but we omit the presentation here due to
space limitation. The length of display for each frame Af is controlled by using
the value as specified in the Delay Time field (denoted by df). Basically a frame
Af will stay on the screen for df centi-seconds (i.e., 1/100 of a second). For
the purpose of this work, we set TCF to TRUE, and use ‘1’ for the disposable
method.

3 Proposed Data Hiding Method

In this section, we first propose a pre-processing step to prepare the animated
GIF A for data hiding purpose. The actual data hiding and extraction processes
are then put forward. Finally, we explain how reverse zerorun length encod-
ing [16] is adopted to overcome the problem of file size increment.

3.1 Pre-processing

A new frame Af ′ is created and inserted between Af and Af+1 to facilitate
data hiding. Each pixel index Af ′(x, y) is eventually modified to hide data.
Specifically, a new frame Af ′ is created by copying all indices from Af , i.e.,

Af ′(x, y) ← Af (x, y). (1)

Here, the same indices (hence colors) are copied from Af to ensure imperceptibil-
ity of the newly inserted frame Af ′ . However, Af ′ requires additional treatment
when there is at least one transparent pixel occurring in Af , or more precisely,
|{(x, y) : Af (x, y) = τf}| > 0, where |X| refers to the cardinality of the set X.

Specifically, due to the simple duplication process of Eq. (1), an issue arises when
Af (x0, y0) = τf ∈ [0, 255], where the index τf is defined as the transparent pixel
in frame Af . In other words, Af (x0, y0) = τf means that an actual color in an
earlier frame, i.e., Aα(x0, y0), is referred for display, where α < f . In the event
we set τf ′ �= τf (i.e., we use different indices to define the transparent pixels in
Af and Af ′), the actual color of C(τf) will be displayed at Af ′(x0, y0), instead
of the color in an earlier frame, namely, Aα(x0, y0).

To overcome the aforementioned issue, the main objective of the pre-
processing is to eliminate all transparent pixels in the newly created frame Af ′ ,
where every occurrence of the transparent index τf will be substituted by the
actual color (i.e., a RGB-triplet referred by an index) in the earlier frame Aα

for α < f . Figure 2 illustrates a scenario where Af (x0, y0) = τf is a trans-
parent pixel, which refers to the color shown at position Af−1(x0, y0). Hence,
the actual color C(213) shown at position Af−1(x0, y0) is traced and copied, in
other words, Af ′(x0, y0) = 213. The process is repeated to eliminate all trans-
parent pixels in Af ′ . Eventually, the newly added frame Af ′ consists entirely of
indices to actual RGB-triplets without any transparent pixels. In other words,
|{A′

f (x, y) = τf}| = 0.
Next, we have 2 scenarios to manage, namely, Af has a defined transparent

pixel, and Af does not have a defined transparent pixel. For the former scenario,
we continue to utilize the same transparent pixel, i.e, τf ← τf , instead of finding
another index for such purpose. On the other hand, for the latter situation,
we have to choose the transparent pixel τf ′ carefully. Specifically, all indices in
frame Af are scanned and the histogram Hf of the indices is constructed. Let
Hf (i) denote the frequency of occurrences for the index i, where 0 ≤ i ≤ 255.
We select the index i0 such that Hf (i0) is the minimum (i.e., occurring the
least in Af), and set τf ′ ← i0. Note that in practice, a GIF image does not
utilize all 256 indices. Therefore, in general, Hf (i0) = 0 holds true and we can
hide 1 bit per pixel (bpp). On the other hand, when Hf (i0) > 0, we skip the
positions Af ′(x, y) (i.e., newly added frame) for data hiding when Af (x, y) = i0
(i.e., original frame). Here, we loose exactly Hf (i0) number of pixel locations
for data hiding, and the embedding reduces to 1 − Hf (i0)/M/N bpp.

In both cases, data hiding can take place, where defining a new transparent
pixel will not confuse the extraction process with the introduction of usable and
non-usable positions in Sect. 3.2.

3.2 Data Hiding

To hide data, the new frame Af ′ is compared with Af at each pixel location.
Specifically, the position Af ′(x, y) is skipped and we call it non-usable if the
following two conditions are true simultaneously:

τf �= τf ′ (2)
Af (x, y) = τf ′ . (3)

Note that such a decision is made to avoid ambiguity during data extrac-
tion because due to the simple duplication process (i.e., Eq. (1)), we cannot

differentiate whether Af ′(x, y) = τf ′ is encoding ‘0’ (see Eq. (4)), which is mod-
ified from Af (x, y), or it is actually the original index for that pixel location.
Therefore, we skip these positions.

On the other hand, Af ′(x, y) is called usable and it is exploited to hide data
by using the basic rules below:

Af ′(x, y) ←
{

τf ′ if mk = 0;
‘No change’ otherwise. (4)

Here, the payload m is a binary sequence {mk} ∈ {0, 1}. The encoding rule basi-
cally utilizes the transparent pixel index to encode ‘0’, and utilizes the original
index to encode ‘1’. The process is repeated for each position (x, y) in the frame
Af ′ in the raster scanning order.

In order to maintain the length of the original animated GIF, the delay
time for frame Af and Af ′ need to be adjusted. Specifically, we set df ′ ←
�df/2�, where �z� refers to the largest integer smaller than or equal to z. Next,
we update df ← df − df ′ . Essentially, the proposed method splits Af into 2
frames, both having the exact same pixel values on screen, and the overall display
duration (i.e., delay time) remains unchanged. Since the exact same pixel values
are displayed for the same duration, the quality is completely preserved. In other
words, the pixel values rendered from the original and processed (embedded with
data) animated GIF images are exactly the same, and these pixels appear on
the screen for exactly the same duration. In fact, the duration df and df ′ can
be further manipulated to hide data, which will be explored as our future work.

By inserting a new frame between every 2 consecutive original frames, we
are increasing the number of frames from F to 2F − 1. In fact, to improve
hiding capacity, more new frames can be generated and inserted between any
two consecutive frames, including the pairs Af and Af ′ as well as Af ′ and Af+1.
This process can be repeated as long as all delay times (i.e., df and df ′) remain
≥ 0.02s, which is the smallest permissible value allowed by web browser.

3.3 Data Extraction and Reversibility

To extract data from the animated GIF embedded with data A′, the inserted
frames A′

f ′ are first identified. This process can be achieved by some pre-
arrangement, for example, a new frame is always added between 2 original frames
(i.e., Af and Af+1), and hence the odd numbered frames in A′ are the newly
inserted frames. The status (being usable or unusable) of each position in A′

f ′ is
verified by referring to Eq. (2) and (3). The sequence of embedded bits in A′

f ′ is
extracted from the usable locations by producing ‘1’ when A′

f ′(x, y) = A′
f (x, y)

or ‘0’ when A′
f ′(x, y) = τf ′ . The process is repeated for all inserted frames A′

f ′ .
The proposed method is obviously reversible, where the newly added frames

Af ′ can be removed and the original delay time df can be reassigned to recover
the original animated GIF image.

3.4 Reducing File Size Increment

When a new frame is inserted, file size is inevitably increased. To reduce file size
expansion, the reverse zerorun length (RZL) encoding technique [16] is adopted.
Note that for each newly created frame Af ′ , prior to any modifications due
to data hiding purposes, Af ′ encodes a sequence of 1’s with length M × N (or
slightly lesser depending on Hf (τf ′) in Af). Instead of using Eq. (4) to hide data
directly, the message is first pre-processed. Specifically, for each newly created
frame Af ′ , the data to be hidden φf is divided into segments each of length
k-bits, i.e., φf = [φ1

f , φ2
f , · · · , φD

f] where D = |φf |/k. Here, each segment φk
f is

of length k bits except for φD
f , which can assume a length ≤ k bits.

Next, the decimal equivalent of φi
f , denoted by di

f , is computed and hence
0 ≤ di

f ≤ 2k − 1. Subsequently, di
f is utilized to generate a new segment μi

f for
i = 1, 2, · · · ,D. The segments μi

f are generated as follows:

μi
f = 00 · · · 0︸ ︷︷ ︸

di
f

1, (5)

which is sequence of di
f zeros, followed by a ‘1’ that serves as a delimiter. Note

that μi
f is of variable length. The new representation of the message, i.e., μi

f , is
then embedded by using Eq. (4). If the newly inserted frame Af ′ is unable to
hide all segments μi

f , a new frame Af ′′ can be inserted between Af ′ and Af+1

to create more room for data hiding.
To extract the hidden data segment encoded in the RZL format, the sequence

of 0’s and 1’s are first extracted from all usable pixel locations, where A′
f ′(x, y) =

τf ′ outputs a ‘0’, otherwise a ‘1’. The extracted sequence is then analyzed, where
the number of 0’s preceeding the value 1 is counted and converted into a binary
number with k-bits. For example, the following sequence of 19 bits are extracted
from 19 usable pixel locations:

00000︸ ︷︷ ︸
5

1 00000000︸ ︷︷ ︸
8

1 000︸︷︷︸
3

1. (6)

The corresponding decimal values 5, 8 and 3, are converted into binary numbers
101, 1000 and 11, respectively. Finally, leading zeros are injected to make up the
number of bits (i.e., length) for each segment. Suppose k = 6, then the segments
become 000101, 001000, and 000011, respectively.

4 Experiments

The proposed data hiding method is implemented in Python. 8 animated GIFs
from the world wide web are considered for experiment purpose, where the first
frame of each animated GIF is shown in Fig. 3. These GIFs are either gener-
ated by using graphic software or merging frames/scenes from video recording.

(a) Mov01 (b) Mov02 (c) Mov03 (d) Mov04

(e) Mov05

(g) Mov06

(j) Draw1
(k) Draw2

Fig. 3. First frame of each animated GIF considered for experiment.

Additional information of these animated GIFs can be found in Table 1. They
are also made available online at [15] for reproducibility and future comparison
purpose. Google Chrome (version 73.0.3683.103), Safari (version 12.0.2), Firefox
(version 66.0.3) and Photos (system viewer for Windows 10) are utilized to dis-
play the animated GIFs. The processed animated GIFs can be viewed by using
the aforementioned browsers, and this observation also confirms that the pro-
cessed images are format compliant. It is verified that the hidden data can be
extracted by checking the status (i.e., usable or non-usable) of each pixel loca-
tions using Eq. (3). By visual inspection, the GIFs appear to be identical before
and after hiding data. Unless specify otherwise, F −1 new frames are introduced
to an animated GIF with F frames. Although frames of different sizes can be
created, for experiment purposes, the dimension of each new frame A′

f is set to
be the same as that of the original frame Af in the respective GIF.

Note that we do not evaluate image quality by using metrics such as MSE
or SSIM because the exact same RGB-triplet is rendered at each position, i.e.,
complete quality preservation. It is also noteworthy that, irregardless of the
statitics of the host image, the proposed method can surely embed data without
causing any quality degradation, while the conventional methods degrade the
image quality because 2 color indices are combined to free up an index [14] or
the pixel value is modified by mapping it to different color index [3].

Table 1. Basic information about the animated GIFs considered for experiments.

GIF

filename

Image

dimensions

Total frames

(original)

Bit stream size (KBytes)

Original Basic RZL

k = 2 k = 3 k = 4 k = 5 k = 6

Mov01 350 × 196 71 2,000 3,958 3,303 3,022 2,722 2,463 2,283

Mov02 499 × 273 17 472 1,436 1,111 960 805 682 596

Mov03 500 × 254 15 1,276 2,259 1,934 1,776 1,622 1,492 1,404

Mov04 250 × 141 25 505 958 821 750 673 613 568

Mov05 260 × 208 23 485 1,036 875 792 697 624 569

Mov06 480 × 270 17 1,301 2,404 2,054 1,893 1,708 1,558 1,453

Draw1 400 × 426 6 665 1,087 934 865 798 747 714

Draw2 670 × 503 52 2,488 6,754 5,334 4,894 4,262 3,685 3,239

4.1 Hiding Capacity

The number of bits that can be inserted into each GIF (i.e., payload) of each
image is recorded in Table 2. All animated GIFs considered in this work consist of
transparent pixel in each frame, therefore we could conveniently set τf ′ ← τf . As
a result, all pixel locations are usable. When using the basic rules (i.e., Eq. (4))
to hide data, the payload is 1 bpp for each added frame. When using RZL, the
payload decreases when the parameter k is increased. The payload decreases by
a factor of ∼3 when k increases from 2 to 6. Although the payload achieved by
RZL(6) is slightly less than 1/5 of Basic, the suppression of bit stream expansion
is significant. On the other hand, the conventional methods are all limited by
the number of frames as well as number of pixels in the animated GIF to hide
data, i.e., non-scalable, while the proposed method is scalable at the expense of
larger file size.

4.2 File Size Expansion

It is expected that the bit stream size will expand since new frames are intro-
duced to hide data. The results are recorded in Table 1, with and without the
implementation of RZL. When using the basic rule to hide data, the average
expansion of bit stream size is 66.9%, which is reasonable since the number
of frames is almost doubled. For completion of discussion, we also record the
embedding efficiency η, which is defined as the number of embedded payload
bits for every increased bit in the host image. Specifically, we consider the ratio
of κ(A, k) to Δ(A,A′), where κ(A, k) is the embedding capacity for the image A
when using the parameter k, and Δ(A,A′) = FS(A′) − FS(A) refers to the file
size difference between the original image A and the processed image A′. Here,
higher value of η implies better performance, and vice versa. The average result
η̄ is recorded in the last row of Table 2 for k = 1, 2, · · · , 6. On average, the host
animated GIF image spends 1/0.28 ∼ 3.8 bits for hiding 1 bit of the payload.

On the other hand, when RZL is adopted, it is obvious that the expansion
in bit stream size is suppressed, where the effect is more apparent for larger k.

Table 2. Embedding capacity (KBytes) for various k value after applying reserve zero
run length encoding [16]

Image Basic k = 2 k = 3 k = 4 k = 5 k = 6

Mov01 586 334 317 247 165 101

Mov02 266 152 144 112 75 47

Mov03 217 123 117 91 61 38

Mov04 103 59 55 42 29 18

Mov05 145 83 79 61 42 26

Mov06 253 144 138 105 71 44

Draw1 104 59 56 43 29 18

Draw2 2,098 1,198 1,142 885 600 375

η̄ 0.28 0.24 0.29 0.32 0.34 0.35

Specifically, the average bit stream size expansion drops from 44.8% to 16.7%
when k increases from 2 to 6. However, as noted in the previous sub-section,
payload is reduced when k increases. Interestingly, the embedding efficiency
decreases initially when RZL is adopted (i.e., k = 2), but the performance
improves steadily after for k > 2. A potential influence to the performance
is the LZW compression process, which is part of the GIF standard. This will
also be explored as one of our future work.

In contrast, the conventional mostly maintains the file size, with small vari-
ation due data hiding. While the proposed method and conventional methods
cited in this paper have their pros and cons, they can be combined to comple-
ment one an another. The combined deployment will be further explored as our
future work.

5 Conclusions

In this work, transparent pixel in animated GIF is manipulated to hide data.
Specifically, a new frame is introduced between 2 original frames, and each pixel
location is manipulated to hide data. When a location is assigned the transparent
pixel index, color from the previous frame is copied and rendered. Delay time of
each frame is adjusted accordingly to ensure the duration of the animated GIF
remains unchanged. Complete quality preservation is achieved irregardless of the
characteristics of the animated GIF image, and the proposed method is reversible
where the original animated GIF can be perfectly restored. Experiments suggest
that data can be hidden into and extracted from the animated GIF.

In future work, we want to explore how the delay time parameter in each
frame can be utilized to hide data. Furthermore, the joint utilization of the
proposed and the conventional data hiding methods will be investigated. The
influence of LZW compression in GIF on the file size increment due to data
hiding will be also be investigated.

Acknowledgement. This work was supported in part by the Fundamental Research
Grant Scheme (FRGS) MoHE Grant under project - Recovery of missing coefficients -
fundamentals to applications (FRGS/1/2018/ICT02/MUSM/02/2) and in part by EU
Horizon 2020 - Marie Sklodowska-Curie Action through the project entitled Computer
Vision Enabled Multimedia Forensics and People Identification (Project No. 690907,
Acronym: IDENTITY).

References

1. Graphics Interchange Format: Version 89a (1990). https://www.w3.org/Graphics/
GIF/spec-gif89a.txt. Accessed 3 Mar 2019

2. Cooke, J., Chung, A.: Giphy. https://giphy.com/. Accessed 3 Mar 2019
3. Fridrich, J.: A new steganographic method for palette-based images. In: PICS 1999:

Proceedings of the Conference on Image Processing, Image Quality and Image
Capture Systems (PICS-99), Savannah, Georgia, USA, 25–28 April 1999, pp. 285–
289. IS&T - The Society for Imaging Science and Technology (1999)

4. Gygli, M., Soleymani, M.: Analyzing and predicting GIF interestingness. In: Pro-
ceedings of the 24th ACM International Conference on Multimedia, MM 2016,
pp. 122–126. ACM, New York (2016). https://doi.org/10.1145/2964284.2967195.
http://doi.acm.org.ezproxy.lib.monash.edu.au/10.1145/2964284.2967195

5. Karp, D.: Tumblr. https://www.tumblr.com/. Accessed 3 Mar 2019
6. Katzenbeisser, S., Petitcolas, F.A. (eds.): Information Hiding Techniques for

Steganography and Digital Watermarking, 1st edn. Artech House Inc., Norwood
(2000)

7. Kim, S., Cheng, Z., Yoo, K.: A new steganography scheme based on an index-color
image. In: 2009 Sixth International Conference on Information Technology: New
Generations, pp. 376–381, April 2009. https://doi.org/10.1109/ITNG.2009.119

8. Kwan, M.: GIF colormap steganography (1998). http://www.darkside.com.au/
gifshuffle/

9. Machado, R.: Ezstego (1997). http://www.stego.com/
10. Pan, Z., Wang, L.: Novel reversible data hiding scheme for two-stage

vqcompressed images based on search-order coding. J. Vis. Commun.
Image Represent. 50, 186–198 (2018). https://doi.org/10.1016/j.jvcir.2017.11.020.
http://www.sciencedirect.com/science/article/pii/S1047320317302286

11. Raymond, E.S.: What’s in a GIF - animation and transparency (2012). http://
giflib.sourceforge.net/whatsinagif/animation and transparency.html

12. Shim, H.J., Jeon, B.: DH-LZW: lossless data hiding in LZW compression. In: 2004
International Conference on Image Processing, ICIP 2004, vol. 4, pp. 2195–2198,
October 2004. https://doi.org/10.1109/ICIP.2004.1421532

13. Thyssen, A.: ImageMagick v6 examples - animation basics (2004). https://
imagemagick.org/Usage/anim basics/

14. Wang, X., Yao, T., Li, C.T.: A palette-based image steganographic method using
colour quantisation. In: IEEE International Conference on Image Processing 2005,
vol. 2, p. II-1090, September 2005. https://doi.org/10.1109/ICIP.2005.1530249

15. Wong, K., Nazeeb, M.N.M., Dugelay, J.L.: Test animated GIFs (2020). http://bit.
ly/2IEx26N

16. Wong, K., Tanaka, K., Takagi, K., Nakajima, Y.: Complete video quality-preserving
data hiding. IEEE Trans. Circ. Syst. Video Technol. 19(10), 1499–1512 (2009).
https://doi.org/10.1109/TCSVT.2009.2022781

https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://giphy.com/
https://doi.org/10.1145/2964284.2967195
http://doi.acm.org.ezproxy.lib.monash.edu.au/10.1145/2964284.2967195
https://www.tumblr.com/
https://doi.org/10.1109/ITNG.2009.119
http://www.darkside.com.au/gifshuffle/
http://www.darkside.com.au/gifshuffle/
http://www.stego.com/
https://doi.org/10.1016/j.jvcir.2017.11.020
http://www.sciencedirect.com/science/article/pii/S1047320317302286
http://giflib.sourceforge.net/whatsinagif/animation_and_transparency.html
http://giflib.sourceforge.net/whatsinagif/animation_and_transparency.html
https://doi.org/10.1109/ICIP.2004.1421532
https://imagemagick.org/Usage/anim_basics/
https://imagemagick.org/Usage/anim_basics/
https://doi.org/10.1109/ICIP.2005.1530249
http://bit.ly/2IEx26N
http://bit.ly/2IEx26N
https://doi.org/10.1109/TCSVT.2009.2022781

	Complete Quality Preserving Data Hiding in Animated GIF with Reversibility and Scalable Capacity Functionalities
	1 Introduction
	2 Overview of GIF File Structure
	3 Proposed Data Hiding Method
	3.1 Pre-processing
	3.2 Data Hiding
	3.3 Data Extraction and Reversibility
	3.4 Reducing File Size Increment

	4 Experiments
	4.1 Hiding Capacity
	4.2 File Size Expansion

	5 Conclusions
	References

