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ABSTRACT

Current cooperative transmission strategies for distributed MIMO
systems are typically designed by assuming perfect, or at least per-
fectly shared, channel state information at the transmitters (CSIT).
However, when this assumption is not met, the naı̈ve application
of existing schemes encounters severe performance degradation.
Recently, an information theoretical result unveiled the intriguing
phenomenon that, for distributed MIMO systems with asymmetric
CSIT, optimal encoding may require the transmission of a number
of data streams that goes beyond the classical upper bound predicted
by the number of antennas in the system. In this work, we explore
the implications of the aforementioned result from precoder design
point of view. More precisely, we propose a method for distributed
precoding design which optimally minimizes the expected interfer-
ence. As in the information theoretical result, the key idea lies in
allowing the transmission of additional data streams. We show that
this trick helps in transforming an otherwise difficult robust opti-
mization problem into a convex formulation. Numerical simulations
corroborate the robustness gain in terms of achievable sum-rate of
the proposed method over traditional schemes.

1. INTRODUCTION

Network-wide interference management via cooperation among
geographically distributed transmitters (TXs) is a well-established
paradigm, also known as multi-cell multiple-input multiple-output
(MIMO) or network MIMO, with the potential of overcoming cur-
rent cellular systems limitations [1, 2]. However, the immense
capacity gains promised by this paradigm are mostly achieved un-
der the assumption of perfect, or at least perfectly shared, channel
state information at the transmitters (CSIT). Although there ex-
ist commercial-grade systems implementing the original network
MIMO idea (see, e.g., [3]), the aforementioned assumption has
been questioned for several practical scenarios where more stringent
backhaul and/or feedback constraints severely limit accurate CSIT
distribution across the network, giving rise to a so-called distributed
CSIT configuration [4, 5]. As an extreme case, the most recent
embodiment of network MIMO called cell-free massive MIMO [6]
often advocates transmission strategies based on local CSIT only,
hence renouncing to network-wide interference cancellation.

Despite its relevance, research on the distributed CSIT assump-
tion is far from being mature. Most of the available insights are
based on asymptotic analysis [5, 7], while many problems remain
open for finite signal-to-noise ratio (SNR) [4]. In this work we fo-
cus on this last category of problems and study the simple network
in Fig. 1, where two TXs wish to cooperatively serve two RXs on
the basis of CSIT acquired via over-the-uplink feedback links. The
salient feature of the consider model is that, because of possibly dif-
ferent feedback rates, the TXs may not share the same CSIT. We
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Fig. 1. Cooperative MIMO channel with asymmetric feedback.

refer to this specific cooperation regime as cooperative MIMO with
asymmetric feedback, a particular case of distributed CSIT. Note that
settings with MIMO cooperation under message sharing but asym-
metric CSIT are particularly relevant to use cases where data con-
tent can be pre-stored at the transmitters (as in caching applications)
while feedback rates are subject to resource constraints that vary as
a function of devices nature/grade level.

The main contribution of this paper is a novel precoding de-
sign technique that optimally mitigates interference in the aforemen-
tioned channel, building upon recent information theoretical insights
given by [8, 9]. Specifically, by focusing on the single RX case, [9]
proves that optimal transmission under asymmetric feedback may
require additional data streams w.r.t. the classical symmetric feed-
back setup. This previously overlooked design parameter is here ex-
ploited to transform an otherwise difficult robust optimization prob-
lem into a convex formulation, which can be solved by off-the-shelf
tools. Moreover, we show that if the CSIT distribution exhibits some
favourable structure (in particular, a so-called common information),
the complexity of the proposed technique can be sensibly reduced.
Finally, numerical simulations demonstrate the effectiveness of the
proposed method over traditional schemes. Interestingly, our ex-
periments and preliminary theoretical insights suggest that, although
very useful for the precoding design phase, the use of additional data
streams seems not crucial in the transmission phase, which is a de-
sirable property for low-complexity decoders.

Notation: we use a, a, and A to denote respectively scalars,
column vectors, and matrices. The entry of A in the ith column and
jth row is denoted by [A]i,j . The operators (·)H and tr{·} denote
respectively the Hermitian transpose and the trace, and ‖ · ‖ is the
Euclidean norm. We use diag(a) to denote a diagonal matrix with a
on the main diagonal. By Sn+ we denote the set of Hermitian positive
semidefinite matrices of dimension n. Given a random variable x,
E[x] denotes its expected value, and px(x) its distribution. In this
work we do not typographically differentiate random variables from
their realizations.



2. SYSTEM MODEL AND PROBLEM STATEMENT

2.1. Cooperative MIMO with asymmetric feedback

Consider a wireless system composed by 2 TXs and 2 RXs, each of
them equipped with a single antenna, and governed by the following
MIMO fading channel law

yl = hH
l x + zl = hH

l

[
x1

x2

]
+ zl, l = 1, 2

where yl ∈ C is the received signal at the l-th RX, xk ∈ C is
the transmitted signal at the k-th TX subject to a power constraint
E[|xk|2] ≤ Pk, hl ∈ C2 is an arbitrarily distributed channel vector,
and zl ∼ CN (0, 1). We assume the channel vectors hl to be mu-
tually independent, which can be easily justified for geographically
spaced RXs.

We consider a cooperative setup where all TXs have access to
the full message set (W1,W2), where Wl ∈ {1, . . . , 2dnRle} de-
notes the independently and uniformly distributed message of rate
Rl ≥ 0 intended for RX l. Furthermore, we assume perfect CSIR
and we let the CSIT available at the k-th TX to be a quantized rep-
resentation of the true state, i.e. we assume the k-th TX to causally
observe integer valued signals skl given by

skl = qkl(hl), qkl : C2 → Skl := {1, . . . , 2bkl},

where bkl denotes the feedback rate from RX l towards TX k. The
full CSIT at TX k is denoted by sk := (sk1, sk2). As already men-
tioned, in this work we are mostly interested in the asymmetric feed-
back regime, i.e. where the quantizers qkl(·) are different across
k. We remark that asymmetric feedback makes the above model for-
mally (and, as we will see in the following, also practically) different
from the classical 2 × 2 MIMO broadcast channel (BC), where full
cooperation among the TXs is assumed.

2.2. Distributed linear precoding

In this section we describe a simple achievable scheme obtained by
extending the classical concept of linear precoding of Gaussian data
streams (i.e., a form of superposition coding) to distributed settings.
Let

xk = gH
k (sk)

[
u1

u2

]
=

2∑
l=1

gH
kl(sk)ul,

[
u1

u2

]
∼ CN (0, I2d),

(1)
where ul ∈ Cd is a vector of independent Gaussian coded data sym-
bols intended for the l-th RX, and where gkl(sk) ∈ Cd is a linear
precoder applied to ul at the k-th TX based on the local CSIT sk.
We denote this scheme by distributed linear precoding.

By treating interference as noise, and by allowing coding over
multiple fading realizations, it can be shown by classical arguments
[10] that distributed linear precoding achieves the rate pair (R1, R2)
given by

Rl = E
[
log2

(
1 +

hH
l Σl(s1, s2)hl

1 + hH
l Σl̄(s1, s2)hl

)]
, l̄ 6= l, (2)

where we defined the conditional input covariance matrices

Σl(s1, s2) :=

[
gH

1l(s1)
gH

2l(s2)

] [
g1l(s1) g2l(s2)

]
∈ S2

+. (3)

The goal of this work is to design the distributed precoders gk(sk)
such that the sum-rate Rsum := R1 +R2 is maximized, under peak-
power constraints ‖gk(sk)‖2 ≤ Pk and feedback strategy (q1, q2).

At this stage it is important to stress two major differences be-
tween precoder design in (1) and classical [11, 12, 13] based on
centralized CSIT (or symmetric feedback). First let us note how
gkl(sk) ∈ Cd, which is a linear precoder applied to ul at the k-th
TX, depends solely on the local CSIT sk, hence fulfilling the dis-
tributed nature of the design. Secondly, in contrast with classical
schemes, the number of data streams for each RX d is here allowed
to take arbitrary values. While the first aspect was already consid-
ered for example in [4, 5], the exploration of the second aspect in the
context of interference management is the main focus of this work,
and it will be detailed in the following sections.

2.3. Multi-stream precoding

Traditionally, precoding design for the 2× 2 MIMO BC focuses on
single-stream transmission, i.e., d = 1 Gaussian symbol per user.
More generally, although less commonly done in practice since it re-
quires multi-stream decoding [10] (e.g., successive interference can-
cellation), an optimal design choice is to bound the number of data
streams d by the total number of TX antennas, i.e. by letting d ≤ 2
in the considered antenna setup.

As a matter of fact, such bound is also optimal for the special
case of the cooperative MIMO system at hand for s1 = s2 =: s,
i.e. where the system boils down to a virtually centralized MIMO
BC. In fact, in such case, it is easy to see that every conditional input
covariance Σl(s1, s2) = Σl(s) is achievable by letting[

gH
1l(s1)

gH
2l(s2)

]
=

[
gH

1l(s)
gH

2l(s)

]
= Σl(s)

1
2 ∈ C2×2.

In contrast, such approach is not valid for systems with asymmetric
feedback, as taking the matrix square-root of Σl(s1, s2) may violate
the functional dependencies of gk(sk).

Surprisingly, by studying the single RX case, in [8, 9] we show
that increasing the number of data streams d beyond classical design
choices, i.e. by letting d > 2, may be beneficial. In particular, we
show that it allows distributed linear precoding to span the whole set
of feasible conditional input covariance matrices Σl(s1, s2), and, as
a byproduct, to achieve capacity. On the other hand, it is also shown
that d ≤ 2 allows only for a proper subset of the feasible conditional
input covariances, and, for some fading distributions, this leads to
strictly suboptimal rates. Furthermore, computational advantages of
multi-stream transmission for the single-RX precoding design prob-
lem are also reported in [9, 14].

In this work we extend the aforementioned works by studying
how this previously overlooked design parameter can be exploited
for distributed precoding desing in systems with interference.

3. DISTRIBUTED PRECODING VIA EXPECTED
INTERFERENCE MINIMIZATION

3.1. Expected interference minimization

As a heuristics for precoding design, in this section we propose to
solve the following optimization problem

minimize
gkl(sk)∈Cd

E
[
hH
l̄ Σl(s1, s2)hl̄

]
, l̄ 6= l

subject to ‖gkl(sk)‖2 ≤ Pk
2
, k = 1, 2

E [tr{Σl(s1, s2)}] =
α

2
(P1 + P2)

(4)



where the objective Il := E
[
hH
l̄ Σl(s1, s2)hl̄

]
denotes the expected

interference caused by the transmission of message Wl with input
covariance Σl(s1, s2) given by (3), and where the equality constraint
is introduced to avoid the trivial solution gkl(sk) = 0, by imposing
an average signal strength equal to a tunable fraction α ∈ (0, 1] of
the per-user total peak power (P1 + P2)/2. Note that, as often done
in the literature on linear precoding with limited feeedback [15], we
simplified the power allocation problem across users (i.e. acrossWl)
by splitting the available power Pk equally.

A direct relation between the optimum of Problem (4) and the
optimum of the direct optimization of (2) is not surprisingly hard
to establish. Despite this limitation, we will show in the follow-
ing that Problem (4) has a particularly favourable structure for the
asymmetric feedback setup. We point out that asymmetry of infor-
mation makes Problem (4) to fall into the category of Team Decision
problems [16], for which no optimal and efficient solution method is
known in general.

Before presenting the main result of this work, we observe that,
by the mutual independence of h1 and h2, Problem (4) is equivalent
to

minimize
gkl(skl̄)∈Cd

E
[
hH
l̄ Σl(s1l̄, s2l̄)hl̄

]
, l̄ 6= l

subject to ‖gkl(skl̄)‖
2 ≤ Pk

2
, k = 1, 2

E [tr{Σl(s1l̄, s2l̄)}] =
α

2
(P1 + P2).

(5)

That is, the optimal gkl(sk) for Problem (4) needs not to depend
on skl. This is reminescent of the fact that, in classical zero-forcing
precoding [11, 15], interference can be avoided by simply selecting
a precoding vector in the null-space of the interfering channel hl̄, i.e.
information about the direct channel hl is not required.

Finally, to avoid cumbersome notation, in the following we omit
the RX subscripts l, l̄ and focus on the following archetypal problem

minimize
gk(sk)∈Cd

E
[
hHΣ(s1, s2)h

]
,

subject to ‖gk(sk)‖2 ≤ Pk
2
, k = 1, 2

E [tr{Σ(s1, s2)}] =
α

2
(P1 + P2),

(6)

for some triple of random variables (s1, s2,h) taking values in some
sets S1 × S2 × C2, Sk := {1, . . . , dk}, and where

Σ(s1, s2) :=

[
gH

1 (s1)
gH

2 (s2)

] [
g1(s1) g2(s2)

]
.

Clearly, (4) and (5) can be simply mapped into Problem (6) by
letting (s1, s2,h) ∼ (s1l̄, s2l̄,hl).

3.2. Convex formulation via multi-stream precoding

In this section we describe the main result of this work, which states
that by letting the dimension d of the precoders to grow large (be-
yond classical design), it is possible to recast Problem (4) as an
equivalent convex problem. To this end, let us first define the di-
agonal matrix

Π :=

[
Π1 0
0 Π2

]
, Πk ∈ Cdk×dk ,

[Πk]i,j :=

{
psk (i) i = j

0 i 6= j
, k = 1, 2,

and the covariance matrix Ψ := E[heqhH
eq] of an equivalent dmax-

dimensional channel

heq := E(s1, s2)h,

E(i, j) :=

[
ei 0
0 ej

]
∈ {0, 1}dmax×2,

where ei ∈ {0, 1}d1 (resp. ej ∈ {0, 1}d2 ) denotes a standard col-
umn selector, i.e., with the i-th entry (resp. j-th) set to 1, and all the
other entries set to 0. With these definitions in hand, we obtain the
following result:

Proposition 1. By letting d ≤ dmax, where

dmax := d1 + d2,

Problem (6) is equivalent to the following convex problem

minimize
Q∈Sdmax

+

tr{ΨQ}

subject to [Q]i,i ≤
P1

2
, 1 ≤ i ≤ d1

[Q]i,i ≤
P2

2
, d1 < i ≤ dmax

tr{ΠQ} =
α

2
(P1 + P2)

(7)

Proof. Let us define the codebook matrix F ∈ Cd×dmax given by

F :=
[
g1(1) . . . g1(2b1) g2(1) . . . g2(2b2)

]
,

which is obtained by stacking in the given order all the dmax :=
2b1 +2b2 possible values assumed by the precoders gk(sk). It is easy
to verify that, for a given CSIT realization (s1, s2), the distributed
precoders are given by[

g1(s1) g2(s2)
]

= FE(s1, s2),

We can now rewrite the objective I := E
[
hHΣ(s1, s2)h

]
of Prob-

lem (6) as

I = E
[
hHE(s1, s2)HFHFE(s1, s2)h2

]
= E

[
hH

eqFHFheq

]
= E

[
hH

eqQheq

]
= tr

{
E
[
heqhH

eq

]
Q
}

= tr {ΨQ} ,

where Q := FHF is a positive semidefinite matrix of dimension
dmax and maximum rank d. The power constraints can be trivially
reformulated by following similar steps. Finally, by removing the
rank constraint on Q, i.e. by allowing the precoders dimension d to
grow up to dmax, we obtain the convex optimization problem (7).

Problem (4) can be solved by computing the optimal solu-
tion Q?

l of an instance of Problem (7) obtained for (s1, s2,h) ∼
(s1l̄, s2l̄,hl). The optimal distributed precoders can be then recov-
ered from Q?

l by letting[
g1l(s1) g2l(s2)

]
= (Q?

l )
1
2 E(s1l̄, s2l̄) ∈ Cdmax×2,



which theoretically implies the encoding of Wl into up to

dmax = 2b1l̄ + 2b2l̄

data streams. However, note that if rank(Q?
l ) = r < dmax, we can

reduce without loss of performance the dimension of gkl(sk) down
to r.

3.3. Exploiting common information for reducing complexity

One of the major drawbacks of the method proposed in Sect. 3.2
is that it suffers from scalability issues, since the dimension dmax

of the precoders optimization problem scales exponentially with the
number of feedback bits. However, the proposed method is based
on a worst-case assumption on the distribution of the asymmetric
feedback, which is in practice too restrictive. In fact, in many ap-
plications, CSIT is strongly correlated across the TXs, and this cor-
relation can be intuitively exploited for precoders optimization. In
light of this intuition, in this section we describe an approach based
on the concept of common information, whose definition will be de-
tailed in the following. Interestingly, we show that the availability of
common information allows for a dramatic reduction in complexity,
with zero or little loss of optimality.

Let us focus on Problem (6). Consider a random variable z ∈
Z , where Z := {1, . . . , Z} is some alphabet of finite cardinality
Z, such that there exist two functions fk : Sk → Z , k = 1, 2,
satisfying

z = f1(s1) = f2(s2) a.s.

We refer to such z as a common information between s1 and s2.
Note that for the same pair of random variables (s1, s2) there may
be multiple common informations satisfying the above definition (in
particular, with different cardinalities Z). For example, we can al-
ways define at least a trivial common information for Z = 1.

For a given choice of common information, we can rewrite the
objective of Problem (6) as

I := E
[
hHΣ(s1, s2)h

]
=

Z∑
z=1

E
[
hHΣ(s1, s2)h|z

]
pz(z)

=

Z∑
z=1

I(z)pz(z),

where I(z) := E
[
hHΣ(s1, s2)h|z

]
can be interpreted as the aver-

age interference conditioned on a given realization of the common
information z. The key idea is to optimize each I(z) disjointly, i.e.,
to decompose the optimization of I into Z subproblems of reduced
complexity. The reduction in complexity is explained as follows.
Intuitively, we can bijectively map sk into a pair

(
z, s

(z)
k

)
, where

z = fk(sk) is a common information between s1 and s2, and where
s

(z)
k ∈ S(z)

k := {1, . . . , d(z)
k }, d

(z)
k � dk, is an additional index

corresponding to the residual local information. Hence, conditioned
on z, the optimization of I(z) needs only to consider the joint dis-
tribution of the residual local informations (s

(z)
1 , s

(z)
2 ) instead of the

full CSIT pair (s1, s2).
More formally, we denote the pre-image of z under fk by

f
(−1)
k (z) ⊆ Sk. The sets {f (−1)

k (z)}Zz=1 form a partition of Sk.
For every z, we further index the elements of f (−1)

k (z) by means of

a bijective map i(z)k : f
(−1)
k (z) → S(z)

k , where d(z)
k := |f (−1)

k (z)|.
Then, we define the triple of random variables(

s
(z)
1 , s

(z)
2 ,h(z)

)
∈ S(z)

1 × S(z)
2 × C2

distributed according to

p
s
(z)
1 ,s

(z)
2 ,h(z)

(
s

(z)
1 , s

(z)
2 ,h

)
=
∑
s1,s2

p
s
(z)
1 ,s

(z)
2 ,s1,s2,h|z

(
s

(z)
1 , s

(z)
1 , s1, s2,h

∣∣∣z) ,
and the precoding vectors g

(z)
k (s

(z)
k ) ∈ Cd, one-to-one mapped to

gk(sk) according to

g
(fk(sk))
k

(
i
(fk(sk))
k (sk)

)
= gk(sk).

Under the above definitions, we obtain

I(z) = E
[
hHΣ(s1, s2)h|z

]
= E

[(
h(z)

)H
Σ(z)(s

(z)
1 , s

(z)
2 )h(z)

]
,

where

Σ(z)(s
(z)
1 , s

(z)
2 ) :=

[
g
H(z)
1 (s

(z)
1 )

g
H(z)
2 (s

(z)
2 )

] [
g

(z)
1 (s

(z)
1 ) g

(z)
2 (s

(z)
2 )
]
.

The conditional interference Il can be (disjointly) optimized by solv-
ing an instance of Problem (7) obtained by replacing I with I(z) and
(s1, s2,h) with

(
s

(z)
1 , s

(z)
2 ,h(z)

)
. The resulting precoding vectors

g
(z)
k (s

(z)
k ) are obtained similarly to Sect. 3.2. They imply precoding

of a number of data streams bounded by d(z)
1 + d

(z)
2 . Note that this

upper bound may vary according to the realization of the common
information. Overall, the proposed scheme considers the transmis-
sion of up to maxz(d

(z)
1 + d

(z)
2 ) data streams, which can be much

lower than the upper bound d1 + d2 =
∑
z(d

(z)
1 + d

(z)
2 ) predicted

without (or by neglecting) common information.
We conclude by poiting out that the proposed disjoint optimiza-

tion is not exactly equivalent to Problem (6): the main difference lies
in the average sum-power constraint, which is here satisfied for every
realization of the common information, while the original constraint
is looser. Hence, the proposed method is formally a suboptimal so-
lution to Problem (6). However, we recall that the aforementioned
constraint is mainly introduced to avoid trivial solutions, hence the
loss in performance is expected to be small.

4. NUMERICAL EXPERIMENTS AND CONCLUDING
REMARKS

As an example, we consider the following asymmetric version of the
classical random vector quantization feedback scheme

qkl(hl) ∈ arg max
i∈{1,...,2bk}

|vH
i hl|2, l = 1, 2, k = 1, 2,

where vi is a unit-norm vector belonging to a codebook Vk of 2bk

randomly drawn channel directions. Note that the adopted simplifi-
cation bk = bk1 = bk2 still captures the asymmetry of information
across k, i.e., across the TXs. In the following experiments, we let
P1 = P2 = SNR, and we estimate the input matrices Ψ and Π
capturing the effect of the CSIT distribution by sample averaging.
Furthermore, we simulate the performance of the proposed method
for different values of α ∈ (0, 1], and we keep the choice delivering
the highest sum-rate.



4.1. Performance comparison

In Fig. 2 we compare the performance of the proposed method
against time-division multiplexing (TDM), and regularized zero-
forcing (RZF) precoding [15] naı̈vely transposed to the considered
asymmetric feedback setup as described in [4]. As an ideal bench-
mark, we also show the performance of the same RZF precoder
applied to a symmetric setup where the highest rate CSIT is avail-
able at both TXs. As we can observe, careful precoding design
tailored to the asymmetric feedback assumption is absolutely nec-
essary for meaningful spatial multiplexing, as TDM outperforms
traditional RZF at all SNR levels. Note that TDM eventually outper-
forms all the considered spatial multiplexing schemes at sufficiently
high SNR, but this issue could be solved by combining the pro-
posed method with rate-splitting approaches with common message
decoding [17].

In Fig. 3 we repeat the above experiments for the following hi-
erarchical quantized feedback scheme:

s1l = q1l(hl), s2l = q2l(q1l(hl)), l = 1, 2,

where q1l and q2l are the same as in the previous experiment. The
above hierarchical quantizers consume the same feedback resources
as their non-hierarchical counterparts, but they induce a common
information zk = s2k. Hence, we use the technique described in
Sect. 3.3 and exploit zk for complexity reduction. In the example in
Fig. 3, it means decoupling the problem into 2b2 = 128 semidef-
inite programs of dimension ≈ (2b1 + 1)/2b2 ≈ 8 in place of a
unique semidefinite program of dimension 2b1 +2b2 = 1152, hence
dramatically reducing the optimization effort1.
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Fig. 2. Performance evaluation for random vector quantizers with
asymmetric rates (b1, b2) = (8, 3).

4.2. Optimal number of data streams

As a final important observation, by inspecting the optimized pre-
coders, d = 1 turns out to be optimal in almost all our experiments.
Moreover, in the very few cases where d > 1 is obtained, mostly
happening at low SNR, it corresponds to adding 1 or 2 additional
streams with very low power, hence with negligible impact on the

1Semidefinite programs are known to scale badly with the dimension of
the matrices involved.
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Fig. 3. Performance evaluation for hierarchical random vector quan-
tizers with asymmetric rates (b1, b2) = (10, 7).

end performance. Although we do not have a complete explanation
for this observation, some preliminary insights are given by the fol-
lowing proposition.

Proposition 2. In Problem (4), if the tunable fraction α ∈ (0, 1]
of the total peak-power is small enough such that the peak-power
constraints are inactive at the optimum, then d = 1 data stream is
optimal.

Proof. Consider the equivalent problem (7). By applying the change
of variable Q̃ := Π

1
2 QΠ

1
2 2
α(P1+P2)

, we can consider its normal-
ized form

minimize
Q̃∈Sdmax

+

tr{Ψ̃Q̃}

subject to [Q̃]i,i ≤ bi/α,

tr{Q̃} = 1,

where bi := [Π]i,i
P1

P1+P2
for 1 ≤ i ≤ d1, bi := [Π]i,i

P2
P1+P2

for

d1 < i ≤ dmax, and Ψ̃ := Π−
1
2 ΨΠ−

1
2 . If we remove the in-

equality constraints, standard results [18] show that, at the optimum,
r = rank(Q̃?) = rank(Q?) = 1. Clearly, this also holds if α is
small enough such that the inequality constraints become redundant.
Finally, as discussed in Sect. 3.2, we recall that precoding using
d = r data streams incurs no loss of optimality.

The above proposition states that d > 1 is not necessary for op-
timal interference mitigation if we allow for sufficient power under-
consumption, i.e., if α is small enough. Note that power consump-
tion is not the main bottleneck in the high SNR regime and indeeed
this is reflected by our experiments. Moreover, the (almost) optimal-
ity of d = 1 could also be an artifact of the chosen design metric,
since it is not directly related to the sum-rate. These heuristic expla-
nations do not collide with the results in [9] for the single RX case,
where instead efficient power allocation is important and where we
work directly on the achievable rate.

However, further work is needed to fully understand the role of
the additional data streams in systems with multiple RXs, that is, if
they provide substantial rate gains for some settings on top of being
a useful optimization trick.
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