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Abstract—Sparse Bayesian Learning (SBL), initially proposed
in the Machine Learning (ML) literature, is an efficient and
well-studied framework for sparse signal recovery. SBL uses
hierarchical Bayes with a decorrelated Gaussian prior in which
the variance profile is also to be estimated. This is more sparsity
inducing than e.g. a Laplacian prior. However, SBL does not scale
with problem dimensions due to the computational complexity
associated with the matrix inversion in Linear Mimimum Mean
Squared Error (LMMSE) estimation. To address this issue, var-
ious low complexity approximate Bayesian inference techniques
have been introduced for the LMMSE component, including Vari-
ational Bayesian (VB) inference, Space Alternating Variational
Estimation (SAVE) or Message Passing (MP) algorithms such
as Belief Propagation (BP) or Expectation Propagation (EP) or
Approximate MP (AMP). These algorithms may converge to the
correct LMMSE estimate. However, in ML we are often also
interested in having posterior variance information. SBL via BP
or SAVE provides (largely) underestimated variance estimates.
AMP style algorithms may provide more accurate variance
information. The State Evolution analysis may show convergence
of the (sum) MSE to the MMSE value. But we are interested also
in the MSE of the individual components. To this end, utilizing
the random matrix theory results, we show that in the large
system limit, under i.i.d. entries in the measurement matrix, the
per component MSE predicted by BP or xAMP converges to the
Bayes optimal value.

I. INTRODUCTION

The signal model for the recovery of a sparse signal vector
x can be formulated as, y = Ax + v, where y are the
observations or data, A is called the measurement or the
sensing matrix which is known and is of dimension N ×M
with N < M . x contains only K non-zero (or significant)
entries, with K << M . In Bayesian inference, the Sparse
Bayesian Learning (SBL) algorithm was first proposed by
[1], [2]. SBL is based on a two or three layer hierarchical
prior on the sparse coefficients x. The priors for the hyper-
parameters (precision parameters) are chosen such that the
marginal prior for x induces sparsity, allowing the majority of
the coefficients to tend towards zero. It is worth mentioning
that [3] provides a detailed overview of the various sparse
signal recovery algorithms which fall under l1 or l2 norm
minimization approaches such as Basis Pursuit, LASSO etc
and SBL methods. The authors justify the superior recovery
performance of SBL compared to the above mentioned con-
ventional methods. Nevertheless, the matrix inversion involved
in the Linear Minimum Mean Squared Error (LMMSE) step
in SBL at each iteration makes it computationally complex
even for moderately large data sets. This complexity is the
motivation behind approximate inference methods.
Belief Propagation (BP) based SBL algorithms [4] are com-
putationally more efficient. Due to space limitations we refer

the reader to a more detailed discussion on the various
approximate inference methods for SBL in [5]. Various studies
on the convergence analysis of Gaussian BP (GaBP) can
be found in [6]–[9]. Although BP achieves great empirical
success [10], not enough rigorous work exists to characterize
the convergence behavior of BP in loopy networks. In [11] a
convergence condition for GaBP is provided which requires
the underlying distribution to be walk-summable. Their con-
vergence analysis is based on the Gaussian Markov random
field (GMRF) based decomposition, in which the underlying
distribution is expressed in terms of the pairwise connections
between the variables.
A. Contributions of this paper

• Utilizing the large system analysis developed in [12],
we show that the MSE of GaBP converges to the exact
MMSE for an i.i.d. measurement matrix A. Existing work
(for e.g. AMP) shows this using the replica prediction
method which is heuristic.

• All existing state evolution (SE) analysis for Approximate
Message Passing (AMP) algorithms or its variants such
as Generalized AMP (GAMP) [13] and Vector AMP
(VAMP) [14] focus on the Bayes optimality in terms
of the sum MSE in the large system limit (LSL). There
is no consideration for the per component (of x) MSE
predicted by these AMP algorithms. We show (to the best
of our knowledge, for the first time) that in the case of
an i.i.d. A, in the LSL, the per component MSE achieves
indeed Bayes optimality.

• Finally, it is for the first time in the literature that large
system analysis for the posterior variances is done for
non i.i.d x, compared to i.i.d x for AMP or GAMP or
vector AMP (VAMP).

• We also provide a simple derivation of the GAMP using
first order Taylor series approximations and large system
analysis.

II. SBL DATA MODEL
1 In Bayesian compressive sensing, a two-layer hierarchical
prior is assumed for the x as in [1]. The hierarchical prior

1Notations: The operator (·)H represents the conjugate transpose or conjugate for a
matrix or a scalar respectively. In the following, the pdf of a complex Gaussian random
variable x with mean µ and variance σ2 is given by CN (x;µ, ν). xk represents
the kth element of any vector x. KL(q||p) represents the Kullback-Leibler distance
between the two distributions q, p. An,: represents the nth row of A. blkdiag(·)
represents blockdiagonal part of a matrix. diag(X) or Diag(x) represents a vector
obtained by the diagonal elements of the matrix X or the diagonal matrix obtained
with the elements of x in the diagonal respectively. 1M represents a vector of length
M with all ones as the elements. For a matrix A, A ≥ 0 implies it is non-negative
(all the elements of A are non-negative). I or IM represents the identity matrix. tr{A}
represents the trace of A. Ai,j represents the (i, j)th element of matrix A.



is such that it encourages the sparsity property of x or of
innovation sequences v.

fx(x/Γ) =
M∏
i=1

N (0,Γ−1), Γ = Diag(αi). (1)

We assume a Gamma prior for Γ, fα(Γ) =
M∏
i=1

fαi(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1i e−bαi . The inverse of noise variance γ

is also assumed to have a Gamma prior, fγ(γ/c, d) =
Γ−1(c)dcγc−1i e−dγ , such that the marginal pdf of x (student-t
distribution) becomes more sparsity inducing than e.g. a Lapla-
cian prior. The advantage is that the whole machinery of linear
MMSE estimation can be exploited, such as e.g., the Kalman
filter. But this is embedded in other layers making things
eventually non-Gaussian. Now the likelihood distribution can
be written as, fy(y/x, γ) = (2π)−N/2γN/2e

−γ||y−Ax||2
2 . To

make these priors non-informative, we choose them to be small
values a = c = b = d = 10−5. We define the unknown
parameter vector θ = {x,Γ, γ} and θi is each scalar in θ.

III. VARIATIONAL FREE ENERGY OPTIMIZATION

A good overview of the variational free energy (VFE) and
different approximations to that from which BP or variational
Bayesian (VB) algorithms are derived can be seen at [15]. The
fixed points of the standard BP algorithm are shown to be the
stationary points of the Bethe Free Energy (BFE). However,
for the mean field (MF) approximation in VB [16], the approx-
imate posteriors are shown to be converging to a local mini-
mum of the MF free energy which is an approximation of the
BFE. However, we observe in [17] that for estimation of the
signals from interference corrupted observations, MF is a poor
choice since it doesn’t give the accurate posterior variance
(posterior variance of xi is observed to be independent of the
error variances of other xl, l 6= i). Assume that the posterior be
represented as, p(θ) = 1

Z

∏
a∈ABP

fa(θa)
∏

b∈AMF
fb(θb), where

ABP ,AMF represent the set of nodes belonging to the BP
part and MF part respectively with ABP ∩ AMF = ∅. Z
represents the normalization variable. N (i), N (a) represent
the number of neighbouring nodes of any variable node i or
factor node a. NBP (i) represents the number of neighbouring
nodes of i which belong to the BP part, similarly NMF (i)
is defined. Also, we define IMF =

⋃
a∈AMF N (a), IBP =⋃

a∈ABP N (a). The optimization of the resulting free energy
obtained by the combination of BP and MF [5, eq.(2)] (Note
that we use an abuse of notation and let qi(θi) represents the
belief about θi (the approximate posterior)) leads to the follow-
ing message passing (MP) expressions. Let ma→i represents
the message passed from any factor node a to variable node
i and ni→a represents the message passed from any variable

Fig. 1. Factor Graph for the static SBL. Dark square nodes are the factor
nodes and circle nodes represent the variable nodes.

node i to factor node a. The fixed point equations are,

qi(θi) = zi
∏

a∈NBP (i)

mBP
a→i(θi)

∏
a∈NMF (i)

mMF
a→i(θi),

ni→a(θi) =
∏

a∈NBP (i)\a
ma→i(θi)

∏
a∈NMF (i)

ma→i(θi),

mMF
a→i(θi) = exp(< ln fa(θa) > ∏

j∈N(a)\i
nj→a(θj)),

mBP
a→i(θi) = (

∫ ∏
j∈N (a)\i

nj→a(θj)fa(θa)
∏
j 6=i

dθj),

(2)

where <>q represents the expectation w.r.t distribution q. The
constraints in BFE can often be too complex to yield com-
putationally tractable messages (ma→i, na→i), the following
constraint relaxation leads to EP [18].

Eqa(t(θi)) = Eqi(t(θi), leads to,

mBP
a→i(θi) =

Proj
φ
(
∫ ∏
j∈N(a)

nj→a(θj)fa(θa)
∏
j 6=i

dθj)

ni→a(θi)
,

(3)

where φ represents the family of distributions charaterized by
the sufficient statistics t(θi).

A. SBL using Belief Propagation: Predictive Posterior Vari-
ance Bayes Optimality

We first review the BP messages being passed between the
variable nodes and factor nodes corresponding to the factor
graph in Figure 1. All the messages (beliefs or continuous
pdfs) passed between them are all Gaussian [4]. So in MP,
it suffices to represent them by two parameters, which are
the mean and variance of the beliefs. Also, for the first
instance, we assume that all the hyperparameters are known.
Below, indices m,n is used for representing variable nodes
and i, k is used for representing factor nodes. We represent
Sn,k as the inverse variance (precision) of the message passed
from variable node n (corresponding to xn) to factor node k
(corresponds to yk) and Mn,k be the mean of the message
passed from n to k, total NM of them. Similarly Sk,n,Mk,n

for messages from k to n. Let Ak,n represents the (k, n)th

element of A. We start with the MP expressions derived in
[4], [5].

Sn,k=αn+
∑
i 6=k

Si,n, Mn,k = S−1n,k
∑
i 6=k

Si,nMi,n.

Sk,n=A2
k,n( 1

γ +
∑
m 6=n

A2
k,mS

−1
m,k)−1,

Mk,n=A−1k,n(yk−
∑
m6=n

Ak,mMm,k),

(4)



Interpretation of mn→k(xn) ( as Bayesian information
combining): First, define the matrix S with entries σ−2k,n. At
variable node n, we have

x̂n =

 M1,n

...
MN,n


=

 1
...
1

 xn +N (0, diag(S:,n)−1)

with prior N (0, ξ−1n ) .
(5)

Interpretation of mk→n(xn) (as Interference Cancellation):
Substituting xm = Mm,k+x̃m,k (”extrinsic” information from
variables m 6= n for measurement k) in yk =

∑
m
Ak,mxm+vk

leads to the one-to-one measurement

(yk −
∑
m6=n

Ak,mMm,k) =

Ak,nxn + (vn +
∑
m6=n

Ak,mx̃m,k) ,

with total ”noise” vn +
∑
m 6=n

Ak,mx̃m,k of variance γ−1

+
∑
m 6=n

A2
k,mS

−1
m,k.

(6)

So the (deterministic) estimate and variance from this mea-
surement by itself are

Mk,n = A−1k,n(yk −
∑
m6=n

Ak,mMm,k) (7)

and
Sk,n = A2

k,n(
1

γ
+
∑
m 6=n

A2
k,mS

−1
m,k)−1. (8)

Note that instead of BP, if we use MF for the estimation of
x, the expressions above would remain the same except Sk,n
which gets written as Sk,n = A2

k,nγ. This can be interpreted
as, MF does not take into account the error variances in other
xm,m 6= n while passing the belief about xn from any factor
node yk and hence it is suboptimal. Further, substituting Sn,k
in Sk,n

Sk,n = A2
k,n(

1

γ
+
∑
m 6=n

A2
k,m(αm +

∑
i 6=k

Si,m)−1)−1, (9)

so this is now only in terms of the message variances in the
direction k to n. Finally, the belief (estimates) computed for
each xn is,

σ2
n = (αn +

∑
i Si,n)−1, µn = σ2

n(
∑
i Si,nMi,n). (10)

Further we simplify the messages and beliefs using the results
from random matrix theory, for the simplest case of i.i.d A
in the LSL where M,N → ∞ at a fixed ratio N

M > 0

(represented in short as M→∞−−−−→
a.s

. For the large system analysis,

we use Theorem 1 and Lemma 4 from [12]. We briefly
summarize the Lemma’s here. Lemma 4 in Appendix VI of
[12] states that xHNANxN

N→∞−−−−→ (1/N)trAN when the
elements of xN are iid with variance 1/N and independent
of AN , and similarly when yN is independent of xN , that
xHNANyN

N→∞−−−−→ 0. Theorem 1 from [12] implies that any
terms of the form 1

N tr{(AN − zIN )−1}, where AN is the
summation of independent rank one matrices with covariance
Θi is equal to the unique positive solution of

ej =
1

N
tr{(

K∑
i=1

Θi

1 + ei
− zIN )−1}. (11)

Under the LSL simplifications using these results, we arrive
at the following theorem,

Theorem 1. In the LSL, under i.i.d A, the predicted (by BP
or xAMP algorithms) per component MSE (or the posterior
variance σ2

n) converges exactly to the Bayes optimal values
(i.e. the diagonal elements of the posterior covariance matrix
for LMMSE). This result being applicable for AMP (GAMP
also under i.i.d A), since the derivation of AMP follows from
BP under the LSL.

Proof: Here xAMP refers to AMP or its variants. In the
LSL, we can approximate (neglecting terms of O(A2

i,j))
Sn,k = αn +

∑
i Si,n = Sn, independent of k. Further we

define S = diag(Sn). Considering the term Sk,n = A2
k,n( 1

γ +∑
m6=nA

2
k,mS

−1
m,k)−1, in the LSL it can be approximated by

Sk,n = A2
k,n( 1

γ + Ak,:S
−1AT

k,:)
−1.

Ak,:S
−1AT

k,:
M→∞−−−−→
a.s

1
M tr{S−1} = τ ′BP .

(12)

From (10), it follows that MSE = τBP = tr{S−1}. Ak,:

represents the kth row of A. Further we obtain,

Sn = αn + ( 1
γ + τ ′BP )−1

∑
iA

2
i,n,∑

iA
2
i,n

M→∞−−−−→
a.s

1,
(13)

thus Sn = αn + ( 1
γ + τ ′BP )−1. Finally we can conclude that,

τ ′BP can be obtained as the unique positive solution of the
following fixed point equation,

τ ′BP =
M∑
n=1

(αn + ( 1
γ + τ ′BP )−1)−1. (14)

Next step is to simplify the expression for LMMSE posterior
covariance in the LSL using similar techniques as above. The
posterior covariance (ΣL) can be written as,

ΣL = Γ−1 − Γ−1AT (AΓ−1AT + 1
γ )−1AΓ−1,

AT (AΓ−1AT + 1
γ )−1A

M→∞−−−−→
(a)

D, Di,i = e
1+ e

αi

,
(15)

where (a) follows from Theorem 1 in [12] and e is defined
as the unique positive solution of the following fixed point



equation (tr{ΣL} = MSE),

e = ( 1
N

M∑
i=1

α−1
i

1+ e
αi

+ 1
γ )−1, tr{ΣL} =

M∑
i=1

α−1
i e

1+ e
αi

,

From e, 1e −
1
γ = 1

N

M∑
i=1

α−1
i

1+ e
αi

= τ ′BP ,
1
e = 1

γ + τ ′BP ,

τ ′BP = 1
N

∑M
i=1

α−1
i ( 1

γ+τ
′
BP )

1
γ+τ

′
BP+ 1

αi

= 1
N

M∑
i=1

1
αi+( 1

γ+τ
′
BP )−1 .

(16)

Comparing (14) and (16), it can be observed that the MSE
under BP, τBP and the MMSE τ can be obtained as a unique
positive solution of the same fixed point equation. This implies
that in the LSL, under i.i.d A, if BP converges, the MSE
of SBL (assuming the hyperparameters are fixed or known)
converges to the exact MMSE. Moreover, it can be observed
from (16) that, the per component MSE predicted by BP
matches the diagonal elements of the LMMSE covariance,
which has never been pointed out before in the literature. Here
ends the proof.

IV. GAMP DERIVATION

In this section, we look at a modified version of AMP without
constraining to the i.i.d assumptions on the entries of A.
Only limiting constraint we impose is that the magnitude of
A2
i,j are proportional to 1

N , for facilitating the derivation of
generalized version of AMP, which can potentially converge
for much larger variants of A. In the large system limit, we
can approximate (neglecting terms of O(A2

i,j)) the precision
beliefs as, Sn,k = αn +

∑
i Si,n = σ−2n , independent of k.

Further we define Σ = diag(σ2
n).

Considering the term Sk,n = A2
k,n( 1

γ +
∑
m 6=nA

2
k,mS

−1
m,k)−1,

in the LSL it can be approximated by (neglecting terms of
O(A2

i,j) )

Sk,n =A2
k,n(

1

γ
+ Ak,:ΣAT

k,:)
−1.

Ak,:ΣAT
k,: =τk.

(17)

Ak,: represents the kth row of A. From posterior belief
variances, it follows that MSE = tr{Σ}. Further we obtain,

σ−2n = αn +
∑
i

(
1

γ
+ τi)

−1A2
i,n. (18)

Further, we write the variance recursions in matrix form as

Σ−1t = Γ + diag(AT [diag( 1
γ IN + AΣt−1A

T )]−1A),

MSE = tr{Σt}
(19)

Substituting for Sn,k = σ2
n and Sk,n = A2

k,n( 1
γ + τk)−1 (from

(17)), the expression of x̂n,k = Sn,k
∑
i 6=k Si,nx̂i,n becomes

x̂n,k ≈ σ2
n

∑
i6=k Ai,n( 1

γ + τi)
−1zi,n,

where, zk,n = yk −
∑
m 6=n

Ak,mx̂m,k. (20)

Also, we define

zk = yk −
∑
m

Ak,mx̂m −
∑
m

Ak,mδm→k. (21)

We can write

x̂n,k = fn(
∑
i6=k

Ai,n(
1

γ
+ τi)

−1zi,n). (22)

Here fn is a linear function for the Gaussian case (i.e. fn(x) =
σ2
nx and fn(x)′ = σ2

n, also we define si = ( 1
γ + τi)

−1).
Performing a first order Taylor series approximation of
fn(x) around

∑
i

Ai,nsizi,n, x̂n,k = fn(
∑
i

Ai,nsizi,n) −

Ak,nsizk,nf
′
n(
∑
i

Ai,nsizi,n), f ′n being derivative evaluated at∑
i

Ai,nsizi,n. Further substituting for zi,n from (20),

x̂n,k = x̂n + δn→k, x̂n = fn(
∑
i

Ai,nsizi +
∑
iAi,nsiδi→n)

and δn→k = −Ak,nskzkf ′n(
∑
i

Ai,nsizi +
∑
iAi,nsiδi→n).

(23)
Define S = diag(si). Substituting for δi→n = Ai,nx̂n, x̂n =
fn(
∑
i

Ai,nsizi +
∑
i

siA
2
i,nx̂n).

In vector form, we can obtain (at iteration t)

x̂t = f(ATSzt + diag(ATSA)x̂t), (24)

which is the AMP recursion for the mean, where the nth

element (f(x))n = fn(xn). Also from (21), substituting δn→k
from (23) and defining zt = [z1, · · · , zN ]T at iteration t

zt = (y −Ax̂t)

+
(
S(A ◦A)f ′

(
ATSzt−1 + diag(ATSA)x̂t

))
◦ zt−1,

(25)
where

(
S(A ◦A)f ′(ATSzt−1 + diag(ATSA)x̂t)

)
◦ zt−1 is

the Onsager term.
Finally, combining the above analysis, we can write the GAMP
iterations in a concise form as below.

zt = (y −Ax̂t−1) +
(
St−1(A ◦A)f ′

(
rt

))
◦ zt−1,

St = [diag( 1
γ IN + AΣt−1A

T )]−1,

Σ−1t = Γ + diag(AT [diag( 1
γ IN + AΣt−1A

T )]−1A),

x̂t+1 = f([diag(ATStA)]−1ATStzt + x̂t︸ ︷︷ ︸
rt

) = Ftrt,

Ft = diag(ATStA)
(
Γ + diag(ATStA)

)−1
.

(26)
For a general prior fxi(xi), the GAMP estimator above
gets modified as (f(·) becomes a componentwise nonlinear
function)

x̂t+1 = E(xt|rt), (27)

where expectation of each component is w.r.t the distribution

fxi(xi, ri) ∝ fxi(xi, ri)e
−(xi−ri)

2

2τk . (28)

A future work would be to analyze the per-component poste-
rior variance for GAMP under particular covariance distribu-
tion on the columns of A.
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Fig. 2. Per-component posterior variance.

V. SIMULATIONS

To motivate further the posterior variance prediction analysis
detailed in Theorem 1, we compare the posterior variances of
each xi for different approximate inference methods based on
BP or mean-field (MF) in Figure 2. We compare SAVE and
various AMP based algorithms which are robust to measure-
ment matrices which are beyond i.i.d. UTAMP-SBL (unitarily
invariant SBL) is the algorithm derived in [19] based on
SVD transformation of A from GAMP. Legend “GAMP-SBL”
corresponds to the algorithm in [20]. VAMP-SBL corresponds
to vector AMP-SBL proposed by Rangan et. al. in [21].
Dimensions of A,M = 1000, N = 500. The power delay
profile (variances of xi) for the SBL model in Section II is
chosen as di−1, with d = 0.995 and starting with index i = 1.

It is clear from the Figure 2 that SAVE has such ridiculously
low posterior variance, which clearly exhibits the MF sub-
optimality. In these large dimensions, indeed there should be
a huge difference between considering xk known or not for
estimating xk. The AMP-SBL versions can be seen to be
converging to the true LMMSE posterior covariance, which
validates our theoretical claims.

VI. CONCLUSION

In this paper, we look at posterior variance prediction analysis
in the large system limit for non i.i.d sparse vector. Under
SBL framework, we are able to show that in the large system
limit, the per component posterior variances converge to the
Bayes optimal values.
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