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On the Transmission Probabilities in Quantum

Key Distribution Systems over FSO Links
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Abstract

In this paper, we investigate the transmission probabilities in three cases (depending only on the

legitimate receiver, depending only the eavesdropper, and depending on both legitimate receiver and

eavesdropper) in quantum key distribution (QKD) systems over free-space optical links. To be more

realistic, we consider a generalized pointing error scenario, where the azimuth and elevation pointing error

angles caused by stochastic jitters and vibrations in the legitimate receiver platform are independently

distributed according to a non-identical normal distribution. Taking these assumptions into account, we

derive approximate expressions of transmission probabilities by using the Gaussian quadrature method.

To simplify the expressions and get some physical insights, some asymptotic analysis on the transmission

probabilities is presented based on asymptotic expression for the generalized Marcum Q-function when

the telescope gain at the legitimate receiver approaches to infinity. Moreover, from the asymptotic

expression for the generalized Marcum Q-function, the asymptotic outage probability over Beckmann

fading channels (a general channel model including Rayleigh, Rice, and Hoyt fading channels) can be

also easily derived when the average signal-to-noise ratio is sufficiently large, which shows the diversity

order and array gain.
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Beckmann distribution, free-space optics, generalized pointing errors, quantum key distribution, and
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I. INTRODUCTION

Quantum communication provides a promising solution to break the Shannon channel capacity limit

[1] and achieve an unprecedented level of security [2] simultaneously, two competing tasks which cannot

be realized in conventional technologies [3]. In this context, quantum key distribution (QKD) or quantum

cryptography is a method for sharing the secret cryptographic keys between two legitimate parties to

achieve the secure communications by taking advantage of the laws of quantum mechanics and quantum

non-cloning theorem [4], [5]. However, further investigation and real application of QKD did not attract

much attention until it was proved that the quantum computer was able to break public-key cryptosystems,

which are commonly used in the modern cryptography [6], [7].

The connection implementation of QKD includes two main medium, i.e., fiber cable and free-space

optics (FSO). Compared to the fiber cable, the implementation of QKD over FSO links is more convenient

and easier due to the flexibility of the free space connection and satellite support for distributing

quantum keys worldwide [8], [9]. Moreover, FSO is an alternative transport technology to interconnect

high capacity networking segments in current and future communication systems, because of its cost-

effectiveness, high-bandwidth availability, and interference-immunity [10]. The authors in [11]–[18] have

presented some basic performance analysis works over classical FSO links or hybrid RF-FSO links, but

those previous works do not consider the QKD mechanism. Actually, the research work about QKD over

FSO links in the communications field is considerably limited.

In practical systems, the security of QKD strongly depends on the device implementation [19]–[22].

That is, a third party may have a side channel by making use of any deviation of a QKD device from

the theoretical model. For example, two zero-error attacks on commercial QKD systems were reported

where the defects in quantum signal encoding and detection were exploited [19], [20]. Besides, some

imperfections in QKD designs can be also exploited by a plethora of quantum hacking attacks using

current technologies [23].

In real commercial QKD implementations, a single-photon mechanism is typically used to convey

the information, and the corresponding common detection scheme is called single photon avalanche

photodiodes (SPADs) where the SPAD diode is operated in Geiger mode (reverse-biased above the

breakdown voltage to create an avalanche) to count single-photons [24]. However, this detection scheme

can lead to the information leakage, because the avalanche created by the incoming photon can emit a

secondary photon which may be intercepted by a third party, namely the eavesdropper. This secondary

photon emission (the photon emission in the sender is the first emission) is called backflash, which

is quenched along with the avalanche, i.e., the backflash is quenched if the detection bias is lowered
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below the breakdown voltage [22], [24]. Previous measurements show that the probability of detecting

backflash is greater than 0.4%, and more than 0.04 photons emerging from the devices are contained

in the backflash given the 10% nominal detection efficiency of SPADs [22], [25]. These measurements

provide a reference for the backflash resulting in the information leakage, although the measurement

results may change in different detector types and optical components.

An unevadable vulnerability in the FSO QKD systems is the random pointing error due to stochastic

jitters and vibrations which can be caused by building sway, thermal expansion, and week earthquakes, in

the urban FSO systems [26]–[28]. Similarly, for satellite communications, there are internal and external

reasons for stochastic vibrations [29]. For example, the structure deformations caused by temperature

gradients, and the gravitational force inhomogeneity over the satellite orbit, are two main external

reasons for stochastic vibrations in satellite systems. The internal sources include electronic noise, antenna

pointing operation, and solar array driver [30].

The authors in [31] first investigated the performance of received powers at both the legitimate receiver

and eavesdropper in FSO QKD systems with taking random pointing errors into account, and derived

the closed-form expressions for the corresponding average received powers. However, the authors in [31]

assumed that the azimuth and elevation pointing errors are identically independently distributed, and more

specifically, these two pointing errors are modeled by Gaussian distribution with zero-mean and the same

variance which may be a little ideal. In the practical systems, the mean and variance of these two pointing

errors are typically different. Moreover, the authors in [31] did not consider the transmission probability

depending on the received power threshold, which is very important and useful for the system evaluation

and design. This is because we need to know the transmission probability depending on some conditions

in the average level, apart from the average received powers, when evaluating and designing FSO QKD

systems.

Actually, the pointing error angle, divided into the azimuth and elevation pointing errors, can be

modeled by the Beckmann distribution [32]–[35], a generalized model including the Rayleigh, Hoyt

and Rice models. Specifically, the Beckmann model is reduced into the Hoyt model for zero-mean and

different variance of two sub-part pointing errors, and the different non-zero mean and equal variance case

refers to the Rice case in the Beckmann distribution. The zero-mean and equal variance case considered

in [31] is the most simple scenario in the Beckmann distribution, denoted by the Rayleigh case. The

authors in [36] expanded the pointing error model in [31] to the Beckmann distribution. In [36], exact

closed-form expressions for the average received powers at both the legitimate receiver and eavesdropper

were derived, as well as finding the maximum points of the telescope gain at the legitimate receiver in

some special cases analytically. However, the authors in [36] still did not investigate the transmission
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probabilities depending on a variety practical conditions, which is also important for the FSO QKD system

evaluation. Similar to [37]–[39], the transmission probability in this paper is defined as the probability

that the received power is satisfied one or more pre-set thresholds in the FSO QKD system, which is

obviously a natural variant of the outage probability in traditional communications [35].

Motivated by observing those facts outlined above, we investigate the performance of QKD systems

over FSO links in terms of transmission probabilities depending on three different conditions. The main

contributions of this paper are summarized as follows:

1) Closed-form expressions with a high accuracy for transmission probabilities depending on three dif-

ferent conditions, i.e., legitimate receiver, eavesdropper and both legitimate receiver and eavesdrop-

per, are derived based on the Gaussian quadrature rule, where the accuracy grows with increasing

the summation terms in the Gaussian quadrature.

2) Asymptotic expression for the generalized Marcum Q-function is derived after some mathematical

manipulations, which can be used to derive the asymptotic outage probability over Beckmann fading

channels when the average signal-to-noise ratio (SNR) approaches to infinity, showing the diversity

order and array gain, since those two metrics govern the outage probability behaviour in high SNRs.

3) By using the asymptotic result for the generalized Marcum Q-function, the asymptotic expressions

for three transmission probabilities are easily derived, which are valid in the high value region

of the telescope gain at the legitimate receiver. Besides providing some insights, these asymptotic

expressions are significantly concise, resulting in a much faster calculation than the analytical

expressions that need to be computed based on the Gaussian quadrature rule.

4) We also present some specific expressions for those three transmission probabilities in some

simplified cases which result in exact expressions or more concise forms. More specifically, exact

closed-form expressions in Rayleigh, Hoyt and Rice cases (three special cases of the Beckmann

distribution) for the transmission probability depending only on the legitimate receiver are given. In

the Rayleigh case, we present a more concise expression for the transmission probability depending

on both the legitimate receiver and eavesdropper.

The remainder of this paper is organized as follows. The system model is presented in Section II. The

transmission probabilities depending on three different conditions are analyzed in Sections III, IV and V,

respectively. In Section VI, some numerical results are generated and used to validate the correctness of

derived closed-form expressions, as well as presenting some interesting comparisons. Section VII finally

concludes the paper.
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Fig. 1: Secure QKD System Over FSO links

II. SYSTEM MODEL

As depicted in Fig. 1, there is a sender (Alice) located on a absolutely static platform1 communicating

a legitimate receiver (Bob) located on a platform suffering from stochastic jitters and vibrations, such as

a laser satellite system, over a FSO link in open areas. This vibrating platform in the legitimate receiver

results in a random pointing error, where the stochastic deviation angle (θ) is divided into two parts, i.e.,

the azimuth pointing error (θH ) and the elevation pointing error (θV ), and therefore, θ can be written as

θ =
√
θ2
H + θ2

V ,

where θH and θV are normally assumed to be independent Gaussian random variables, i.e., θH ∼

N (µH , σ
2
H) and θV ∼ N (µV , σ

2
V ), where µH and σ2

H (or µV and σ2
V ) represent the mean and variance

of θH (or θV ), respectively.

The SPADs detection scheme adopted by the legitimate receiver is assumed in this system setting. The

received power at Bob is2 [26], [29], [31]

PD(θ) = K1L (θ)GD,

where L(θ) = exp(−GDθ2) is the pointing loss factor, GD = (πdD/λ1)2 is the telescope gain at the

legitimate receiver, dD is the unobscured circular aperture diameter of the telescope, λ1 is the wavelength,

1We can also consider a non-static platform for the sender. In a relative motion aspect, if the sender is assumed to be relatively

static to the receiver, this will induce the same analysis.
2This power can be also regarded as an average received power over instantaneous received photon counts influenced by both

the shot noise and the dead time of the SPAD receiver. Here, we focus on the transmission probability depending on the average

power, rather than the instantaneous performance.
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and K1 is a constant depending only on the system design, given by

K1 = ηqPSGSηSηD
LA (Z1)

Z2
1

(
λ1

4π

)2

,

in which PS is the optical transmitter power, ηq is the quantum efficiency, GS is the telescope gain of the

sender, LA(·) is the atmospheric loss, and Z1 is the distance between the sender and legitimate receiver.

As discussed in the introduction section, the SPADs detection scheme leads to the backflash due to

the secondary photon emission caused by the avalanche. A third party (eavesdropper, Eve) can make use

of this backflash to intercept the secondary photon, and thereby wiretapping the conveyed information

from the sender to the legitimate receiver. The received power at the eavesdropper is given by [31], [36]

PE (θE , α) = K2PD (θ)L (θE)GD,

where θE =
√

(θV + α)2 + θ2
H , α is the pointing direction error angle in the wiretap FSO link, and K2

is a system constant, given by

K2 = ηBηqηDηEGE
LA (Z2)

Z2
2

(
λ2

4π

)2

,

in which ηB is the probability of backflash, Z2 is the distance between the legitimate receiver and

eavesdropper, ηE and GE are the optical efficiency and telescope gain of the eavesdropper respectively,

and λ2 is the backflash wavelength.

III. TRANSMISSION PROBABILITY DEPENDING ONLY ON LEGITIMATE RECEIVER

In this section, we want to evaluate the transmission probability performance given a received power

threshold (λD) at the legitimate receiver. In this context, the transmission probability depending only on

the legitimate receiver (TPLR) is defined as

TPLR = Pr
{
PD (θ) ≥ λD

}
= Pr

{
K1GDL (θ) ≥ λD

}
, (1)

which can be further written by substituting the expression for L(θ), given by

TPLR = Pr

{
θ2 ≤ −1

GD
ln

λD
K1GD

}
. (2)

Let ΘD = −1
GD

ln λD
K1GD

. By substituting the probability density functions (PDFs) of θV and θH into (2),

the TPLR for arbitrary µV , µH , σV and σH can be derived as

TPLR = Pr
{
θ2 ≤ ΘD

}
= Pr

{√
θ2
V + θ2

H ≤
√

ΘD

}

=

∫∫
√
θ2V +θ2H≤

√
ΘD

fθV (θV )fθH (θH)dθV dθH =

∫∫
√
θ2V +θ2H≤

√
ΘD

exp
(
− (θV−µV )2

2σ2
V
− (θH−µH)2

2σ2
H

)
2πσV σH

dθV dθH , (3)
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where the double integral, unfortunately, cannot be solved in a closed-form, and therefore, there are some

approximation methods for this double integral, such as [32] and [33]. However, those approximation

methods proposed by [32] and [33] are still complicated for calculation.

Here, we provide another approximation method based on the Gaussian quadrature rule [40, Ch. 9],

shown in Theorem 1.

Theorem 1. An approximate result for the TPLR based on the Gaussian quadrature rule is

TPLR ≈ 1− 1√
π

∑N

i=1
ωifTPLR (xi), (4)

where N , ωi, and xi are the summation terms, weights, and selected points of the Gauss-Hermite

quadrature (GHQ, a special case of Gaussian quadrature), and fTPLR(·) is given by

fTPLR (x) = Q 1

2

(
√
λ,

1

σH

√
ΘD −

(√
2σV x+ µV

)2
× I
{

ΘD ≥
(√

2σV x+ µV

)2
} )

, (5)

in which λ = µ2
H/σ

2
H represents the noncentrality parameter, Q·(·, ·) denotes the generalized Marcum

Q-function [42]. and I{·} denotes the indicator function, i.e., I {A} =

1, if A is true;

0, otherwise.

Proof. See Appendix A.

Remark 1. Although a high accuracy requires many terms in (4), resulting in a much slower calculation,

especially when Q 1

2
(·) cannot be directly calculated in some softwares, such as Matlab, Theorem 1

provides an analytical tool to investigate the TPLR. We will present an asymptotic expression presented

in the III-A subsection, rather than (4), for getting a high accuracy result in a special case.

As θV follows the Gaussian distribution, for σ2
V � σ2

H , according to [44, Eq. (4)], the TPLR in (54)

can be robustly approximated by

TPLR = EθV

{
1−Q 1

2

(
√
λ,

√
ΘD − θ2

V

σ2
H

I
{

ΘD ≥ θ2
V

})}
σ2
V�σ2

H≈ 2

3
φTPLR (µV ) +

1

6
φTPLR

(
µV +

√
3σV

)
+

1

6
φTPLR

(
µV −

√
3σV

)
, (6)

where

φTPLR (x) = 1−Q 1

2

(
√
λ,

√
ΘD − x2

σ2
H

I {ΘD ≥ x2}

)
. (7)

This robust approximation for σ2
V � σ2

H was proposed by [44]–[46]. This robust result becomes more

tighter along with the ratio of σ2
V /σ

2
H approaching to zero.
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A. Asymptotic Result for TPLR as ΘD → 0

Before presenting the asymptotic analysis for TPLR, we first give the following proposition.

Proposition 1. The asymptotic expression for QM (a, b), the generalized Marcum Q-function, as b→ 0,

is given by

QM (a, b)
b→0' 1−

exp
(
−a2

2

)
Γ (M + 1) 2M

b2M + o
(
b2M+1

)
, (8)

where M , a, b are non-negative, o(·) and Γ(·) denote the higher order term and Gamma function [42],

respectively.

Proof. See Appendix B.

We present some numerical results in Fig. 2 to validate the correctness of the derived asymptotic

expression for the generalized Marcum Q-function. It is obvious that the asymptotic results match the

exact results very well when b is sufficiently small.

-15 -10 -5 0 5 10

b [dB]

10
-4

10
-3

10
-2

10
-1

10
0

1
−
Q

M
(a
,b
)

Exact
Asymptotic

M = 3, 2, 1, 0.5

Fig. 2: 1−QM (a, b) versus b for a = 1.

For GD → +∞, we have

ΘD =
−1

GD
ln

λD
K1GD

→ 0+, as GD → +∞. (9)

In the following, we will analyze the asymptotic behaviour of TPLR when ΘD → 0+ (or equivalently

GD → +∞).

Lemma 1. For ΘD → 0 (or equivalently GD → +∞), by using Proposition 1, the asymptotic expression

for TPLR can be derived as

TPLR
ΘD→0'

√
π

4Γ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
ΘD. (10)
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Proof. See Appendix C.

Remark 2. In the GD saturation case, a linear mapping from ΘD to the TPLR is derived, shown in

Lemma 1, which is interesting in the performance analysis aspect. This asymptotic expression can not

only simplify the TPLR calculation significantly, but also reveal the relationship between the TPLR and

ΘD in the GD saturation case.

Remark 3. In fact, the asymptotic expression presented in Lemma 1 can be also viewed as the asymptotic

result for the outage probability over Beckmann fading channels (including Rayleigh, Hoyt and Rice fading

channels), where ΘD represents the received SNR threshold, and the instantaneous SNR at the receiver

is γ = θ2
V + θ2

H .

Although the atmospheric turbulence is not a main investigation in this paper (we will consider this

issue in our future work), we can simply analyze this impact on the TPLR in the GD saturation case based

on Lemma 1, shown in Corollary 1 where the turbulence is modeled by a Gamma-Gamma distribution,

a widely adopted turbulence model [34].

Corollary 1. In the GD saturation case, if the atmospheric turbulence modeled by a Gamma-Gamma

distribution is considered over the FSO link, the asymptotic result for the TPLR is

TPLR =

√
π

4Γ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
ΘD

+

√
π (ψ(αD) + ψ(βD)− ln(αDβD))

4GDΓ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
︸ ︷︷ ︸

Atmospheric Turbulence

, (11)

where ψ(·) denotes the digamma function [42], αD and βD are the fading parameters of large-scale and

small-scale fluctuations, respectively.

Proof. It is obvious that the TPLR in (2) becomes

TPLR = Pr
{
IDK1GDL(θ) ≥ λD

}
= Pr

{
θ2 ≤ −1

GD
ln

λD
IDK1GD

}
= Pr

{
θ2 ≤ ΘD +

1

GD
ln ID

}
, (12)

where ID represents the atmospheric turbulence following a Gamma-Gamma distribution with the PDF

[34, Eq. (11)],

fID(x) =
2(αDβD)

αD+βD
2

Γ(αD)Γ(βD)
x
αD+βD

2
−1KαD−βD

(
2
√
αDβDx

)
, (13)

where K·(·) denotes the modified Bessel function of the second kind [42].
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Define Θ′D = ΘD + 1
GD

ln ID. In view of Lemma 1, it is easy to derive the asymptotic result for the

TPLR as

TPLR
ΘD→0'

√
π

4Γ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
· EID

{
Θ′D
}

=

√
π

4Γ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
ΘD +

√
π

4GDΓ (1.5)σV σH
exp

(
−λ

2
−

µ2
V

2σ2
V

)
· EID {ln ID}︸ ︷︷ ︸

Atmospheric Turbulence

.

(14)

By using the PDF of ID, the expectation of ln ID with respect to ID can be obtained as [34]

E {ln ID} =
2(αDβD)

αD+βD
2

Γ(αD)Γ(βD)
×
∫ ∞

0
ln(x) · x

αD+βD
2
−1KαD−βD

(
2
√
αDβDx

)
dx

= ψ(αD) + ψ(βD)− ln(αDβD), (15)

Combining (14) and (15) yields Corollary 1.

Remark 4. Considering ψ(x) − lnx ≤ 0 for x > 0 in Corollary 1, we can conclude that the impact

of atmospheric turbulence is always negative to TPLR in the GD saturation case. Further, the negative

impact is quantified by the second part in (11), compared to the TPLR without atmospheric turbulence

in Lemma 1.

B. Special Case for µV = µH = 0 and σV 6= σH

To get the exact closed-form expression for TPLR, we relax the conditions for the statistical charac-

teristics of θV and θH , i.e., µV = µH = 0 and σV 6= σH . In this simplified case, θ2 follows the Hoyt

distribution, and the corresponding TPLR is given by [43]

TPLR =
2q

1 + q2
Ie

(
1− q2

1 + q2
,

(
1 + q2

)2
4q2
(
σ2
V + σ2

H

)ΘD

)
, (16)

where Ie(·, ·) denotes the Rice Ie-function defined in [43, Eq. (3)], and q ∈ [0, 1] is given by

q =

σV /σH , for σV ≤ σH ;

σH/σV , for σV > σH .

(17)

From the asymptotic analysis for the general parameter settings, the asymptotic expression in the Hoyt

distribution case (µV = µH = 0) can be easily derived as

TPLR
ΘD→0'

√
π

4σV σHΓ (1.5)
ΘD. (18)
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The asymptotic expression can be also easily derived by using the asymptotic result for the generalized

Marcum Q-function in Proposition 1, because the Rice Ie-function can be written in the Marcum Q-

function form, given by [43]

Ie (k, x) =

∫ x

0
exp (−t) I0 (kt) dt

=
1√

1− k2

[
Q1

(√(
1 +

√
1− k2

)
x,

√(
1−

√
1− k2

)
x

)

−Q1

(√(
1−

√
1− k2

)
x,

√(
1 +

√
1− k2

)
x

)]
. (19)

When q = 1, i.e., σV = σH = σ, the distribution of θ is reduced into the Rayleigh distribution, and

the corresponding TPLR becomes

TPLR = 1− exp

(
−ΘD

2σ2

)
. (20)

C. Special Case for µV 6= µH 6= 0 and σV = σH = σ

For µV 6= µH and σV = σH = σ, i.e., the Rice case, we can rewrite the TPLR as

TPLR = Pr
{
θ2
V + θ2

H ≤ ΘD

}
= Pr


 θV√

µ2
V + µ2

H

2

+

 θH√
µ2
V + µ2

H

2

≤ ΘD

µ2
V + µ2

H


= Pr


√√√√√
 θV√

µ2
V + µ2

H

2

+

 θH√
µ2
V + µ2

H

2

≤

√
ΘD

µ2
V + µ2

H

 . (21)

Let sinβ = µV√
µ2
V +µ2

H

and cosβ = µH√
µ2
V +µ2

H

It is easy to see that

θV√
µ2
V + µ2

H

∼ N
(

sinβ,
σ2

µ2
V + µ2

H

)
,

θH√
µ2
V + µ2

H

∼ N
(

cosβ,
σ2

µ2
V + µ2

H

)
.

From the definition of the Rice distribution, we can conclude that√√√√√
 θV√

µ2
V + µ2

H

2

+

 θH√
µ2
V + µ2

H

2

∼ Rice

1,
σ√

µ2
V + µ2

H

 ,

and the corresponding TPLR can be easily derived by using the well-known standard cumulative distri-

bution function (CDF) of the Rice distribution, given by

TPLR = 1−Q1


√
µ2
V + µ2

H

σ
,

√
ΘD

σ

 . (22)
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From the derivation in Proposition 1, when ΘD → 0, the asymptotic TPLR is

TPLR
ΘD→0' exp

(
−
µ2
V + µ2

H

2σ2

)
1

2σ2
ΘD + o

(
Θ2
D

)
. (23)

IV. TRANSMISSION PROBABILITY DEPENDING ONLY ON EAVESDROPPER

The transmission probability depending only on eavesdropper (TPE) is defined as the probability that

the received power at the eavesdropper is less than a threshold (λE), i.e.,

TPE = Pr
{
K2PD (θ)L (θE)GD ≤ λE

}
= Pr

{
K1K2G

2
D exp

(
−GD

(
2θ2 + 2αθV + α2

))
≤ λE

}
= Pr

{
θ2 + αθV ≥

−1

2GD
ln

λE
K1K2G2

D

− α2

2︸ ︷︷ ︸
ΘE

}
. (24)

An approximation for the TPE will be given in Theorem 2 based on the GHQ.

Theorem 2. The TPE can be approximated as

TPE ≈ 1√
π

∑N

i=1
ωifTPE (xi), (25)

where N , ωi, and xi are the same as those in (4), and fTPE(x) is given in (26),

fTPE(x) = Q 1

2

√λ,
√√√√ΘE −

(√
2σV x+ µV

)2 − α (√2σV x+ µV
)

σ2
H

×I
{

ΘE ≥
(√

2σV x+ µV

)2
+ α

(√
2σV x+ µV

)})
. (26)

Proof. See Appendix D.

From [44]–[46], for σ2
V � σ2

H , the TPE can be robustly approximated by

TPE
(a)
≈ 2

3
φTPE (µV ) +

1

6
φTPE

(
µV +

√
3σV

)
+

1

6
φTPE

(
µV −

√
3σV

)
, (27)

where (a) follows [44, Eq. (4)], and φTPE(·) is given by

φTPE (x) = Q 1

2

(
√
λ,

√
ΘE − x2 − αx

σ2
H

I {ΘE ≥ x2 + αx}

)
. (28)

A. Analysis on ΘE versus GD

ΘE is given by

ΘE =
−1

2GD
ln

λE
K1K2G2

D

− α2

2
. (29)

October 9, 2020 DRAFT



13

The first derivative of ΘE with respect to GD is

∂ΘE

∂GD
=

ln λE
K1K2G2

D
+ 2

2G2
D

. (30)

Let ∂ΘE

∂GD
= 0. The root for GD > 0 is

G∗D = e

√
λE

K1K2
. (31)

We can conclude that ΘE is an increasing function over GD ∈ (0, G∗D), and a decreasing function over

GD ∈ (G∗D,∞). The maximum value of ΘE is

Θ∗E = ΘE |GD=G∗
D

=

√
K1K2

e
√
λE

− α2

2
. (32)

For GD →∞, we have

lim
GD→∞

−1

2GD
ln

λE
K1K2G2

D

− α2

2
= −α

2

2
. (33)

For GD → 0+, we have the limit

lim
GD→0+

−1

2GD
ln

λE
K1K2G2

D

− α2

2
→ −∞. (34)

Remark 5. Combining the analysis on ΘE and (24), we can conclude that the TPE is decreasing over

GD ∈ (0, G∗D) due to the increase in ΘE , while the TPE is increasing over GD ∈ (G∗D,∞) due to the

decrease in ΘE . When GD is sufficiently large, the TPE will increase to an upper bound, because ΘE

goes to a constant (−α2/2). If GD → 0+, ΘE → −∞, resulting in the TPE going to 1.

B. Asymptotic Analysis for TPE

Lemma 2. When ΘE → −α2

4 from the right side in the real number axis, the asymptotic result for TPE

is given by

TPE
ΘE→−α2

4' 1−
√
π
(
α2 + 4ΘE

)
16σHσV Γ (1.5)

exp

(
−λ

2
− (α/2 + µV )2

2σ2
V

)
× I
{

ΘE ≥
−α2

4

}
. (35)

For ΘE ≤ −α
2

4 , the TPE is exactly equal to 1.

Proof. See Appendix E.

Remark 6. α reflects the distance between the sender and the eavesdropper. Specifically, α→ 0 means

that the eavesdropper is close to the sender. Lemma 2 presents a quantitative relationship between ΘE

(or GD) and α. When ΘE ≤ −α2

4 , the event of received power at the eavesdropper below the pre-set

threshold (λE) happens with probability one. Further, Lemma 2 reveals the linear trend of TPE with

respect to ΘE when ΘE →
(
−α2

4

)+
.
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V. TRANSMISSION PROBABILITY DEPENDING ON BOTH LEGITIMATE RECEIVER AND EAVESDROPPER

The transmission probability depending on both the legitimate receiver and the eavesdropper (TPRE)

is defined as

TPRE = Pr
{
PD (θ) ≥ λD, PE (θE) ≤ λE

}
= Pr

{
K1GDL (θ) ≥ λD,K1K2G

2
DL (θ)L (θE) ≤ λE

}
,

(36)

which can be further written by using the definition of ΘD and ΘE ,

TPRE = Pr
{
θ2
H ≤ ΘD − θ2

V , θ
2
H ≥ ΘE − θ2

V − αθV
}

= Pr

{
ΘE − θ2

V − αθV
σ2
H

≤
θ2
H

σ2
H

≤
ΘD − θ2

V

σ2
H

}
.

(37)

By applying the GHQ method, an approximate result for the TPRE is derived in Theorem 3.

Theorem 3. A closed-form expression for an approximate TPRE is

TPRE ≈ 1√
π

∑N

i=1
ωifTPRE (xi), (38)

where N , ωi, xi are the same as those in (4), and fTPRE(·) is given in (39),

fTPRE (x) = I
{
x ≥ ΘE −ΘD

α
√

2σV
− µV√

2σV

}[
Q 1

2

(
√
λ,

1

σH

√
ΘE −

(√
2σV x+ µV

)2
− α

(√
2σV x+ µV

)
× I
{

ΘE ≥
(√

2σV x+ µV

)2
+ α

(√
2σV x+ µV

)} )

−Q 1

2

(
√
λ,

1

σH

√(
ΘD −

(√
2σV x+ µV

)2
)
I
{

ΘD ≥
(√

2σV x+ µV

)2
} )]

. (39)

Proof. See Appendix F.

For σ2
V � σ2

H , according to [44]–[46], the TPRE in (73) can be robustly approximated by

TPRE
σ2
V�σ2

H≈ 2

3
φTPRE (µV ) +

1

6
φTPRE

(
µV +

√
3σV

)
+

1

6
φTPRE

(
µV −

√
3σV

)
, (40)

where φTPRE (x) is given in (41),

φTPRE (x) =I
{
x ≥ ΘE

2α
− ΘD

α

}[
Q 1

2

(
√
λ,

√(
ΘE

2σ2
H

− x2 − αx
σ2
H

)
I {ΘE ≥ 2 (x2 + αx)}

)

−Q 1

2

(
√
λ,

√
ΘD − x2

σ2
H

I {ΘD ≥ x2}

)]
. (41)
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A. Asymptotic Analysis

Lemma 3. The asymptotic expression for TPRE as GD → +∞ is the same as that for TPLR, given by

TPRE
GD→+∞'

√
πΘD

4σHσV Γ (1.5)
exp

(
−λ

2
−

µ2
V

2σ2
V

)
. (42)

Proof. The proof by solid mathematical manipulations is removed due to the page limitation.

Lemma 3 can be explained by the fact that for GD → +∞, ΘE → −α2

2 , and ΘD → 0+. From the

previous analysis, we know that for ΘE < −α2

4 , there is no real root for ΘE − θ2
V − αθV = 0, i.e.,

ΘE − θ2
V −αθV is always less than zero for any θV . From the second equal sign in (37), for ΘE <

−α2

4 ,

the TPRE becomes TPRE = Pr
{
θ2H
σ2
H
≤ ΘD−θ2V

σ2
H

}
, which is exactly the definition of TPLR.

Remark 7. The asymptotic result for the TPRE in Lemma 3 reveals that although the increase in GD

also induces an increase in the received power at the eavesdropper, the positive impact of increasing

GD on the TPRE will domain the overall performance when GD → ∞, and more exactly, there is a

convergence trend of TPLR and TPRE (i.e., the eavesdropping impact vanishes) in the GD saturation

case.

B. Special Case for µV = µH = 0 and σV = σH = σ

As the TPRE cannot be solved in an exact closed-form, even for the simplest case, i.e., Rayleigh

distribution. Here, we only analyze the special case for the TPRE in the Rayleigh case (µV = µH = 0

and σV = σH = σ).

Let X = θ2
V + θ2

H and Y = 2θ2
V + 2θ2

H + 2αθV = 2X + 2αθV . The TPRE can be rewritten as

TPRE = Pr
{
K1GD exp (−GDX) ≥ λD, K1K2G

2
D exp

(
−GD

(
Y + α2

))
≤ λE

}
= Pr

{
X ≤ −1

GD
ln

λD
K1GD

, Y ≥ −1

GD
ln
λE exp

(
GDα

2
)

K1K2G2
D

}
. (43)

Let

ΘD =
−1

GD
ln

λD
K1GD

, ΘE =
−1

GD
ln
λE exp

(
GDα

2
)

K1K2G2
D

.

The TPRE is further written as

Pr {X ≤ ΘD, Y ≥ ΘE} =

∫ ΘD

0

∫ ∞
ΘE

fX,Y (x, y)dydx, (44)

where fX,Y (·, ·) represents the joint PDF of X and Y . From the derivation of fX,Y (·, ·) in Appendix G,

we can write the TPRE in an integral form as

TPRE =
1

4πσ2α

∫ ΘD

0
exp

(
− x

2σ2

)∫ 2x+2α
√
x

max{ΘE ,−2α
√
x+2x}

[
x−

(
y − 2x

2α

)2
]− 1

2

dydx. (45)
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By considering the derivation in Appendix H, the TPRE can be easily approximated by

TPRE ≈ ΘD

8πασ2

∑N

i=0
ω′if
′
TPRE

(
ΘD

2
x′i +

ΘD

2

)
, (46)

where ω′i and x′i are the weights and selected points over the standard integral interval (i.e., [-1,1]) in

the Gaussian quadrature respectively, and f ′TPRE (x) is given by

f ′TPRE (x) = exp
(
− x

2σ2

)[
απ − 2α arcsin

(
max {ΘE ,−2α

√
x+ 2x} − 2x

2α
√
x

)]
. (47)

Remark 8. There is no special function involved in (46), resulting in a much faster calculation for TPRE.

Moreover, the built-in function for calculating the non-integer order generalized Marcum Q-function is

not available in some softwares, such as Matlab, which brings more difficulty to implement Theorem 3.

C. Further Simplification for the Rayleigh Case

If we let max {ΘE ,−2α
√
x+ 2x} be always −2α

√
x + 2x. The integral form of the TPRE in (45)

becomes

TPRE =
1

4πσ2α

∫ ΘD

0
exp

(
− x

2σ2

)∫ 2x+2α
√
x

−2α
√
x+2x

[
x−

(
y − 2x

2α

)2
]− 1

2

dydx. (48)

By using the following integral identity,∫ 2x+2α
√
x

−2α
√
x+2x

[
x−

(
y − 2x

2α

)2
]− 1

2

dy = 2απ, (49)

the closed-form expression for the TPRE can be finally derived as

TPRE = 1− exp

(
−ΘD

2σ2

)
. (50)

If GD → +∞, we have ΘD = 1
GD

ln K1GD
λD
→ 0+. In this case (ΘD → 0+), by using exp (−x) ' 1−x

for x→ 0, the asymptotic result for TPRE is

TPRE ' ΘD

2σ2
=

1

2σ2GD
ln
K1GD
λD

. (51)

From the previous analysis, we know that the condition for using this very simple expression (50) is

ΘE <
−α2

4 . In this condition, the impact on the TPRE from the eavesdropper vanishes.

VI. NUMERICAL RESULTS

A. TPLR Simulations

In this subsection, we run some Monte-Carlo simulations to validate the derived closed-form expres-

sions for the TPLR. By referring to the parameter settings in [31], [36], some selected simulation results
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are shown in Figs. 3–6, where 107 realizations are generated to get each average result according to the

statistical properties, i.e., µV , µH , σV and σH .

In Fig. 3, the growing trend of TPLR with decreasing σ2
H is obvious due to more weaker vibrations.

As expected, the TPLR is decreasing as ΘD approaches to zero (or equivalently GD → +∞).
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ΘD [dB]

10
-3

10
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10
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10
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T
P
L
R

σ
2
H
= 1× 10−9, Simulation

σ
2
H
= 1× 10−10, Simulation

σ
2
H
= 1× 10−11, Simulation

Gaussian Quadrature
Asymptotic

Fig. 3: TPLR versus ΘD for µV = 1×10−8, µH = 5×10−8, σ2
V = 1×10−12 and N = 300 for Gaussian

quadrature.

Figs. 4–5 plot the TPLR versus ΘD for different variance cases in the Hoyt and Rice models respec-

tively, where the trends with respect to ΘD (or variance) are the same as those in Fig. 3. The proposed

asymptotic results match the exact results very well especially in the low ΘD region in Figs. 3–5. It

is worth noting that the asymptotic results are calculated much faster than the results by the Gaussian

quadrature rule, which provides an alternative and efficient method, especially when we need a very high

accuracy (several thousand terms may be needed in Gaussian quadrature method).

The results shown in Fig. 6 validate the high accuracy of the robust approximation proposed in [44]–

[46], especially for σ2
V � σ2

H . We can easily see that the gap between the exact and robust results almost

vanishes as the ratio of σ2
V /σ

2
H approaches to zero.

B. TPE Simulations

In this subsection, we run the Monte-Carlo simulation to validate the correctness of the derived closed-

form expressions for the TPE. To facilitate the simulation setting, we assume that PS = 0 dB, GS =

GE = 109, ηS = ηD = ηE = 0.9, ηq = 0.1, ηB = 0.04, λ1 = λ2 = 780 nm, Z1 = Z2 = 900 km,

and LA(D1) = LA(D2) = 0.5, by considering Table I in [31]. As the robust approximation for the
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Fig. 4: TPLR in the Hoyt case versus ΘD for µV = µH = 0, and σ2
H = 5× 10−11.
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Fig. 5: TPLR in the Rice case versus ΘD for σV = σH = σ, µV = 1× 10−7 and µH = 5× 10−7.

Gaussian distribution has been investigated very well in [44]–[46], we do not validate the high accuracy

for σ2
V � σ2

H in the following simulations.

As shown in Fig. 7, the TPE remains 1 before a sharp decrease up to the lowest bound, and after

this lowest bound, the TPE grows rapidly to 1 as GD increases, which is exactly as the TPE changing

analysis in Remark 5. To show the lowest bound, Fig. 8 uses the log-scale to plot TPE in Fig. 7, where

this lowest bound grows with increasing µH . From Figs. 7–8, it is obvious that a large µH results in

a large TPE, which can be explained by the fact that the received power performance at the legitimate

receiver becomes worse, thereby accordingly decreasing the received power at the eavesdropper.

Fig. 9 plots the TPE versus ΘE from −α2

4 to 15α2. As analyzed in the IV-B subsection, for ΘE → −α2

4

from the right side in the real number axis, the TPE can be approximated by a linear function. Moreover,
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Fig. 6: TPLR versus ΘD for σ2
H = 1× 10−10, µV = 1× 10−8 and µH = 5× 10−8.

there is a decreasing trend in the TPE with respect to α.
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Fig. 7: TPE versus GD for µV = 1 × 10−7, σ2
V = 1 × 10−12, σ2

H = 1 × 10−13, λE = 1 × 10−20,

α = 1× 10−9, and N = 30 for the Gaussian quadrature.

C. TPRE Simulations

In this subsection, the same system parameter settings as those in the first paragraph in the VI-B

subsection are assumed for convenience.

In Fig. 10, the TPRE versus GD is plotted, where a fluctuation is obvious in the medium GD region,

while a monotonic decreasing is presented in the high GD region, and this decreasing trend can be
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Fig. 8: TPE versus GD in the log-scale of Fig. 7.

0 5 10 15

ΘE ×α
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
E

α = 1× 10−7, Simulation
α = 1.5× 10−7, Simulation
α = 2× 10−7, Simulation
α = 2.5× 10−7, Simulation
Asymptotic

Fig. 9: TPE versus ΘE for µV = 1 × 10−7, µH = 1 × 10−8, σ2
V = 1 × 10−12, σ2

H = 1 × 10−13, and

λE = 1× 10−20.

approximated by a linear function (independent on α, which has been proved in the asymptotic analysis

for TPRE) in the log-scale. A smaller α means a more close eavesdropper around the sender, which

results in the decrease in the TPRE.

There also exists a fluctuation in (λD, λE) = (10−15, 10−20), (10−20, 10−20) cases in Fig. 11. In

contrast, the TPRE for (λD, λE) = (10−15, 10−15) remains constant (equal to 1) before a monotonic

decrease. From Fig. 11, we can also observe that the TPRE is an increasing function with respect to λE ,

and a decreasing function with respect to λD, which is easily explained by the joint probability properties

in (36).
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Fig. 10: TPRE versus GD for µV = 1× 10−8, µH = 5× 10−8, σ2
V = 1× 10−12, and σ2

H = 1× 10−10,

λD = 1× 10−15, λE = 1× 10−20, and N = 300 for Gaussian quadrature.
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Fig. 11: TPRE versus GD for µV = µH = 0, σ2
V = σ2

H = 1×10−11 (Rayleigh distribution), α = 1×10−6,

and N = 110.

VII. CONCLUSION

In this paper, closed-form expressions for TPLR, TPE, and TPRE were derived based on the Gaussian

quadrature rule, as well as the corresponding asymptotic formulas valid in the high telescope gain at

the legitimate receiver region by using the asymptotic result for the generalized Marcum Q-function

which could be also employed to derive the asymptotic expression for outage probability (showing the

diversity order and array gain) over Beckmann fading channels. The approximate expressions bases on

the Gaussian quadrature rule needs many terms for a high accuracy and the computation becomes more
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slower with increasing the terms. Alternatively, we can use the asymptotic expressions to get results with

a very high accuracy in the high region of the telescope gain at the legitimate receiver. Moreover, some

closed-form expressions or more concise expressions in some special cases (like Rayleigh, Hoyt and Rice

pointing error model cases) were also derived for much faster computations.

APPENDIX A: PROOF OF THEOREM 1

We can rewrite (2) as

TPLR = Pr
{
θ2
V + θ2

H ≤ ΘD

}
= Pr

{
θ2
H ≤ ΘD − θ2

V

}
= Pr

{
θ2
H

σ2
H

≤
ΘD − θ2

V

σ2
H

}
, (52)

where θ2
H/σ

2
H follows the non-central Chi-squared distribution with the unit degree, and the corresponding

cumulative distribution function (CDF) is given by [41]

Fθ2H/σ2
H

(x) = 1−Q 1

2

(√
λ,
√
xI {x ≥ 0}

)
. (53)

By using the CDF of θ2
H/σ

2
H and iterative expectation operation, the TPLR can be derived as

TPLR = EθV

{
1−Q 1

2

(
√
λ,

√
ΘD − θ2

V

σ2
H

I
{

ΘD ≥ θ2
V

})}
(a)
= 1− 1√

2πσ2
V

∫ +∞

−∞
exp

(
−(θV − µV )2

2σ2
V

)
Q 1

2

(
√
λ,

√
ΘD − θ2

V

σ2
H

I
{

ΘD ≥ θ2
V

})
dθV , (54)

where E{·} denotes the expectation operator, and (a) follows the PDF of θV , i.e., PDF of Gaussian

distribution. Let x = θV−µV√
2σV

in (54), and then, we can get the integral form as (55),

TPLR = 1− 1√
π

+∞∫
−∞

exp
(
−x2

)
Q 1

2

√λ,
√√√√ΘD −

(√
2σV x+ µV

)2
σ2
H

I
{

ΘD ≥
(√

2σV x+ µV

)2
} dx,

(55)

which can be approximated by using the Gaussian quadrature rule, shown in Theorem 1.

APPENDIX B: PROOF OF PROPOSITION 1

The Marcum Q-function is defined in the integral form,

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1
exp

(
−x

2 + a2

2

)
IM−1 (ax) dx, (56)

where I·(·) denotes the modified Bessel function of the first kind [42]. To derive the asymptotic result

for the Marcum Q-function, we first express I·(·) into the infinite series form,

IM−1 (ax) =

∞∑
n=0

1

n!Γ (n+M)

(ax
2

)2n+M−1
. (57)
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When x→ 0, it is easy to see that the leading term (i.e., the lowest order term of x) for approximating

I·(·) in (57) is

IM−1 (ax) ' 1

n!Γ (n+M)

(ax
2

)2n+M−1
∣∣∣∣
n=0

=
1

Γ (M)

(ax
2

)M−1
. (58)

By using the asymptotic result for I·(·), the asymptotic result for the Marcum Q-function, as b→ 0, can

be derived as

QM (a, b) =

∫ ∞
0

x
(x
a

)M−1
exp

(
−x

2 + a2

2

)
IM−1 (ax) dx︸ ︷︷ ︸

=1

−
∫ b

0
x
(x
a

)M−1
exp

(
−x

2 + a2

2

)
IM−1 (ax) dx

b→0' 1−
exp

(
−a2

2

)
Γ (M) 2M−1

∫ b

0
x2M−1 exp

(
−x

2

2

)
dx, (59)

where the integral in the last step can be easily derived in a closed-form by using the definition of the

lower incomplete Gamma function [42], given by
∫ b

0 x
2M−1 exp

(
−x2

2

)
dx = 2M−1Υ

(
M, b

2

2

)
, where

Υ(·, ·) denotes the lower incomplete Gamma function. By using the asymptotic result for Υ(·, ·), i.e.,

Υ (s, x)→ xs

s as x→ 0, we can finally derive the asymptotic result for the Marcum Q-function as (8).

APPENDIX C: PROOF OF LEMMA 1

From the derivation in Proposition 1, the CDF of the non-central Chi-squared distribution can be

approximated by

Fθ2H/σ2
H

(x) = 1−Q 1

2

(√
λ,
√
xI {x ≥ 0}

)
x→0'

exp
(
−λ

2

)
Γ (1.5)

√
2
x0.5I {x ≥ 0} . (60)

Substituting the asymptotic expression for Fθ2H/σ2
H

(·) into (52) yeilds

TPLR '
exp

(
−λ

2

)
Γ (1.5)

√
2
EθV

{(
ΘD − θ2

V

σ2
H

) 1

2

I
{

ΘD ≥ θ2
V

}}

=
exp

(
−λ

2

)
Γ (1.5)

√
2

1√
2πσ2

V

∫ +∞

−∞
exp

(
−(θV − µV )2

2σ2
V

)(
ΘD − θ2

V

σ2
H

) 1

2

I
{

ΘD ≥ θ2
V

}
dθV

=
exp

(
−λ

2

)
Γ (1.5)

√
2

1√
2πσ2

V

∫ √ΘD

−
√

ΘD

exp

(
−(θV − µV )2

2σ2
V

)(
ΘD − θ2

V

σ2
H

) 1

2

dθV . (61)

As ΘD → 0, the exponential function in the last step in (61) can be approximated by

exp

(
−(θV − µV )2

2σ2
V

)
θV→0' exp

(
−
µ2
V

2σ2
V

)
+ o (θV ) , (62)
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Therefore, the asymptotic result for TPLR can be further written as

TPLR '
exp

(
−λ

2

)
Γ (1.5)

√
2

exp

(
−
µ2
V

2σ2
V

) ∫ √ΘD

−
√

ΘD

(
ΘD−θ2V
σ2
H

) 1

2

dθV√
2πσ2

V

, (63)

where the integral can be easily solved in a closed-form,∫ √ΘD

−
√

ΘD

(
ΘD − θ2

V

σ2
H

) 1

2

dθV =
π

2σH
ΘD. (64)

Finally, the asymptotic expression for TPLR is derived as (10).

APPENDIX D: PROOF OF THEOREM 2

The TPE can be written as

TPE = Pr
{
θ2
V + αθV + θ2

H ≥ ΘE

}
= Pr

{
θ2
H

σ2
H

≥
ΘE − θ2

V − αθV
σ2
H

}
, (65)

where θ2
H/σ

2
H follows the non-central Chi-squared distribution with the unit degree and non-centrality

parameter λ. By using the CDF of θ2
H/σ

2
H , we can get

TPE = EθV

{
Q 1

2

(
√
λ,

√
ΘE − θ2

V − αθV
σ2
H

I
{

ΘE ≥ θ2
V + αθV

})}

=
1√

2πσ2
V

∫ +∞

−∞
exp

(
−(θV − µV )2

2σ2
V

)
Q 1

2

(
√
λ,

√
ΘE − θ2

V − αθV
σ2
H

I
{

ΘE ≥ θ2
V + αθV

})
dθV .

(66)

Let x = θV−µV√
2σV

in (66), and then we can get the following integral form,

TPE =
1√
π

∫ +∞

−∞
exp

(
−x2

)
fTPE(x)dx, (67)

which can be easily approximated by using the GHQ method, shown in Theorem 2.

APPENDIX E: PROOF OF LEMMA 2

By using the asymptotic expression for Fθ2H/σ2
H

(·), the TPE can be written as

TPE ' 1−
exp

(
−λ

2

)
√

2Γ (1.5)
EθV

{(
ΘE − θ2

V − αθV
σ2
H

) 1

2

I
{

ΘE ≥ θ2
V + αθV

}}
, (68)

where

EθV

{(
ΘE − θ2

V − αθV
σ2
H

) 1

2

I
{

ΘE ≥ θ2
V + αθV

}}

=
1√

2πσ2
V

∫ +∞

−∞
exp

(
−(θV − µV )2

2σ2
V

)(
ΘE − θ2

V − αθV
σ2
H

) 1

2

I
{

ΘE ≥ θ2
V + αθV

}
dθV . (69)

October 9, 2020 DRAFT



25

To have a possible integral interval, the indicator function shows that we must have

θ2
V + αθV −ΘE ≤ 0. (70)

To have real solutions for the above inequality, we have

α2 + 4ΘE ≥ 0 =⇒ ΘE ≥
−α2

4
. (71)

If ΘE < −−α2

4 , the indicator function in (69) is always equal to zero. Therefore, the TPE is always 1,

which is straightforward. In the following, we consider the case of ΘE ≥ −−α
2

4 . Let

θ1 =
−α+

√
α2 + 4ΘE

2
, θ2 =

−α−
√
α2 + 4ΘE

2
.

The integral in (69) can be derived as (72),

I
{

ΘE ≥
−α2

4

} θ1∫
θ2

exp

(
−(θV − µV )2

2σ2
V

)(
ΘE − θ2

V − αθV
σ2
H

) 1

2

dθV

ΘE→−α2

4' I
{

ΘE ≥
−α2

4

}
exp

(
−(α/2 + µV )2

2σ2
V

) θ1∫
θ2

(
ΘE − θ2

V − αθV
σ2
H

) 1

2

dθV

= I
{

ΘE ≥
−α2

4

}
exp

(
−(α/2 + µV )2

2σ2
V

)
π
(
α2 + 4ΘE

)
8σH

. (72)

Finally, combining (68) and (72) yields (35).

APPENDIX F: PROOF OF THEOREM 3

Using the iterative expectation method, i.e., E {XY } = EY
{
EX|Y (X |Y )

}
in (37), we have

TPRE = EθV
{
I
{

ΘE − θ2
V − αθV
σ2
H

≤
ΘD − θ2

V

σ2
H

}
×
[
Fθ2H/σ2

H

(
ΘD − θ2

V

σ2
H

)
−Fθ2H/σ2

H

(
ΘE − θ2

V − αθV
σ2
H

)]}
, (73)

where

Fθ2H/σ2
H

(
ΘD − θ2

V

σ2
H

)
− Fθ2H/σ2

H

(
ΘE − θ2

V − αθV
σ2
H

)

= Q 1

2

(
√
λ,

√
ΘE − θ2

V − αθV
σ2
H

I
{

ΘE ≥ θ2
V + αθV

})
−Q 1

2

(
√
λ,

√
ΘD − θ2

V

σ2
H

I
{

ΘD ≥ θ2
V

})
,

(74)
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and I
{

ΘE−θ2V−αθV
σ2
H

≤ ΘD−θ2V
σ2
H

}
= I

{
θV ≥ ΘE−ΘD

α

}
. The TPRE is further written as (75),

TPRE =
1√

2πσ2
V

∫ +∞

−∞

[
Q 1

2

(
√
λ,

√(
ΘE − θ2

V − αθV
σ2
H

)
I
{

ΘE ≥ θ2
V + αθV

})

−Q 1

2

(
√
λ,

√
ΘD − θ2

V

σ2
H

I
{

ΘD ≥ θ2
V

})]
exp

(
−(θV − µV )2

2σ2
V

)
I
{
θV ≥

ΘE −ΘD

α

}
dθV .

(75)

Let x = θV−µV√
2σV

, and then, the integral form becomes (76),

TPRE =
1√
π

∫ +∞

−∞
exp

(
−x2

)
I
{
x ≥ ΘE −ΘD

α
√

2σV
− µV√

2σV

}
×

[
Q 1

2

(
√
λ,

1

σH

√
ΘE −

(√
2σV x+ µV

)2
− α

(√
2σV x+ µV

)
× I
{

ΘE ≥
(√

2σV x+ µV

)2
+ α

(√
2σV x+ µV

)})

−Q 1

2

(
√
λ,

1

σH

√(
ΘD −

(√
2σV x+ µV

)2
)
I
{

ΘD ≥
(√

2σV x+ µV

)2
})]

dx. (76)

By using the GHQ method, an approximate result is shown in Theorem 3.

APPENDIX G: DERIVATION OF THE JOINT PDF fX,Y (·, ·)

Let Z = θ2
H . We have X = θ2

V + Z and Y = 2θ2
V + 2Z + 2αθV . The PDF of Z is

fZ (z) =
1√

2πσ2
z−

1

2 exp
(
− z

2σ2

)
, z ≥ 0. (77)

The Jacobian matrix is∣∣∣∣∣∣
∂X
∂θV

∂X
∂Z

∂Y
∂θV

∂Y
∂Z

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 2θV 1

4θV + 2α 2

∣∣∣∣∣∣ = 4θV − 4θV − 2α = −2α. (78)

The joint PDF of X and Y is finally derived as

fX,Y (x, y) = fθV (θV ) fZ (z)

∣∣∣∣ ∂ (X,Y )

∂ (θV , Z)

∣∣∣∣−1

=
1

2α
fθV

(
y − 2x

2α

)
fZ

(
x−

(
y − 2x

2α

)2
)

=
1

4πσ2α
exp

(
− x

2σ2

)[
x−

(
y − 2x

2α

)2
]− 1

2

I
{
−2α
√
x+ 2x ≤ y ≤ 2x+ 2α

√
x
}
I
{
x ≥ 0

}
. (79)
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APPENDIX H: DERIVATION OF THE DOUBLE INTEGRAL IN TPRE

In order to simplify the notations, we define the double integral in (45) as I1. By using the integral

identity

2x+2α
√
x∫

ΘE

[
x−

(
y − 2x

2α

)2
]− 1

2

dy = απ − 2α arcsin

(
ΘE − 2x

2α
√
x

)
, (80)

I1 can be written as

I1 =

∫ ΘD

0
exp

(
− x

2σ2

)[
απ − 2α arcsin

(
max {ΘE ,−2α

√
x+ 2x} − 2x

2α
√
x

)]
dx, (81)

which can be easily calculated by using Gaussian quadrature method, I1 ≈ ΘD

2

N∑
i=0

ω′if
′
TPRE

(
ΘD

2 x′i + ΘD

2

)
.
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