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Abstract—Since flying base stations (FlyBSs) are energy con-
strained, it is convenient for them to act as transparent relays with
minimal communication control and management functionalities.
The challenge when using the transparent relays is the inability
to measure the relaying channel quality between the relay
and user equipment (UE). This channel quality information is
required for communication-related functions, such as the UE
association, however, this information is not available to the
network. In this letter, we show that it is possible to determine
the UEs’ association based only on the information commonly
available to the network, i.e., the quality of the cellular channels
between conventional static base stations (SBSs) and the UEs.
Our proposed association scheme is implemented through deep
neural networks, which capitalize on the mutual relation between
the unknown relaying channel from any UE to the FlyBS and the
known cellular channels from this UE to multiple surrounding
SBSs. We demonstrate that our proposed framework yields a
sum capacity that is close to the capacity reached by solving the
association via exhaustive search.

Index Terms—Unmanned Aerial Vehicles, transparent relays,
users’ association, deep neural networks

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are expected to be inte-
grated in future mobile networks as flying base stations (Fly-
BSs) complementing conventional static base stations (SBS) in
some areas of the network, at the time when the high density of
users and the dynamicity of the network are difficult to adapt
to with a purely fixed infrastructure [1]. In such scenarios,
the FlyBS relays the communication between the conventional
SBS and the user equipment (UE).

The relays can be classified into non-transparent and trans-
parent [2]. The non-transparent relays are distinguished by
their high complexity as these are supposed to perform all
the communication-related functions, such as data processing,
radio resource management, or signaling, in a similar way as
the conventional SBSs [3]. In contrast, the transparent relays
represent a simplified and a lightweight version of the relays,
for which the majority of the communication functions are
managed centrally by the conventional SBS [4]. Consequently,
the transparent relays are significantly cheaper and less energy
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demanding in comparison to the non-transparent relays as that
transparent type requires less complex hardware [2]. Since
the energy consumption of the FlyBSs is directly proportional
to their operational time, the transparent relays are seen as
suitable and convenient candidates for the FlyBSs.

To this end, the main obstacle facing the deployment of the
FlyBSs acting as transparent relays arises from the fact that the
transparent relays are not able to obtain the information about
the quality of the channels between the UEs and the FlyBSs
due to their simple nature. The reason is that the transparent
relays do not transmit their own reference signals, which are
required to determine the channel quality (see, e.g., [4], [5]).
To solve this problem, the statistical channel gains between
the UEs and the FlyBSs can be derived based on the existing
path loss models. Nevertheless, these statistical channel gains
rely on the knowledge of UEs’ locations [6]-[8] or, at least,
on the knowledge of the spatial distribution of UEs [9]-[10].
However, the information about the UEs’ locations might not
be available to the network due to the privacy preferences or
the specific location of the user (e.g., the UE is at a place
where no localization system is available). In such case, it is
hard to decide whether to associate the UEs to a specific FlyBS
or directly to the SBS.

In this paper, we focus on the case where the FlyBSs
represent transparent relays, and we target the problem of the
inability of the transparent FlyBSs to measure the channel
gains between the UEs and the FlyBSs for the UEs’ associa-
tion. We also consider a practical scenario where an arbitrary
part of the UEs makes their locations available to the network
while another part of the UEs do not disclose their locations.
To this end, we propose a deep neural network (DNN) that
is able to predict the association of the UEs not disclosing
their locations neither to the SBS nor to one of the FlyBSs.
The objective is to maximize the sum capacity of these UEs.
The UEs’ association is predicted by the DNN based only
on the knowledge of information commonly available to the
network: 1) the quality of cellular channels between the UEs
and the surrounding SBSs (note that the qualities of cellular
channels are reported periodically in common networks [11],
e.g., for handover purposes), 2) the FlyBSs’ positions, which
are known for the FlyBSs’ navigation purposes, and 3) the
number of the UEs already attached to each base station



(BS) as this number affects the resource allocation at the BSs
(this information is known a priori for general radio resource
management purposes). The DNN is trained offline and, then,
exploited to associate the UEs. The DNN ability to make the
association decision instantaneously is a significant asset of
the proposed scheme from the practical implementation point
of view in the real mobile network.

The rest of the paper is organized as follows. In Section II,
the system model is presented and the targeted optimization
problem is formulated. Then, in Section III, the proposed
DNN-based scheme for UEs’ association is described in detail.
Section IV presents the simulation scenarios and discusses the
results. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set N containing |N | uniformly deployed
UEs with their locations known to the network. In addition,
there exist another set M of |M| uniformly deployed UEs
for which the locations are not known. All UEs are deployed
within a single cell and belong to a set U of |U| UEs where
U = N ∪M, N ∩M = ∅, and |U|= |N |+|M|. The UEs
are served by |L| BSs included in a set L, encompassing
one SBS and |L|−1 FlyBSs acting as the transparent relays
(note that, in this paper, the BS denotes arbitrary type of
base station including SBS as well as FlyBS). Without loss
of generality, we assume that all UEs communicate in the
downlink direction. As in [12], the 2D positions (i.e., with
fixed altitude) of the FlyBSs are determined with respect to
the known locations of the UEs from N via K-means. Note
that, while the association of the UEs from N is done based on
their known locations (as in [12]), the association of the UEs
with unknown locations fromM is the targeted problem in this
paper. Although we focus specifically on a single cell, there is
also a set K of |K| SBSs in the vicinity. The qualities of the
channels between every UE and all the |K| neighboring SBSs
are measured and reported periodically as in conventional
mobile networks, e.g., for mobility management and handover
purposes.

Without loss of generality, we assume that the deployed
|K|+1 SBSs use orthogonal bandwidths (i.e., every SBS
exploits its own dedicated bandwidth). In contrast, all FlyBSs
reuse the same bandwidth B of their serving SBS to ensure a
high spectral efficiency (see Fig. 1). The serving SBS divides
the whole bandwidth B equally among all served UEs. The UE
communicates either directly with the SBS (via direct channel
from the SBS to the UE) or via the FlyBS (occupying the
backhaul channel from the SBS to the FlyBS and the channel
from the FlyBS to the UE). Note that the bandwidth allocation
to individual UEs for the communication from the FlyBS to
the UE is determined by the SBS as the FlyBSs represent
transparent relays with limited functionalities. Further, every
FlyBS is able to receive and transmit data at the same time.
Since the same bandwidth is reused by all BSs, communication
of each FlyBS with the SBS over backhaul is exposed to
an interference induced by other FlyBSs. Similarly, each UE

Fig. 1: System model.

experiences an interference from all BSs (either SBS or FlyBS)
except the serving one.

If the m-th UE from M is served directly by the SBS, its
capacity CDl,m is defined as:

CDl,m =
B

|U|
log2(1 +

p1
|U|g1,m

B
|U|σ +

l=|L|∑
l=2

pl
|U|gl,m

)
(1)

where pl is the transmission power of the l-th BS over the
whole allocated bandwidth, gl,m is the channel gain between
the l-th BS and the m-th UE, and σ is the noise spectral
density. Note that l = 1 refers to the serving SBS and, thus, p1
and g1,m are the transmission power of the serving SBS and
the channel gain between this SBS and the m-th UE. Moreover,
in (1), we see that all FlyBSs cause interference to the m-th
UE if this UE is associated directly to the serving SBS.

If the m-th UE is attached to the SBS through an intermedi-
ate FlyBS, the backhaul capacity CBl,m (between the SBS and
the relaying FlyBS) is calculated as:

CBl,m =
B

|U|
log2(1 +

p1
|U|g1,l

B
|U|σ +

i=|L|∑
i6=l
i=2

pl
|U|gi,l

) (2)

where g1,l is the channel gain between the serving SBS and
the l-th FlyBS to which the m-th UE is attached, and gi,l is the
interference channel gain between the i-th FlyBS inducing the
interference and the l-th FlyBS through which the m-th UE
is served. Similarly, the capacity CFl,m of the channel between
the l-th FlyBS and the m-th UE is derived as:

CFl,m =
B

nl
log2(1 +

pl
nl
gl,m

B
nl
σ +

i=|L|∑
i6=l
i=1

pl
nl
gi,m

)
(3)

where nl is the number of all UEs from U associated to the
l-th FlyBS (i.e., nl ≤|U|), gl,m is the channel gain between
the l-th FlyBS and the m-th UE attached to it, and gi,m is the
interference caused by the i-th BS to the m-th UE.

Then, the capacity of the m-th UE associated to the l-th



FlyBS is derived as:

Cl,m =

{
CDl,m if l = 1

min(CBl,m, C
F
l,m) if l > 1

(4)

In order to define whether the m-th UE is associated to the
SBS or to one of the FlyBSs, we introduce the association
matrix ααα expressed as:

ααα =

 α1
1 . . . α

|L|
1

...
. . .

...
α1
|M| . . . αL|M|

 (5)

where αlm = 1 indicates that the m-th UE is associated to the l-
th BS, otherwise αlm is set to 0. Taking this into consideration,
nl in (3) is calculated as:

nl = Nl +

m=|M|∑
m=1

αlm (6)

where Nl is the number of the UEs from N that are attached

to the l-th FlyBS and
m=|M|∑
m=1

αlm represents the number of UEs

from M that become attached to the l-th FlyBS.

Based on (1)-(6), the mathematical formulation of the prob-
lem of maximizing the sum capacity of the UEs with unknown
locations (i.e., the |M| UEs from M), is written as:

ααα∗ = argmax
ααα

(
∑m=|M|
m=1

∑l=|L|
l=1 αlmC

l
m) (7)

s.t.
∑l=|L|
l=1 αlm = 1 ∀ m ∈M (a)

where ααα∗ represents the targeted ααα that maximizes the sum
capacity of the |M| UEs, and the constraint (a) guarantees
that each UE is associated to only one BS at a time.

The solution of the problem presented in (7) is not only
affected by the quality of the channels between the |M| UEs
and the |L| BSs, but it is also influenced by the bandwidth
allocation for each UE at individual BSs as the bandwidth allo-
cation changes with the association. In addition, the bandwidth
splitting is also affected by the number of UEs attached to each
BS. Moreover, Clm is a function of nl, which is a function of
ααα as shown in (6). Thus, the problem in (7) is an integer
non-linear programming problem that is known to be NP-
hard. Such problem can be generally solved by an exhaustive
search. Nevertheless, the absence of the information on the
locations of the |M| UEs as well as the FlyBSs’ inability
to measure the channel quality between themselves and the
|M| UEs make the problem unsolvable in real networks even
with the exhaustive search. Thus, in the next section, we rely
only on the commonly known and periodically measured (and
reported) cellular channel gains between the |M| UEs and the
serving SBS together with K surrounding SBSs to design the
DNN that is able to make an instantaneous decision on the
association of the |M| UEs whose locations are not known.

III. PROPOSED ASSOCIATION OF UES IN NETWORKS WITH
TRANSPARENT RELAYS

In this section, we, first, explain the principle of the pro-
posed UEs’ association scheme based on the cellular channels.
Then, the proposed DNN architecture, training and exploitation
in real mobile networks are explained.

A. Principle of cellular channels-based UEs’ association

Generally, when the FlyBSs act as the transparent relays, the
relaying channels between the UEs and those FlyBSs cannot
be estimated as explained in Section I. Hence, to associate the
UEs from M, an exploitation of the statistical channel gains
derived based on existing channel models is the only known
solution. Still, the statistical channel gain between any UE and
the FlyBS with the existing channel models can be determined
only if the locations of both the UE and the FlyBS are known.
However, the locations of the UEs from M are not available
and the problem should be circumvented by an exploitation
of another available information about these UEs. In fact, the
cellular channels between any UE and the surrounding SBSs
are commonly known as these cellular channels are measured
and reported periodically for, e.g., mobility management and
handover purposes. In an open field, a single UE can be
distinguished by the cellular channels from this UE to the
surrounding (neighboring) SBSs. Therefore, for the UEs with
unknown locations from M, the cellular channels between
these UEs and multiple surrounding SBSs are seen as a proper
substitution of the missing information on the channels to the
FlyBSs taking into account that the positions of these FlyBSs
are known.

Based on this principle, the problem presented in (7), can
be solved knowing: i) the cellular channels between the UEs
and multiple neighboring SBSs (reported periodically), ii) the
FlyBSs’ positions (known for the FlyBSs’ navigation), and
iii) the number of UEs from N attached to every BS, i.e.,
every Nl ∀l ∈ L from (6) (this information affects the
bandwidth splitting at the BSs and it is known by network
operator as the resource allocation for all FlyBSs is done
by the serving SBS). Nevertheless, the mapping between this
available information (UEs’ cellular gains, FlyBSs’ locations,
the number of the UEs attached to every BS) and the optimal
association of the UEs from M is not known and cannot
be analytically derived. Hence, we train the DNN to build
the mapping between the pre-mentioned available information
and the optimal association of the |M| UEs with unknown
locations. This trained DNN is stored at the serving SBS,
which decides and controls the association of all |M| UEs
to the SBS or to one of the FlyBSs.

B. Architecture of proposed DNN

The association of every UE fromM to one of the |L| BSs
can be seen as |M| identical classification problems. Thus,
we train one DNN for multi-class classification in order to
predict the association of any m-th UE from M to either
the serving SBS or to one of the FlyBSs. Then, the trained
DNN is exploited to predict the association of every UE at the



same time in parallel (details are explained later in Section
III-C). The architecture of the DNN includes one input layer,
H hidden layers, and finally a SOFTMAX layer serving as the
output layer (see Fig. 2).

The input vector I1, which represents the input layer, is
composed of three parts I11, I21 and I31. The first part provides
the DNN with the information regarding the cellular channel
gains of all |M| UEs to every SBS in proximity to these UEs.
Thus, the length of the first part I11 of the DNN’s input is equal
to the number of the reported/known UEs’ cellular gains, i.e.:

|I11|= (|K|+1)|M| (8)

The second part I21 of the input expresses the locations of
individual FlyBSs under the SBS coverage, thus, the length of
this second part is:

|I21|= 3(|L|−1) (9)

where the number ”3” represents three coordinates of each
FlyBS in 3D space. The third part I31, constituting the DNN
input, corresponds to the number of the UEs from N already
attached to each BS. Hence, the length of this third part is:

|I31|= |L| (10)

As a result, the input vector of DNN is of a length:

|I1|= |I11|+|I21|+|I31|= (|K|+1)|M|+3(|L|−1) + |L| (11)

The DNN input I1 is followed by H sequential hidden
layers. Consequently, I1 is the input of the first hidden layer
h1. Then, the input of any other hidden layer is, at the same
time, the output of the previous hidden layer. Every hidden
layer hj is composed of Xj neurons, where each input element
from the inputs of hj is fed to each of these Xj neurons with
a corresponding weight. In every neuron in the layer hj , the
dot product between the inputs of hj and the corresponding
weights is performed. Then, the neuron adds its bias to the
result of the dot product and implements the sigmoid activation
function resulting in the neuron’s output (i.e., a single value).
Thus, the output of any hidden layer hj with Xj neurons is a
vector of a length Xj , and this output is calculated as:

Oj = sig(Wj.Ij + bj) (12)

where sig(.) is the sigmoid function such that sig(γγγ) =
1

1+exp(−γγγ) , Ij is the vector that contains the inputs of the
hidden layer hj , Wj is the matrix containing the weights of
the links connecting every input in Ij and every neuron in hj ,
and bj represents the vector that includes the biases of the Xj

neurons in hj .
The output vector of the last hidden layer (i.e., the vector

OH from (12) with j = H representing the last hidden layer)
is the input of the SOFTMAX output layer. The SOFTMAX
layer is composed of |L| neurons as the number of classes in
our problem is also |L| (i.e., the number of available options
for the association of the m-th UE). Every neuron l in the
SOFTMAX layer implements the dot product between OH and

Fig. 2: Proposed DNN to predict the association of a single
UE from M.

the corresponding weights and adds the corresponding bias,
resulting in the value Zl. Hence, considering all the |L| neurons
in the SOFTMAX layer, we get the vector Z of a length |L|,
such that Z = {Z1, Z2, ..., Z|L|}. Finally, the elements in Z are
inserted to the SOFTMAX function giving, for every element
Zl with l ∈ L, a final single output P (αlm). Note that P (αlm)
represents the probability of the m-th UE being associated to
the l-th BS (the probability that αlm = 1). This probability is
calculated as:

P (αlm) =
exp(Zl)∑l=|L|

l=1 exp(Zl)
(13)

From (13), we see that
∑l=|L|
l=1 P (αlm) = 1. Hence, the final

chosen association for the m-th UE is:

αlm =

{
1 if P (αlm) > P (αqm) ∀ q ∈ L/{l}
0 otherwise

(14)

C. Training and exploitation of proposed DNN for UEs’
association

The proposed DNN utilizes supervised learning approach
trying to reach a specific target. In our case, the target is
derived by the exhaustive search when all possible association
combinations for |M| UEs (i.e., |L||M| combinations) are
checked and the one yielding the highest sum capacity is
selected as the optimal association combination. Then, for any
m-th UE from the |M| UEs (e.g., the first UE in M), the
index of the chosen BS (i.e., l∗ where l∗ ∈ L) is considered
as the target that the DNN aims to predict. To that end, the
learning process starts with collecting a set of training samples,
e.g., by simulating the targeted area and scenario. Each sample
represents a single simulation drop and includes the set of
available information (i.e., the information feed to the input
of the DNN described in Section III-B) as features and the
corresponding target. Then, the features of each sample are
inserted to the DNN with randomly set weights and biases
giving, at its output, the association of the m-th UE. Next, the
comparison between the DNN output and the targeted output
for each sample is performed via cross-entropy loss function



written as:

δ = −
l=|L|∑
l=1

Jl∗ == lKlog
(
P (αlm)

)
(15)

The cross-entropy loss function averaged over the training
samples is minimized by subsequent updating of the weights
and the biases of the DNN via the scaled-conjugate gradi-
ent back-propagation [13]. Then, a new training iteration is
performed with the updated weights and biases. The training
process is terminated if the number of iterations exceeds the
maximal number of iterations or if the prediction accuracy
increment from one iteration to another becomes very small.

Key benefit of the proposed solution is that the training
process is performed offline and there is no training needed
online in the real mobile network. Then, in the real mobile net-
work, the same already trained DNN is exploited to instantly
determine the optimal association of every UE from the |M|
UEs simultaneously. For example, consider that the DNN is
trained to predict the optimal association for the first UE from
M (the UE for which the cellular gains are put at the beginning
of I1). In such case, to predict the optimal association for the
second UE, we put the cellular gains of this second UE at the
beginning of I1.

IV. PERFORMANCE ANALYSIS

The simulations are done in MATLAB considering a 500×
500 m area within which |N |= 10 UEs with known locations
and up to |M|= 5 UEs with unknown locations are uniformly
deployed. The area contains also one serving SBS deployed in
the middle of the area and two FlyBSs acting as transparent
relays (as shown in Fig. 1). In addition to the serving SBS,
we assume |K|= 2, 3, or 4 additional SBSs in the neighboring
areas with fixed uniformly generated locations. We consider
that the |N | UEs with known locations are already associated
to the serving SBS either directly or through one of the two
available FlyBSs, while the |M| UEs with unknown locations
are, then, associated based on the proposed scheme illustrated
in Section III. The height and the transmission power (over

Fig. 3: Classification accuracy vs |M|.

all channels) pl of each BS are set to 30 m and 27 dBm,
respectively. The total bandwidth B reused by every BS is set
to 20 MHz. The gains of the channels between the FlyBSs and
the UEs, between the SBS and the UEs, and between the SBS
and the FlyBSs are generated in line with path loss models
from [14] with 2 GHz carrier frequency.

Note that the DNN is trained for each value of |M|
separately, and with a total number of collected samples equal
to 3 × 105. Note that the number of samples is set by trial
and error approach and the learning accuracy increment is
negligible for larger numbers of samples.

Fig. 3 shows the DNN prediction accuracy (the percentage
of the DNN’s outputs that match the optimal targeted associa-
tion) versus different numbers of UEs in M and for different
numbers of available neighboring SBSs (i.e., |K|). As expected,
with the increasing number of SBSs the prediction accuracy
is increasing as the DNN is able to better learn the scenario
layout. Thus, if four SBSs are in vicinity (in addition to the
serving one), the accuracy varies between 92.5% (for |M|= 1)
and 96.7% (for |M|= 5). Still, even for a lower number of
SBSs (i.e., |K|= 2 or |K|= 3), the prediction accuracy is
always higher than 90%. Fig. 3 further demonstrates that the
prediction accuracy decreases with the increasing |M| due to
the growing complexity of the association problem (more UEs
need to be associated with different channels and bandwidth
splitting options).

Fig. 4 illustrates the sum capacity of the |M| UEs if |K|= 2.
To the best of our knowledge, there is no existing work that
solves the UEs’ association for the case when both the UEs’
locations as well as the relaying channels between the FlyBSs
(acting as the transparent relays) and the UEs are absent. Thus,
the proposed DNN is compared to the following association
schemes: 1) Optimal association derived by the exhaustive
search (in the figure denoted as Optimum), 2) Random
association where each UE is associated with equal probability
to the serving SBS or one of the FlyBSs (denoted as Random),
3) all UEs are associated to one of the FlyBS (denoted as Only
F lyBS), and 4) all UEs are associated to the serving SBS
(denoted as Only SBS). Note that Optimum is not derivable

Fig. 4: Sum capacity of the |M| UEs for |K|=2.



in real networks with the FlyBSs acting as transparent relays
and the locations of the |M| UEs being unknown. In this paper,
we depict Optimum only for benchmarking purposes.

Fig. 4 demonstrates that the proposed scheme, with only
three SBSs (|K|= 2 neighboring SBSs plus the serving SBS),
reaches a close-to-optimal sum capacity with a loss with
respect to the optimum always below 2.4%. Moreover, the sum
capacity reached by the proposed scheme with respect to the
capacity of the other three association schemes is increased
by up to 91%, 103%, and 280% when compared to Random,
Only F lyBS and Only SBS, respectively.

V. CONCLUSIONS

In this paper, we have proposed a novel DNN-based frame-
work to determine the association of the UEs with unknown
locations either to the serving SBS or to one of the FlyBSs
acting as the transparent relays. The transparent relay mode
for the FlyBSs is selected as the transparent relays are lighter,
less expensive, and consume less energy comparing to the non-
transparent ones. This makes the transparent relays suitable for
FlyBSs. To this end, we exploit the knowledge of cellular chan-
nels between the UEs and the surrounding SBS to overcome
the problem of the transparent relays’ inability to measure
the quality of the channels between themselves and the UEs
as well as the absence of the UEs’ location information. By
knowing the UEs’ periodically reported cellular channels, our
proposed DNN determines the UEs’ association maximizing
their sum capacity. The results confirm the close-to-optimal
performance of our proposal.
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