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Abstract. Airline websites are the victims of unauthorized online travel
agencies and aggregators that use armies of bots to scrape prices and
flight information. These so-called Advanced Persistent Bots (APBs) are
highly sophisticated. They are provided by specialized companies that
offer them as “bots as a service” and they leverage professional proxy-
ing companies (mis)using millions of residential IP addresses. On top of
the valuable information taken away, these huge quantities of requests
consume a very substantial amount of resources on the airline websites.
In this work, we present a platform capable of mimicking these sites,
at a much lower cost, and we provide early results on an experiment in
which we have lured for almost 2 months several bots and have fed them
indistinguishable inaccurate information.

1 Introduction

The Internet has discovered the existence of botnets and the nuisance they can
cause in February 2000 with the early DDoS attacks against Yahoo!, Ama-
zon.com, CNN.com, and other major Web sites [12]. They have continuously
evolved from relatively rudimentary pieces of software to very sophisticated com-
ponents such as the numerous “all in one sneaker bots” (eg., aiobot.com) that
automate the buying process of luxury goods in high demands. To increase their
resilience, the bots take advantage of proxying services publicly available on the
web, for a fee. Some of them claim to provide access to a pool of several mil-
lions of residential IP addresses [3,2,4]. These IPs are provided by Residential
IP Proxies as a Service, which have been investigated by Mi et Al. in the first
comprehensive study of these services [18].

A 2019 Imperva report [6] describes very clearly how the airline industry is
particularly impacted by these armies of bots. In 2017, according to that report,
the proportion of bad bots traffic to airline websites was 43.9 percent. Almost
a third of these bad bots were sophisticated ones, referred to as Advanced Per-
sistent Bots (APBs). APBs can mimic human behavior, load JavaScript and
external assets, tamper with cookies, perform browser automation, give the im-
pression that the mouse is moving on the screen, etc.

Almost all these bots are used to gather free information from the airlines’
sites about flights and ticket prices. The conjecture is that unauthorized business
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intelligence companies, online travel agencies, and data aggregators are beyond
such bots activities because a large part of their business relies on web scraping.
They harness information, increasing dramatically the number of requests to be
served by airlines’ websites while the number of seat bookings remain stable. This
increases the so-called “look-to-book” ratio which sales and revenue management
departments pay attention to. The damages to the business model, as well as the
costs incurred to support these bot requests, explain the explosion of a whole
new ecosystem of anti-bots techniques. A very recent publication [7] has shared
insights on the design and implementation of 15 popular commercial anti-bot
services.

An arms race exists between bot makers and anti-bot providers: as soon
as a family of bots is blocked, their operators replace them with a new one
which defeats the protection for a varying amount of time. To gain the upper
hand against the bots, we propose a platform where identified bots are provided
inaccurate information, at a cheap cost for the data service provider, so that the
attackers are the ones consuming needlessly their resources without any hope
for a return on their investment.

To present our work, the paper is structured as follows. In Section 2, we
describe the problem we try to solve and the contributions we make. Section 3
offers a brief review of the state of the art. Section 4 describes the experimental
environment we have used. Section 5 offers and discusses early results. Finally,
we conclude in Section 6 with ideas for future work.

2 Problem definition and contributions

We have had the opportunity to look at web sites operated by a major IT
provider for the airline industry. These sites are protected by one of the leading
commercial anti-bots service, placed in front of them. These services check the
origin and the fingerprints associated with each request against a large number
of “signatures”1.

An action (block/captcha[30]/accept) is associated with each signature. It
is noteworthy that some requests do match a signature but are allowed to pass
through. This is typically the case when the confidence in a bot-issued request
is too low. However, as more requests are issued by the same IP, the confidence
score can evolve, and, typically after one hundred requests or more, the requester
might eventually be blocked, as experimentally observed in [7].

Having observed the competing efforts of bots and anti-bots, we have gained
the following insights that led to the work presented in this paper:

– Blocked bots die: As soon as a certain type of bot is blocked, the traffic
associated with that bot disappears. In other words, the anti-bot will have
no match anymore against that signature. This means two things about the
bot operators. First, they continuously verify the stealthiness and efficacy of

1 This is a very simplified explanation due to the lack of space; we refer the interested
reader to [28] for more information on the topic.
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their bots. They do not waste their resources sending requests that do not
bear fruits. Second, they can modify their bots extremely rapidly (within
minutes, or even seconds) to avoid the detection mechanisms put in place
against them.

– Harnessed information is verified : If the information provided to a bot, such
as a ticket price, is quite different from the real one, once more, the traffic
associated with that bot disappears, almost immediately (within minutes).
This means two more things about the bot operators. First, they continu-
ously verify the correctness of the information they harness, preventing the
poisoning of their database. Second, they deduce from the feeding of incor-
rect information that their bots are now identified and mute them to become
stealthy again.

Blocking the bots fuels the arms race, disrupts their operations for a small
amount of time but, after that, renders us blind to the new armies they have
formed since the bot operators pay attention and are very reactive. A better ap-
proach would be to avoid making the bot operators aware that their bots have
been identified without incurring the costs associated with the real computa-
tion of a response to their requests. This is only possible by providing them an
incorrect answer, yet a plausible one to avoid them understand what we do.

In this paper, we address this problem by means of a first experiment that
led to the discovery of three important pieces of information:

1. We identify a specific class of super stealthy bots that are characterized by
an extreme distribution of their activity. Most of the time, they only send a
single request per day and per IP, and almost never more than two.

2. We show that a behavioral pattern emerges when looking at all these requests
put together. This gives hope for another form of detection, on top of the
browser fingerprinting approaches, based on the aggregation of all payloads
sent by the distributed bots.

3. We show that it is possible to provide inaccurate information without being
detected by the bot operators.

3 State of the art

The idea of deceiving an attacker to win him over is certainly not new. Sun
Tzu wrote about it more than 500 years before our era in his treaty on the “art
of war”[27]. When it comes to computer security, one of its first incarnations
dates back to 1986 with the famous Cuckoo’s Egg story with Cliff Stoll. A few
years later, 1992, B. Cheswick told us about his “evening with Berferd” [9] and,
just after that, W. Venema made it possible for everyone to play with the idea
with the creation of TCPWrapper [29]. In [10], Cohen formalises the notion of
deception in computers and reviews the early works on honeypots. [15] provides
a game-theoretical view of these deception approaches.

Since then, honeypots, honeynets and honeytokens [21] have received a lot of
attention. They exist in all kinds of flavors, low/mid/high interaction [16]. They
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are implemented from hardware and driver levels up to the application level.
Some are simply collecting information about attackers to learn their modus
operandi [22,19] or derive actionable knowledge about them [24], possibly leading
to attack attribution applications [25]. Others take an active role in slowing down
the attackers. They are then usually called sticky honeypots, tarpits or crawler
traps [5,1,11]. Web application honeypots, in particular, have received a lot of
attention, with, among many others, the following interesting pieces of work
[20,8,14,13]. In particular, when it comes to bot detection, [17] provides a good
survey on the various works that have tried to use web-based honeypots and
honeytokens against them.

Our work has been inspired by the Bait&Switch Honeypots [5] and the Intru-
sion Trap Systems [23] where the authors redirect malicious traffic to a honeypot
that mirrors the real site under protection. The main differences lie in the com-
plexity of the system we have to mimic, the sophistication of the attackers to
lure, and our desire to provide plausible, yet inaccurate information.

4 Experimental setup

We have carried out a 56 days experiment in collaboration with a major IT
provider for airlines websites. The provider offers different products for the book-
ing process. We focused our attention on a specific one, product A, for which
the customer airlines build their own private website. On this domain, a user
can insert information about the flight to search, such as locations and dates for
the departure and return flight (if any). When the user finalizes the process, a
HTTP POST request is built. Subsequently, the request is sent to the booking
domain, which belongs to the IT provider.

As shown in Fig. 1, the requests do not go directly to the booking website
but they pass through an anti-bot commercial solution. This artifact is used
to recognize bot traffic through browser fingerprinting and mitigate it. If the
request is detected as coming from a real user, the anti-bot solution redirects it
to the booking domain. There, the value of the fare is computed in real-time,
taking into account a huge number of variables, such as seasonal promotions and
the number of seats left. This process is computationally expensive. Finally, the
user receives back a web page containing the requested information.

When the request is detected as coming from a bot, custom actions can be
put in place, like serving a CAPTCHA[30], a JavaScript challenge, or blocking
the bot.

In our setup, we implemented a new type of custom action, which consists
in forwarding the request to a honeypot, as shown with a dash-line in Fig. 1.
This platform, external to the IT provider environment, is capable of providing
answers to requests while modifying the prices at will. The structure of the page
to be served is obtained periodically from the real booking domain. Fares are
retrieved thanks to an API of the IT provider. The system is able to modify the
fares, insert them into the structure and send the response back. In this way,
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Fig. 1. Scheme of the booking system. The dashed line shows the new addition of the
honeypot into the flow.

bots receive a response with the same syntax but different prices with respect
to the original one.

It is worth noting that, if a real user generates a request which is detected as
a bot one, it is sent to our honeypot. When trying to proceed further in the user
journey, by continuing the booking flow on the real site, the user will receive an
error message. We have never observed such an error message in the normal logs
during our experiment.

This work was carried out in collaboration with a specific airline company,
which uses product A. In general, 1 million requests are sent daily to that airline
website. The anti-bot solution usually blocks close to 40% of them.

Among the non-blocked requests, we noticed that some were labeled by a
signature from the anti-bot. That signature was triggered every day, only once,
during a 40 minutes window. In the period preceding the experiment, these
matching requests were almost never seen completing a booking. All these el-
ements led us to conjecture that all requests having this signature were likely
false negative of the anti-bot and we have decided to investigate them further.

The anti-bot was configured in such a way that all the requests matching that
signature would be forwarded to our honeypot. During the first three days of
the experiments, we did provide the correct answers, to ensure that our modified
setup did not generate any noticeable artefact that would have scared the bots
away.
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After this initial observation period, we systematically increased the ticket
prices by 5%, for a random selection of 10% of the requests. Due to this strategy,
an observer could have noticed an anomalous fluctuation of the price in specific
points in time. For example, if multiple requests with the same parameters were
made in a short amount of time and just one was randomly chosen for the
increase, this should have been recognised as an anomaly by a careful observer.
Our goal was to understand if the bot master was actually checking for such a
pattern and if a small modification of the price would have been caught.

5 Results

5.1 Introduction

In this section, we will present the results of our experiment. First, in subsection
5.2, we will provide an overview of the retrieved traffic. Subsection 5.3 will show
our study of the information about flights requested by the bots.

5.2 General analysis

Between the 07/01/2020 and the 02/03/2020, the honeypot received 22,991 re-
quests, each day within the same 40 minutes window. There was no change in
behavior before and during our experiment. Changing randomly some of the
values without causing their departure, we have learned that i) they do not have
a ground truth to compare the returned values and ii) their plausibility check is
not sophisticated enough to detect small changes, not even by correlating values
collected over several days.

The matching requests have all disappeared since March 3rd, which corre-
sponds to the day after the first COVID-19 quarantine decisions were made by
the government of the country where this airline company is based. For this
reason and the fact that the bot behavior did not change after the increase of
the price, we believe the honeypot was not detected by the bots during the
experiment.

The requests came from 13,897 different IP addresses. 88% of them made
a single request per day and 97% less than 2 (see Fig. 2)! 32% of these IPs
appeared on more than 1 day which is, somehow surprising, knowing that some
proxy services offer several millions of distinct IP addresses.

These IPs belong to 1,187 /16 blocks which means that, on average, there
were less than 12 IPs (mis)used by bots within each /16 block, i.e. less than
0.02% of that IP space. Furthermore, geo-localisation of these IPs indicates 790
distinct origins, in 86 different countries. This highlights how widespread the
misused IPs are on the Internet.

TOR exit nodes To better understand if the IPs collected in the honeypot were
involved in malicious activities during the time of the experiment, we checked
if they were used in the Tor network [26]. We analyzed day by day if the IPs
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seen in the honeypot were advertised as exit nodes. We discovered that 72 IPs
were announced in this way in 5 different days. In Table 1 we provide the details
about the dates and the number of IPs found each day. It is peculiar how only
5 days close in time have witnessed this match. Our hypothesis is that the bots
tried to take advantage of the tor nodes but they did not continue with this
strategy.
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Fig. 2. # of IP addresses having sent at most X requests per day

Date Number of Tor Ips

2020-02-14 12
2020-02-15 24
2020-02-18 20
2020-02-19 40
2020-02-24 12

Table 1. Number of tor exit nodes which had an IP found in the honeypot on the
corresponding date.

5.3 Behavioral analysis

We decided to study the payloads of the bot requests, something the anti-bot
is not looking at. We found a striking similarity among them. This is consistent
with the idea that they all are issued by bots obeying to the same operator for
a repetitive data collection task.
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The requests were interested in return flight tickets (resp. one way ) in 51.5%
of the cases (resp. 48.5%) where the return date was always 7 days after the
departure one. The 22,991 requests only look for 25 combinations of 16 departure
and 12 arrival airports from where this airline operates flights, an extremely small
fraction of the airline offers.

The time interval between the date of the request and the one of the de-
parture was also pretty regular. It was either between 0 and 14 days or 21, 30,
45, 60, 90, 120 days. Only a few requests (48, 0.2% of the total) had differ-
ent values (20, 31, 44 days) but they were also done outside the 40 minutes
window and probably do correspond to a different phenomenon. In Fig. 3, we
represent the distribution of these time intervals among different types of seg-
ments(combinations of one way/return flight, departure, and arrival locations).
For each segment and specific interval, we calculated the number of observed re-
quests over the 56 days of the experiment. For example, the data corresponding
to the value 0 on the x-axis, represents the count of all the requests which asked
for a flight departing the same day in which the request was made, thus with an
interval equal to 0 days. The boxplot is built first counting, for each combina-
tion, how many requests have this interval. Then median and percentile values
are calculated for this aggregated data. The same process has been repeated for
intervals of all sizes. These results clearly show that the various intervals have
similar distributions of values.

Fig. 4 looks at this regularity from a different angle. Now, for each request
date, we compute the amount of observed time intervals for all paths taken
together. Similarly to the previous figure, the data corresponding to the value
0 on the x-axis represents an interval equal to 0 days. The boxplot is built
counting the occurrence of this value in the requests, grouping them according
to the request date. The new boxplots show the same regularity in the querying
process: no matter how we look, we see the same kind and amount of queries
being done, day after day. They are not identical though. If we compute the
4-tuples made of i) departure airport, ii) arrival airport, iii) time interval, iv)
type of flight (one way or return), we can identify 982 distinct ones over the
whole experiment, to be compared with the average 410 requests per day.

Tuples statistics Studying the occurrences of the different tuples, we found
that on average each tuple is asked 23.41 times during the whole running time
of the experiment. This value is pretty close to the average number of days in
which a tuple is requested, which is 22.85. This shows how generally each tuple
is asked just once a day at most. However, 20% of the tuples have been asked, at
least on one occasion, more than once a day. The maximum number of times the
same tuple has been requested on the same day is 8. Almost each day (every day
but one) at least one tuple has been queried more than once. Requests asking for
the same tuple are always asked in a little span of time. The maximum distance
between two of them is 337 seconds (around 5 minutes and a half), the minimum
is 5 seconds while the average value is 45.2 seconds.
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This behavior is somehow peculiar because not only the same combinations
are asked multiple times, but this is done in a short amount of time. One possible
explanation is that a check of consistency for the prices is put in place. However,
as explained before, the bot did not found discrepancies in the prices even after
the 5% increase was put in place. This would mean that their threshold for an
anomalous situation is higher than such value.
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Fig. 3. Boxplots representing the distribution of the intervals among different paths
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Fig. 4. Boxplots representing the distribution of the intervals among different request
dates

6 Discussion and Conclusion

We have shown how stealthy Advanced Persistent Bots scrap the web content
of an airline company by sending only one request per day and per IP. For 56
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days, our honeypot has served them modified prices without being detected. A
substantial fraction of these IPs (32%) are reused over time and they exhibit a
behavioral pattern that gives us high confidence that they all are operated by the
same bot master. This opens the way for future work in two distinct directions.
First of all, because of the repetition of the requests and the loose verification of
the results made by the bots, we can probably serve inexpensive cached results.
Some sensitivity analysis remains to be done to assess the cache refreshing rate.
Secondly, a longitudinal large-scale analysis of suspicious IPs exhibiting the same
behaviour may lead to a new, efficient, method to identify IP addresses to be
blocked.
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