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A double deep Q-network (DDEN ) parame-
terizing the Q-function with parameter vector

0 is trained to minimize the expected temporal
difference (TD) error given by
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DQN Architecture with Map Centering “Manhattan”-type Map
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ﬂy1ﬂg time 8465 15 15
(a) Time 31/38; Data (b) Time 41/41; Data
. | 17.4/17 4 34.5/34.5
Advantage of Map Centering Metric Manhattan Map
Has Landed 99.5%
Collection Ratio 94.8%
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Collection Ratio and Landed 94.6%

Table: Performance metrics averaged over 1000 random
scenario Monte Carlo iterations.
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Cumulative Reward

Collection Ratio and Landed
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