
Stochastic Analysis of Coded Multicasting for
Shared Caches Networks

Adeel Malik, Berksan Serbetci, Emanuele Parrinello, Petros Elia
Dept. of Communication Systems, EURECOM, Sophia Antipolis, 06410, France

{malik, serbetci, parrinel, elia}@eurecom.fr

Abstract—The work establishes the exact fundamental limits
of stochastic coded caching when users share a bounded number
of cache states, and when the association between users and
caches, is random. This association can greatly affect perfor-
mance, which improves when the association is more balanced
across the caches, and which deteriorates when this association
becomes less uniform. Our work provides a statistical analysis of
the average performance of such networks, quantifying the effect
of randomness by identifying in closed-form, the exact optimal
average delivery time. To insightfully capture this delay, we
derive the exact scaling laws of the optimal average delivery time.
In the scenario where delivery involves K users, we conclude that
the multiplicative performance deterioration due to randomness
— as compared to the well-known deterministic uniform case —
can be unbounded and can scale as Θ

(
log Λ

log log Λ

)
at K = Θ(Λ),

and that as K increases, this deterioration gradually reduces,
and ceases to scale when K = Ω(Λ log Λ). The above analysis
is validated numerically.

Index Terms—Coded caching, shared caches, heterogeneous
networks, femtocaching.

I. INTRODUCTION

Data traffic in mobile networks is rapidly growing, and is
expected to increase in the upcoming years. Existing network
infrastructures will not be able to support the demand and
due to this enormous growth, there emerged a need for new
solutions that can serve continuously increasing number of
users with a limited amount of network bandwidth resources.
A promising means to increase efficiency is to proactively
cache data in the base stations and transform the storage
capability of the nodes into a new and powerful network
resource.

The potential of such cache-enabled wireless networks has
been strikingly elevated following the seminal publication
in [1] which introduced the concept of coded caching, and
which revealed that — in theory — an unbounded number of
users can be served even with a bounded amount of network
resources. This boost was a consequence of a novel cache
placement algorithm that enabled the delivery of independent
content to many users simultaneously. Since then, several
extensions of the basic coded caching setting have been
studied. For a thorough review of the existing coded caching
works, the reader is strongly encouraged to refer to the longer
version of this work [2].

The work is supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929 (project DUALITY).

User (K) Helper node(Λ) Cache(M) BS Broadcast link Library(N)

Fig. 1: An instance of a cache-aided heterogeneous network.

A. Coded caching networks with shared caches

Essential to the development of larger, realistic coded
caching networks is the so-called shared-caches setting, where
different users are coerced to benefit from the same cache
content. This setting is of great importance because it re-
flects promising practical scenarios as well as unavoidable
constraints.

Such a promising scenario can be found in the context
of cache-enabled heterogeneous networks (HetNets), where a
central transmitter (a base station) delivers content to a set of
interfering users, with the assistance of cache-enabled helper
nodes that serve as caches to the users. An instance of a cache-
aided HetNet is illustrated in Figure 1. Such networks capture
modern trends that envision a central base-station covering
a larger area, in tandem with a multitude of smaller helper
nodes each covering smaller cells. In this scenario, any user
that appears in a particular small cell, can benefit from the
cache-contents of the single helper node covering that cell.

In the context of coded caching, an early work on this
scenario can be found in [3], which considered the uniform
user-to-cache association case where each helper node is
associated to an equal number of users. This assumption was
eliminated in [4], which — under the assumption that content
cache placement is uncoded as well as agnostic to the user-to-
cache association — identified the exact optimal worst-case
delivery time, as a function of the user-to-cache association
profile that describes the number of users served by each

cache. A similar setting was studied in [5] for the case of non-
distinct requests, as well as in [6]–[8] for the topology-aware
(non-agnostic) scenario, where the user-to-cache association
is known during cache placement. It is interesting to note
that this same shared-caches setting also applies (to a certain
extent) to the scenario where each user requests multiple files
(see for example [9], [10]).

At this point, it is essential to note that this same shared-
caches setting is directly related to the inevitable subpacke-
tization bottleneck because this bottleneck can force the use
of a reduced number of distinct cache states that must be
indispensably shared among the many users. This number of
distinct cache states, henceforth denoted as Λ, will be forced
under most realistic assumptions, to be substantially less than
the total number of users, simply because most known coded
caching techniques require file sizes that scale exponentially
with Λ (see [2] for a detailed list of works).

Both of the above isomorphic settings entail that during the
content delivery that follows the allocation of cache states to
each user, different broadcast sessions would experience user
populations that differently span the spectrum of cache states.
In the best-case scenario, a transmitter would have to deliver
to a set of K users that uniformly span the Λ states (such that
each cache state is found in exactly K/Λ users), while in the
most unfortunate of scenarios, a transmitter would encounter
K users that happen to have an identical cache state. Both
cases are rare instances of a stochastic process, which we
explore here in order to identify the exact optimal performance
of such systems.

Most of our results apply both to the HetNet scenario
as well as the aforementioned related subpacketization-
constrained setting which was nicely studied in [11]. For ease
of exposition, we will focus the wording of our description
to the first scenario corresponding to a HetNet where Λ plays
the role of the number of helper nodes. All the results though
of Section II certainly apply to the latter setting as well.

B. Shared-caches setting & problem statement

We consider the shared-caches coded-caching setting
where a transmitter having access to a library of N equisized
files, delivers content via a broadcast link to K receiving users,
with the assistance of Λ cache-enabled helper nodes. Each
helper node λ ∈ [1, 2, . . . ,Λ] is equipped with a cache of
storage capacity equal to the size of M files, thus being able
to store a fraction γ , M

N ∈
[
1
Λ ,

2
Λ , . . . , 1

]
of the library. Each

such helper node, which will be henceforth referred to as a
‘cache’, can assist in the delivery of content to any number
of receiving users.

The communication process consists of three phases; the
content placement phase, the user-to-cache association phase,
and the delivery phase. The first phase involves the placement
of library-content in the caches, and it is oblivious to the
outcome of the next two phases. The second phase is when
each user is assigned — independently of the placement phase
— to exactly one cache from which it can download content
at zero cost. This second phase is also oblivious of the other

two phases1. The final phase begins with users simultaneously
requesting one file each, and continues with the transmitter
delivering this content to the receivers. Naturally this phase is
aware of the content of the caches, as well as aware of which
cache assists each user.

User-to-cache association: For any cache λ ∈
[1, 2, . . . ,Λ], we denote with vλ the number of users that
are assisted by it, and we consider the cache population
vector V = [v1, v2, . . . , vΛ]. Additionally we consider the
sorted version L = [l1, l2, . . . , lΛ] = sort(V), where sort(V)
denotes the sorting of vector V in descending order. We refer
to L as a profile vector, and we note that each entry lλ is
simply the number of users assisted by the λ-th most populous
(most heavily loaded) cache. Figure 1 depicts an instance of
our shared-caches setting where L = [5, 4, 3, 2].

Delivery phase: The delivery phase commences with
each user k ∈ [1, 2, . . . ,K] requesting a single library file
that is indexed by dk ∈ [1, 2, . . . , N]. As is common in coded
caching works, we assume that each user requests a different
file [1], [4], [11]. Once the transmitter is notified of the request
vector d = [d1, d2, . . . , dK], it commences delivery over an
error-free broadcast link of bounded capacity of one file per
time slot.

C. Metric of interest
As one can imagine, any given instance of the problem,

experiences a different user-to-cache association and thus2 a
different V. Our measure of interest is thus the average delay

T (γ) , EV[T (V)] =
∑
V

P (V)T (V), (1)

where T (V) is the worst-case delivery time3 corresponding to
any specific cache population vector V, and where P (V) is
the probability that the user-to-cache association corresponds
to vector V.

More precisely, we use T (V,d,X) to define the delivery
time required by some generic caching-and-delivery scheme
X to satisfy request vector d when the user-to-cache asso-
ciation is described by the vector V. Our aim here is to
characterize the optimal average delay

T
∗
(γ) = min

X
EV

[
max
d

T (V,d,X)

]
= min

X
EL

[
EVL

[
max
d

T (V,d,X)

]]
(2)

1This assumption is directly motivated by the time-scales of the problem,
as well as by the fact that in the heterogeneous setting, the user-to-cache
association is a function of the geographical location of the user. Note that
users can only be associated to caches when users are within the coverage
of caches, and a dynamic user-to-cache association that requires continuous
communication between the users and the server may not be desirable as one
seeks to minimize the network load overhead and avoid the handover.

2We briefly note that focusing on V rather than the sets of users connected
to each cache, maintains all the pertinent information, as what matters for the
analysis is the number of users connected to each cache and not the index
(identity) of the users connected to that cache.

3This delay corresponds to the time needed to complete the delivery of
any file-request vector d, where the time scale is normalized such that a unit
of time corresponds to the optimal amount of time needed to send a single
file from the transmitter to the receiver, had there been no caching and no
interference.

where the minimization is over all possible caching and
delivery schemes X , and where EVL

denotes the expectation
over all vectors V whose sorted version is equal to some fixed
sort(V) = L. Consequently the metric of interest takes the
form

T (γ) = EL[T (L)] =
∑
L

P (L)T (L) (3)

where T (L) , EVL
[maxd T (V,d)] and where

P (L) ,
∑

V:sort(V)=L

P (V)

is simply the cumulative probability over all V for which
sort(V) = L.

We will consider here the uncoded cache placement scheme
in [1] and the coded multicasting delivery scheme in [4],
[11], which will prove to be optimal for our setting under
the common assumption of uncoded cache placement. This
multi-round delivery scheme introduces — for any V such
that sort(V) = L — a worst-case delivery time of

T (L) =

Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) , (4)

where t = Λγ and lλ is the number of users in the λ-th most
populous cache.

From equation (4) we can see that the minimum delay
corresponds to the case when L is uniform. When Λ divides
K, this minimum (uniform) delay takes the well known form

Tmin =
K(1− γ)

1 + Λγ
(5)

while for general K,Λ, it takes the form4

Tmin =
Λ− t

1 + t

(⌊
K

Λ

⌋
+ 1− f(K̂)

)
, (6)

where K̂ = K −
⌊
K
Λ

⌋
Λ, f(K̂) = 1 when K̂ = 0, f(K̂) = 0

when K̂ ≥ Λ− t, and f(K̂) =
∏K̂+t

i=t+1(Λ−i)∏K̂−1
j=0 (Λ−j)

when K̂ < Λ− t.

The proof of this is straightforward, but a complete proof can
be found in the longer version of this work [2]. The above
Tmin is optimal under the assumption of uncoded placement
(cf. [4]).

On the other hand, for any other (now non-uniform) L, the
associated delay T (L) will exceed Tmin (see [4] for the proof,
and see Figure 2 for a few characteristic examples), and thus
so will the average delay

EL[T (L)] =

Λ−t∑
λ=1

∑
L∈L

P (L)lλ

(
Λ−λ
t

)(
Λ
t

) , (7)

where L describes the set of all possible profile vectors L
(where naturally

∑Λ
λ=1 lλ = K).

D. Our contribution

In this work we assume that each user can be associated
to any particular cache (i.e., can appear in any particular

4When K/Λ /∈ Z+, the best-case delay corresponds to having lλ =

⌊K/Λ⌋ + 1 for λ ∈
[
1, 2, · · · , K̂

]
and lλ = ⌊K/Λ⌋ for λ ∈[

K̂+ 1, K̂+ 2, · · · ,Λ
]

, where K̂ = K − ⌊K/Λ⌋Λ.

1 2 3 4 5

5

10

15

20

25

30

35

Fig. 2: Delay T (L) for different profile vectors L, for K=40
and Λ=8.

cell) with equal probability. We will identify the optimal
average delay T

∗
(γ) and the corresponding (multiplicative)

performance deterioration

G(γ) =
T

∗
(γ)

Tmin
(8)

experienced in this random setting. Our aim is to obtain
an exact characterization of the performance measure, and
provide asymptotic analysis in order to yield clear insight of
the scaling laws. The following are our main contributions.

• In Section II-A, we characterize in closed form the exact
optimal average-case delay T

∗
(γ), optimized over all

placement and delivery schemes under the assumption
of uncoded cache placement and under the assumption
that each user can be associated to any particular cache
with equal probability.

• In Section II-B, we characterize the exact scaling laws
of performance. It is interesting to see that the aforemen-
tioned multiplicative deterioration G(γ) = T

∗
(γ)

Tmin
can in

fact be unbounded, as Λ increases. For example, when
K = Θ(Λ) (i.e., when K matches the order of Λ), the
performance deterioration scales exactly as Θ

(
log Λ

log log Λ

)
,

whereas when K increases, this deterioration gradually
reduces, and ceases to scale when K = Ω(Λ log Λ).

• In Section III, we perform numerical evaluations that
validate our analysis.

E. Notations

Throughout the paper, we use the following asymptotic
notation: i) f(x) = O(g(x)) means that there exist constants
a and c such that f(x) ≤ ag(x),∀x > c, ii) f(x) = o(g(x))

means that limx→∞
f(x)
g(x) = 0, iii) f(x) = Ω(g(x)) if g(x) =

O(f(x)), iv) f(x) = ω(g(x)) means that limx→∞
g(x)
f(x) = 0,

v) f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).
We use the term polylog(x) to denote the class of functions∪

k≥1 O((log x)k) that are polynomial in log x. Unless other-
wise stated, logarithms are assumed to have base 2.

II. MAIN RESULTS

In this section we present our main results on the perfor-
mance of the K-user broadcast channel with Λ caches, each
of normalized size γ, and a uniformly random user-to-cache
association process. As noted, the analysis applies both to the
Λ-cell HetNet, as well as to the isomorphic subpacketization-
constrained setting.

A. Exact characterization of the optimal average delay

We proceed to characterize the exact optimal average delay
T

∗
(γ). Crucial in this characterization will be the vector

BL =
[
b1, b2, . . . , b|BL|

]
, where each element bj ∈ BL

indicates the number of caches in a distinct group of caches in
which each cache has the same load5. Under the assumption
that each user can be associated to any particular cache
with equal probability, the optimal average delay T

∗
(γ) —

optimized over all coded caching strategies with uncoded
placement — is given by the following theorem.

Theorem 1. In the K-user, Λ-caches setting with normalized
cache size γ and a random user-to-cache association, the
average delay

T
∗
(γ) =

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(
Λ−λ
t

)
ΛK

∏Λ
i=1 li!

∏|BL|
j=1 bj !

(9)

is exactly optimal under the assumption of uncoded placement.

Proof. The proof can be found in Appendix A.

One can now easily see that when K
Λ ∈ Z+, the optimal

multiplicative deterioration G(γ) = T
∗
(γ)

Tmin
takes the form

G(γ) =

Λ−t∑
λ=1

∑
L∈L

(K−1)! (Λ−t−1)! (t+1)! lλ
(
Λ−λ
t

)
ΛK−1 ∏Λ

i=1 li!
∏|BL|

j=1 bj !
.

(10)

Remark 1. Theorem 1 provides the exact optimal perfor-
mance in the random association setting, as well as a more
efficient way to evaluate this performance compared to the
state of the art (SoA) (cf. [11, Theorem 1]). This speedup
is due to the averaging being over the much smaller set L
of all L, rather than over the set V of all V (see Table I
for a brief comparison). We note that the creation of V is
a so-called weak composition problem, whereas the creation
of L is an integer partition problem. It is easy to verify that
the complexities of the algorithms for the integer partition
problem are significantly lower than the ones for the weak
composition problem [12], [13].

B. Scaling laws of coded caching with random association

The following provides the asymptotic analysis of the
optimal T

∗
(γ), in the limit of large Λ.

5For example, for a profile vector L = [5, 5, 3, 3, 3, 2, 1, 0, 0], there are
five distinct groups of caches in terms of having the same load, then the
corresponding vector BL = [2, 3, 1, 1, 2], because two caches have a similar
load of five users, three caches have a similar load of three users, two caches
have a similar load of zero and all other caches have distinct number of users.

|L| |V|
K = 10 42 92378
K = 20 530 10015005
K = 30 3590 211915132
K = 40 16928 2.054455634× 109

K = 50 62740 1.2565671261× 1010

TABLE I: Size of L and V (Λ = 10)

Theorem 2. In the K-user, Λ-caches setting with normal-
ized cache size γ and random user-to-cache association, the
optimal delay scales as

T
∗
(γ) =

{
Θ
(

TminΛ log Λ

K log Λ log Λ
K

)
if K ∈

[
Λ

polylog(Λ) , o (Λlog Λ)
]

Θ(Tmin) ifK = Ω(Λ log Λ) .

(11)

Proof. Due to lack of space, the proof is relegated to the
longer version of this work [2].

Directly from the above, we now know that the performance
deterioration due to user-to-cache association randomness,
scales as

G(γ) =

{
Θ
(

Λ log Λ

K log Λ log Λ
K

)
if K ∈

[
Λ

polylog(Λ) , o (Λlog Λ)
]

Θ(1) ifK = Ω(Λ log Λ)

(12)
which in turn leads to the following corollary.

Corollary 1. The performance deterioration G(γ) due to as-
sociation randomness, scales as Θ

(
log Λ

log log Λ

)
at K = Θ(Λ),

and as K increases, this deterioration gradually reduces, and
ceases to scale when K = Ω(Λ log Λ).

Proof. The proof is straightforward from Theorem 2.

In identifying the exact scaling laws of the problem, The-
orem 2 nicely captures the following points.

• It describes the extent to which the performance deteri-
oration increases with Λ and decreases with K

Λ .
• It reveals that the performance deterioration can in fact

be unbounded.
• It shows how in certain cases, increasing Λ may yield

diminishing returns due to the associated exacerbation
of the random association problem. For example, to
avoid a scaling G(γ), one must approximately keep Λ
below eW (K) (W (.) is the Lambert W-function) such
that Λ log Λ ≤ K.

C. Furthering the state of the art on the subpacketization-
constrained shared-caches setting

As mentioned before, our setting is isomorphic to the
subpacketization-constrained setting recently studied in [11].
We briefly mention below the utility of our results in this latter
context.

• Theorem 1 now identifies the exact optimal performance,
as well as provides a more efficient way to evaluate this
performance, compared to the state of the art (cf. [11,
Theorem 1]). As explained before, this speedup is due

to the focus on averaging over the much smaller set L
rather than V (see Remark 1).

• Theorem 2 completes our understanding of the scaling
laws of the random association setting. For example,
for the case where K = Θ(Λ), prior to our work,
G(γ) was known to scale at most as Θ

(√
Λ
)

, whereas
now we know that this deterioration scales exactly as
Θ
(

log Λ
log log Λ

)
. Refer to Table II for a detailed comparison

of the known upper bounds and our exact scaling results.

T
∗
(γ) in [11] T

∗
(γ) in our work

K = Θ(Λ) O
(√

Λ
)

Θ
(

log Λ
log log Λ

)
K = Θ(Λa) for
1 < a < 2 and
K = Ω(Λ log Λ)

O
(
Λa/2

) Θ(Tmin) = Θ
(

K
Λ

)
= Θ

(
Λa−1

)
K = Ω

(
Λ2

)
O

(
K
Λ

)
Θ(Tmin) = Θ

(
K
Λ

)
TABLE II: State of the art comparison of scaling laws.

III. NUMERICAL VALIDATION

We proceed to numerically evaluate EL[T (L)], and sub-
sequently numerically validate our analytical results from
Section II. We use two basic evaluation approaches. The first
is the basic sampling-based numerical (SBN) approximation
method, where we generate a sufficiently large set L1 of
randomly generated profile vectors L, to then approximate
EL[T (L)] as

EL[T (L)] ≈
1

|L1|
∑
L∈L1

T (L), (13)

where we recall that T (L) is defined in (4). The corresponding
approximate performance deterioration is then evaluated by
dividing the above by Tmin.

The second approach is a threshold-based numerical
method. We first generate a set L2 ⊆ L of profile vectors L
such that

∑
L∈L2

P (L) ≈ ρ, for some chosen threshold value
ρ ∈ [0, 1]. Note that the closed form expression for P (L) is
given in (16) in Appendix A. Then, with this subset L2 at
hand, we simply have the numerical lower bound (NLB)

EL[T (L)] ≥
∑
L∈L2

P (L)T (L) + (1− ρ)Tmin, (14)

by considering the best-case delay for every L /∈ L2, and
similarly have the numerical upper bound (NUB)

EL[T (L)] ≤
∑
L∈L2

P (L)T (L) + (1− ρ)K(1− γ), (15)

by considering the worst possible delay K(1 − γ) for every
L /∈ L2. The bounding of G(γ) is direct by dividing the
above with Tmin. Naturally the larger the threshold ρ, the
tighter the bounds, the higher the computational cost. The
additive gap between the bounds on G(γ), takes the form
(1− ρ)

(
K(1−γ)
Tmin

− 1
)

≈ (1− ρ) t, revealing the benefit of
increasing ρ.

Figure 3 compares the exact G(γ) with the sampling-based
numerical (SBN) approximation in (13) for Λ = 20 and

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.6

1.8

2

2.2

2.4

Fig. 3: Exact G(γ) from (10) vs. sampling-based numerical
(SBN) approximation from (13) (|L1| = 10000).

0.1 0.2 0.3 0.4 0.5
1

2

3

4

0.1 0.2 0.3 0.4 0.5
1

2

3

4

Fig. 4: Threshold-based numerical upper bound (NUB)
from (15) vs. threshold-based numerical lower bound (NLB)
from (14) vs. exact G(γ) from (10) (Λ = 30 and ρ = 0.95).

|L1| = 10000, where it is evident that the SBN approximation
is consistent with the exact performance. Figure 4 compares
the exact G(γ) (for Λ = 30) with the threshold-based
numerical bounds that are based on (14) and (15), using
ρ = 0.95. Interestingly, the threshold-based NLB turns out to
be very tight in the entire range of γ, whereas the NUB tends
to move away from the exact performance as γ increases.

IV. CONCLUSIONS

In this work we identified the exact optimal performance of
coded caching with random user-to-cache association. In our
opinion, the random association problem has direct practical
ramifications, as it captures promising scenarios (such as the
HetNet scenario) as well as operational realities (namely, the
subpacketization constraint). The problem becomes even more

pertinent as we now know that its effect can in fact scale
indefinitely.

Key to our effort to identify the effect of association
randomness, has been the need to provide expressions that
can either be evaluated numerically, or that can be rigorously
approximated in order to yield clear insight. The first part was
achieved by deriving exact expressions that can be evaluated
directly or by using the proposed numerical approaches, while
the second part was achieved by studying the asymptotics of
the problem which yielded simple performance expressions
and direct operational guidelines.

APPENDIX

A. Proof of Theorem 1

We first note that the probability P (L) of observing a spe-
cific profile vector L ∈ L is simply the cumulative probability
over all V for which sort(V) = L. This probability takes the
form

P (L) =

term 1︷ ︸︸ ︷
1

ΛK
× K!∏Λ

i=1 li!
×

term 2︷ ︸︸ ︷
Λ!∏|BL|

j=1 bj !
. (16)

To see this, we break down the above equation. The first term
in (16) accounts for the fact that there are ΛK different user-
to-cache associations, i.e., there are ΛK different ways that
K users can be allocated to the Λ different caches. It also
accounts for the fact that each user can be associated to any
particular cache, with equal probability 1

Λ . The second term
in (16) indicates the total number of user-to-cache associations
that leads6 to a specific V for which sort(V) = L, for some
fixed L. Consequently term 1 in (16) is simply P (V), which
naturally remains fixed for any V for which sort(V) = L,
and which originates from the well known probability mass
function of the multinomial distribution. Consequently this
implies that P (L) = |{V : sort(V) = L}| × P (V). Finally,
term 2 describes the number of all possible cache population
vectors V for which sort(V) is equal to some fixed L.

We now proceed to insert (16) into (7), which yields the
average delay

EL[T (L)] =

Λ−t∑
λ=1

∑
L∈L

P (L)lλ

(
Λ−λ
t

)(
Λ
t

)
=

Λ−t∑
λ=1

∑
L∈L

lλK!Λ!

ΛK
∏Λ

i=1 li!
∏|BL|

j=1 bj !

(
Λ−λ
t

)(
Λ
t

)
=

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(
Λ−λ
t

)
ΛK

∏Λ
i=1 li!

∏|BL|
j=1 bj !

, (17)

which concludes the achievability part of the proof for the
expression in Theorem 1.

6Recall that different user-to-cache associations can lead to the same cache
population vector V. For example, when K = Λ = 3, the following 6
user-to-cache associations, [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], and
[3, 1, 2] — each describing which user is associated to which cache — in
fact all correspond to the same V = [1, 1, 1], because always each cache is
associated to one user.

Optimality of the aforementioned expression can be proved
by means of the lower bound developed in [4]. We notice that
the optimal delay T

∗
(γ) can be lower bounded as

T
∗
(γ) = min

X
EL

[
EVL

[
max
d

T (V,d,X)

]]
≥ min

X
EL

[
max
d

EVL
[T (V,d,X)]

]
≥ EL

[
min
X

max
d

EVL
[T (V,d,X)]

]
≥ EL

[
min
X

Ed∈Dwc
EVL

[T (V,d,X)]︸ ︷︷ ︸
T∗(L)

]
(18)

where Dwc denoted the set of demand vectors with distinct
users’ file-requests. Next, exploiting the fact that P (V) is the
same for any V for which sort(V) = L, we notice that

T ∗(L) , min
X

Ed∈Dwc
EVL

[T (V,d,X)]

is lower bounded by equation (53) in [4], which then proves
that T ∗(L) is bounded as

T ∗(L) ≥
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) . (19)

This concludes the proof for the optimality of the delivery
time in Theorem 1.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Fundamental
limits of stochastic caching networks,” 2020. [Online]. Available:
https://arxiv.org/pdf/2005.13847.pdf

[3] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,
no. 5, pp. 3108–3141, May 2017.

[4] E. Parrinello, A. Unsal, and P. Elia, “Fundamental limits of coded
caching with multiple antennas, shared caches and uncoded prefetch-
ing,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2252–2268, Apr. 2020.

[5] N. S. Karat, S. Dey, A. Thomas, and B. S. Rajan, “An optimal
linear error correcting delivery scheme for coded caching with shared
caches,” 2019. [Online]. Available: http://arxiv.org/abs/1901.03188

[6] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “On the
fundamental limits of fog-ran cache-aided networks with
downlink and sidelink communications,” 2018. [Online]. Available:
https://arxiv.org/pdf/1811.05498.pdf

[7] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Coded caching and storage
planning in heterogeneous networks,” in Proc. IEEE Wireless Commun.
and Netw. Conf. (WCNC), San Francisco, CA, Mar. 2017, pp. 1–6.

[8] E. Parrinello and P. Elia, “Coded caching with optimized shared-cache
sizes,” in Proc. IEEE Inf. Theory Workshop (ITW), Visby, Sweden, Aug.
2019, pp. 1–5.

[9] A. Sengupta and R. Tandon, “Improved approximation of storage-rate
tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940–1955, May 2017.

[10] Y. Wei and S. Ulukus, “Coded caching with multiple file requests,”
in Proc. 55th Annual Allerton Conf. on Commun., Cont., and Comput.
(Allerton), Monticello, IL, Oct. 2017, pp. 437–442.

[11] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentralized
coded caching scheme with good performance in the finite file size
regime,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5297–5310, Aug.
2019.

[12] I. Stojmenović and A. Zoghbi, “Fast algorithms for generating integer
partitions,” Int. J. Comput. Math., vol. 70, no. 2, pp. 319–332, 1998.

[13] M. Merca, “Fast algorithm for generating ascending compositions,” J.
Math. Model. and Algorithms, vol. 11, pp. 89–104, 2012.

