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Abstract—Certain blind channel estimation techniques allow the iden- tr(CRB).

tification of the channel up to a scale or phase factor. This results in singu- ; ; _
larity of the Fisher Information Matrix (FIM). The Cram ér—Rao Bound, We E.lppIY these results to two classes of blind .FIR multichan
which is the inverse of the FIM, is then not defined. To regularize the N€l estl_matlon problems correspor_1d_m_g to two d|ffe_rent mod_els
estimation problem, one can impose constraints on the parameters. In for the input symbols. The deterministic model, which exploits
general, many sets of constraints are possible but are not always relevant. ng statistical information on the input symbols takes the input
We propose a constrained CRB, the pseudo-inverse of the FIM, which S .. T .
gives, for a minimum number of constraints, the lowest bound on the mean symbols to be d_eterm'n'St'C quantities whereas in th? Gaussian
squared estimation error. model we consider them to be uncorrelated Gaussian random
variables to exploit their second—order statistics. The determin-

|. INTRODUCTION istic model leads to the class of methods that are directly based

: o L i e channel up to a scale factor only and the Gaussian methods
identified, the FIM is singular, and the classical CRB resul[§p toa phaseaactor resulting in sinygularities of the FIM
cannot be applied directly. Throughout the paper, we distinguish between the real and

The main motivation for this work is the study of the perfor- mplex parameter cases since thev lead to different FIMs
mance of certain blind channel estimation problems where tﬁ% plex paran o 1€y o
Q different singularities, and require different regularization

parameters can indeed be identified only up to a scale or phggnstraints. The blind deterministic CRB is computed under

factor. Blind estimation is usually done under certain parameE commonly used norm constraint which imposes the norm
constraints to regularize the problem. The performance of bli y : e -
the channel to be constant. This constraint is sufficient to

methods is not correctly evaluated in general or remains so regularize the problem when the channel is real, but not when it
what vague. The performance is often compared to “CRBSY P '

that do not correspond to the regularization technique usea‘%r%omplex in which case an additional constraint s required to

the estimation. A constraint often used is to consider one djust the phase of the channel. This constraintis chosen so that

efficient of the channel as known (which is sufficient to rendI eeizucl)tflr':ﬁeCIg?l\s/ltr:rl:ziego(r:rsfpSntjhsetgAZor;wei:iarﬁglroczig;zi?i%_
the estimation problem regular): the resulting performance a . . :
P gular) gp B. When the channel is real the Gaussian FIM is regular.

its bound depend on the choice of this coefficient and app - e ] X
arbitrary. One of the contributions of this work will be to givgﬁ hfhr;'Lﬁazzn?glsgczzvg'z:;gér}ﬁ lt:hlg/lésé'z?n%rr:?srt.icac(;osnesgiljmthe

a less arbitrary bound and the corresponding set of constraifis. ) . ) )
In this paper, we study the CRBs for estimation under pg(_)nstralned CRB is again the pseudo—inverse of the FIM.

rameter constraints in the case where the unconstrained prob-

lem leads to nonidentifiability,e. the FIM is singular. We fur- Il. CRBS FORREAL AND COMPLEX PARAMETERS

thermore outline the correspondence between the number angle review here CRBs for the case of regular FIMs.

characteristics of FIM singularities and the number and char-

acteristics of independent constraints needed in order to regu-

larize the estimation problem and to be able to define the con-

strained CRB. Furthermore, assuming that we can choose theetf be a deterministic real parameter vector g¥ |¢) the

set of constraints, we propose a particular CRB for the caa®bability density function of the vector of real observations

of an unidentifiable unconstrained estimation problem: th¥. The FIM for@ is:

CRB is the Moore-Penrose pseudo-inverse of the FIM. It cor-

responds to a minimum number of independent constraints and dln f(Y']0) Oln f(Y']9) T

gives the lowest bound on the mean square estimation eeor, Joo = Ey o ( 90 ) ( 90 ) - @

CRBs for Real Parameters
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Letd be an unbiased estimatea)apgé = 0 — 0 the estimation I1l. CRBS FORESTIMATION WITH CONSTRAINTS
error. Hence B = 0 andC;; = Ef¢” is the error covariance

. Wh . ol d und X lari In this section, we consider real parameters (heéhstands
matrix. en‘%fl's. nonsingular and under certain regularity,. . it ¢ is complex). When the estimation is (locally)
conditions [3],7,," is the Crangr—Rao Bound and:

unidentifiable, the FIM is singular and the classical CRB re-
Cs5 > CRB = jegl . (2) sult(2) cannot be applied.
In order to characterize the non regular estimation perfor-
mance, we define CRBs for estimation under a certain set of
Whend is a complex deterministic parameter, the previowgquality constraints: this set of constraints should allow to ad-
results can be applied t; = [Re(¢)” |m(9)T]T andY p = Justthe parameters that cannot be identified and in this way to
gularize the estimation problem.
CRBs for parameter estimation under constraints were de-
rived in [7] in the case where the unconstrained estimation
problem is regular. A simpler derivation of these results was
presented in [8]. The main ingredient of this simpler derivation
O f(Y1]0)\ [0 f(Y|0)\" was used in [9] to give an alternative expression for the CRB in
Joy =Eyjo ( Do ) ( R ) (3) the case where the unconstrained problem is unidentifiable. We
z shall succinctly restate these results, which appeared already in

B. CRB for Complex Parameters, Complex CRB.

[Re(Y)” Im(Y)T]T, the associated real parameters and real
observations.

Itis however possible to define the FIM féog w.r.t. complex
FIM-like matrices. Let/,,,, be defined as:

Derivationaw.r.t. the gompleg vectof = « + jf is de- [10]for the case of linear constraints.

. 1 T i i K, —

fined as: 2~ = = (_ —j—>. The parameterization in Consider ak—fpld Constra|nt of_the for_m.lcg = 0 where
00 2 \ O g Ko : R* — R* is continuously differentiable ankl < n, n

(Re(9), Im(6)) is equivalent to a parameterization in terms Qbeing the number of parameters in the vedtoA constrained
(0, 0%) via: parameter estimataris called unbiased if it satisfies the con-
Re(6) 0 1 I I straints C; = 0) and if the parameter estimation bias is zero
Or = { Im() } =M [ o ] , M= 3 { il I } for all parameter values that satisfy the constraints [8]. The
constrained CRB depends on the constraints only through the
where M is non-singular. Knowing thafgy = J.,. and tangents to the constraint set at the true valug of
Joo= = Jj. g, €QUation (4) implies: oKT
Joo  Joo Mo = {Z <R 27 3900 - O} ’ ©
Joror =M |: T T :| M (5)
00* 60
WhenJyg- = 0, Jor0, iS completely determined byp. In
that case,Jyy can be considered as tkemplex FIMand the
correspondingomplex CRBs such that:

whered° denotes the true value 6f We introduce a full col-
umn rank matrixV, such that rangéVy} = M,.

Theorem YConstrained CRB) Assume the constrained es-
timator to be unbiasedd(andé satisfy the constraint&y =

Cj5 = E0O™ > CRB = J,; . (6) 0),then

If Joo- # 0, J,," is also a lower bound o655, but not as tight Cs5 > CRBc = Vy (ngeeve)—l VT (10)
as the (real) CRBCRBr = Jj. .. -

o ‘A necessary and sufficient condition for the boundedness of
C. Correspondence between Identifiability and FIM Regulariy r .. is the nonsingularity 0B Jyo Vs.

for a Gaussian Data Distribution CRB¢ is independent of the choice ¥ and in particular
We consider identifiability as defined in [4], [5]:is said to N .
be identifiable if CRBo = Py, (Pv,JooPv,)" Py = (Py,JoePy,) " - (11)
VY, f(Y]0)=f(Y|0) = 6=0". @) There is a direct correspondence between the number of FIM

singularities and the number of constraints necessary to have a

When the observations™ ~ .N(.my(e)’ Cyy (9)) have a nor- finite constrained CRB, which is also the number of constraints
mal distribution, identifiability is based on the mean and co-

variance® is said to be identifiable if- necessary to have local identifiability.
’ ) Theorem 2:For the constrained CRB to be defined, itis nec-

my (0) = my (0') andCyy (0) = Cyy(0') = 6=0".  essary and sufficient to fulfill the following conditions.
(8) (i) The number of independent constraints should be at least
We have local identifiability & if identifiability holds for6’ equal ton — r (r = rank(Jyy)).

being restricted to some open neighborhood.ofn general, . . K
under some mild conditions on the FIM, we have equivalencd!) At leastn —r independent columns OQ@T should not

between local identifiability and FIM regularity [6]. be orthogonal to the null space gho.
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A constraint of the formiCy = 0 has a local effect only A. The Multichannel Model

(trough its tangent) and can be linearized locally. . Consider a sequence of symbalgk) received throughn
Theorem 3:The constrained CRB (10) can also be intetspannels of length N with coefficients(i):

preted as the CRB under the linear constraint:

N-1
g7 KL _ o K, 12) y(k) = > h(i)a(k—i) +v(k), (15)
0 00 =0
. oKL, v(k) is an additive independent white Gaussian noise and
which means that the components @in span{ 50 } are 0 (k—i) = Ev(k)v(i)? = 021, 55;. Assume we receive

known (here we emphasized tH4§:° is evaluated at = ¢°). 1 samples, concatenated in the vedtoy; (k):
This linearization of the constraints is very convenient, as the Yor (k) = Tor(B) Anr (B 4 Vs ( 16
derivation of the CRBs or estimation performance using this m (k) 21 () A (k) + Vo (F) (16)
linearization gets very simple [11]. Y (k) = [yT (k) - yT (k—M+1))T, similarly for V 5, (k),

N _ and Ay (k) = [a(k)---a(k—M—-N+2)]". ()T denotes
A. Minimal constrained CRB transpose and.)” hermitian transpose. The channel trans-

We assume here thaky, is singular. When ranggy,} =  fer function isH(z) = 32 k(i) = [H] (2): - - H, (2)].

range{ Jys} and sinceV, has full column rankV; JpoVs is TM(h).is a block Toe_plitz mz%trix fiIIedTout with the channel
regular (minimal number of independent constraints in thigefficients grouped i = [7(0) - A" (N—1)]". We shall
case) and the constrained CRB is: simplify the notation in (16) wittk = M —1 to:

. ) ) ) A channel will be said to be irreducible if its subchannel$Hi
This is a particular constrained CRB: we prove in [12] thaf,_ .« o zeros in common, and reducible otherwise. A re-

among all sets of a minimal number of independent constrainaﬁciue channel can be decomposeds) = H(z)H.(z)

_ 7t i ;
CRBc = ‘7.99 yields the I_OWESt value fqr {r_CRBC}'_ Th_'s whereH;(z) of length V; is irreducible and H(z) of length
means that if we want to introduce a priori information in thg, _ N — N + 1 is a monochannel

form of independent constraints, enough to regularize the es-
timation problem, but not more (minimal number), then al. Deterministic Model
the constraints should concentrate on the unidentifiable part otl_he deterministic model considers the joint estimation of

Jors Lo
the parameters only (ran§ea#} = null{Jss}) to minimize  the ynknown input symbold and the channel coefficients

tr{CRBc}. The parameter vector & = [AT hT]T. When the channel
Consider also the case of the estimatiordpfwith 6, be- is complex, asY” is circular, we can work with the complex

ing a nuisance parameter. The overall parameter vectorpigbability density function of the Gaussian random variable

0= [0T ezT]T. Assume that7y is singular but7y,g, isregu- Y ~ N(T (h)A,071). As Jgg- = 0, the complex FIMJpg is

lar. To regularize the estimation problem, we consider the intrequivalent to the real on& ¢, and is equal to [10]:

duction of (independent) constraints énonly: Ky, = 0. As- .

sume that rangfVs, } = range{Js,s, (6) }, With Jp, s, (6) = Joo = { 7" (h) } [ T(h) A] (18)

To,0, —T9,0, Ty, 4,020, (Ty, 5, (6) would be the unconstrained op | A

CRB for 6, if Jyo were regular). Then it can be proven that th

fvhen the channel is real, the FIM is th in (18). Thi
constrained CRB fof; separately is [12]: en the channel Is real, the 'S the same as in (18) 'S

equality of the expressions will allow us to treat the complex

and real cases simultaneously.
CRBeg, = Jify,(0) (14) 4

B.1 Singularities of the FIMs

Identifiability of (A, h) occurs frommy (6) = X = T (h)A,
the signal part ofY”. (h, A) can at best be estimated up to
a scale factor: indee@ (h)A = 7 (h/a)aA. Blind identi-
fiability in the deterministic modeli.g. identifiability up to a
These results are now applied to blind FIR multichannel eseale factor) requires the channel to be irreducible and the burst
timation. Two models are presented here: the determinisigngth and the number of input excitation modes to satisfy cer-
model and the Gaussian model. We first present the multich&in minimum requirements [5]. It can be proven that a chan-
nel model, which is fundamental in blind channel estimatiomel is blindly identifiable up to a scale factor if and only if the
(from second-order statistics). complex FIM Jyy has exactly one singularity [5]. It can also

Such constraints give the minimal constrained CRBfoover
all sets of a minimal number of independent constraintg,on

IV. CRBS FORBLIND FIR MULTICHANNEL ESTIMATION

0-7803-6454-6/00/$10.00 (C) 2000



be verified that the complex FIMyy has the same number of :lﬁsz

. . 1
singularities as/ . () = —2AHPTL(,I)A. If Jnn(9) were reg-
UU
ular, its inverse would be the CRB far(with A considered as
nuisance parameters). The unique null vector,gf(9) is h.
In the complex channel case, the real FIM,¢,, (6r) has 2 % L
1] =1

singularities spanned by: h

h51 = { :Tnegzg ] = hp and h52 = { _::;negzg ] . Fig. 1. Deterministic case: asymptotically equivalent constraints.
(19)

The first null vector can be interpreted as corresponding to t8e3 Some Equivalent Constraints

ambiguity in the norm of the channel and the second one to the i , i

ambiguity in the phase factor. Aggher choice for the constraints leading to the same range

. _ for 552 is the linear constrainth®*h = h° " h°. This con-

B.2 Regularized Blind CRB straint, which leaves no sign ambiguity, corresponds to forcing
Blind methods commonly consider the quadratic constraifite components df in the nullspace of;, to their true values.

on the norm of the channéi”h = 1 (see [9]). This con-  Often,# is estimated under a unit norm constrgjat| = 1,

straint does not render the problem identifiable: it leaves a sighd the scale factor is adjusted in different ways. The following

ambiguity whenh is real and a continuous phase ambiguitgdjustments lead to the same minimal CRB.

when h is complex. In the former case, the computation of The norm of the channel is adjusted so that] = ||h°||

mean squared error (MSE) assumes the right sign (the rigimd the phase using the phase constraint (21). We denote the

sign could be taken as the sign giving the smallest error). In tnfsulting estimatéNo.

complex case however, which phase factor should be chosgnfhe scale factor is adjusted in the least-square sense [13]
A frequent choice consists in imposing one elemertt & be o 19 2
though the criteriomin,, ||h° — ah||* to gethrs. To be more

real and positive; the resulting CRB depends on the choice o : .
this element however. precise, in this case the trace of the corresponding constrained
RB is tr{CRB¢} of equation (22).

The blind regularized CRB proposed here is computed un . . A
the following constraints: Another way to adjust the scale factor consists of adjusting

(1) A quadratic constraint: « by the following linear constraimt® L hy ;n = hoHah =
WH — poH po (20) i}OHg", leading to the following channel estimatéy ;v =
hh°
. . ———h? . When the estimation df is consistent, then, asymp-
which allows to adjust the norm of the channel. hoHp, ) _ _ y- P
(2) In the complex case, an additional constraint is necessigfjcally, the CRB for this constrained channel estimate is the
to adjust the phase factor: sameC' RBc, of (22). In figure 1, we shoino, hrs, hrrn

oT oTro for a real channel of lengtlv = 1 and with 2 subchannels.
heThp =h3Thg =0. (21)
whereh® denotes the true value of the chanriellenotes the B4 Reducible Channel Case
variable. In both real and complex cases, these constraint$n this caseH(z) = H;(z)H.(z) where H.(z) is a monic
leave a sign ambiguity which does not lead to FIM singularitgfirst coefficient equal to 1) polynomial in~!. h can be
as we have local identifiability in that case. For MSE evaluglecomposed a8 = 77 h. whereT} is block Toeplitz with
tion, the ambiguity can be resolved by requiritfy’ 1 > 0. [h]  O1x(n.—1)m)" @s first column. Then, we can prove as
Result 1: Under constraint (20) (and (21) for the compleyreviously that the CRB for estimating a reduciblender the

case) the CRB fok is the Moore-Penrose pseudo-inverse afonstraintly? h = TP he is
Inn(0):

0] . CRBey = i, (0) = o0 (A" Pr) AT (23)

_ 7t _ -2 Hpl
. CRBC’h B J}.”L(e.) — (A .PT(h)A> ' (22_) C. Gaussian Model

This result is an application of equation (14): note that in the
complex case, the real FIM should be used (and not the comIn the Gaussian model, the estimation parametet is-
plex one) to apply the result in (14). [hT aﬁ]T. When the input constellation is complex, the FIM

The choice of the first constraint is not only motivated by itsomputation is based on the complex probability density func-
common use. As mentioned in section IlI-A, this constraiion of Y: Y ~ N (my, Cyy ), with Cyy = 027 (h)TH (h)+
(possibly combined with the linear constraint on the phase}l, my = 0. Lethr = [Re(hT) Im(hT)]T andfr =
leads to the minimal constrained CRB. [RE 2T, the real parameter vector. Aky- is non zero,
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we cannot consider the complex CRB anymore: the real FlWhich leads to the constrained CRB fog:

J5,.5,, 1s determined via (5) thanks to the quantities:
CRBchy = Ty (0) - (30)

H
Joo(i,7) = tr Cyyr (80;;Y> Cyy <8Cy3/> (24) This linear constraint does not allow to estimate the phase fac-
99; 993 tor completely and a sign ambiguity is left but not reflected in
the FIM singularities as it is a discrete ambiguity. For MSE
Gny) 1 <8ny> } 25) computation purposes, the sign ambiguity can be resolved by

Joo~ (i, ) ZIf{le/ (W

vY | 9ot requiringh% hr > 0, which together with (29) can be stated
’ ash?fh > 0.
Where:aCYY = 2T (R)TH ( Oh ) and ICyy _ 11 . When the channel is real, no regularization is necessary and
oh} “ oh} do? 2 the CRB isJ,,! (0). To compare the MSE for an estimator to

_ o (26)  this CRB, the knowledge of the right sign and right phase of
When the |npUt constellation is real, the FIM has a similar €Xhe Zerosé_g_minimum phase in the reducible Case) should be

pression [10]. used.
C.1 FIM singularities V. CONCLUSION
Identifiability here occurs froyy (6) = 027 (h) T (h)+ In blind channel estimation under the deterministic or Gaus-

oI asmy (#) = 0. h can at best be identified up to a phase fagjan symbol model, the estimation problem has to be aug-
tor. Blind identifiability in the Gaussian model does not requirgented with constraints to remove singularities. We have in-
the channel to be irreducible [5]. The zeros can be estimatg@quced the notion of minimal constraints and shown how sev-
but it cannot be determined if the zeros are minimum phasegg) intuitively attractive and hence popular constraint sets lead
not; but if we know a priori that they are minimum phase fogjmply to the pseudo inverse of the FIM as constrained CRB.
example, a reducible channel can be estimated up to a phaggthe blind channel estimation problem, we have illustrated

factor. the connection between local identifiability problems and FIM
. . . - . yp

The real/complex channel is locally blindly identifiable ijngularities.
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