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Abstract—Certain blind channel estimation techniques allow the iden-
tification of the channel up to a scale or phase factor. This results in singu-
larity of the Fisher Information Matrix (FIM). The Cram ér–Rao Bound,
which is the inverse of the FIM, is then not defined. To regularize the
estimation problem, one can impose constraints on the parameters. In
general, many sets of constraints are possible but are not always relevant.
We propose a constrained CRB, the pseudo-inverse of the FIM, which
gives, for a minimum number of constraints, the lowest bound on the mean
squared estimation error.

I. I NTRODUCTION

The Craḿer-Rao Bound (CRB) is a powerful tool in estima-
tion theory as it gives a performance lower bound for parameter
estimation problems. It is computed as the inverse of the Fisher
Information Matrix (FIM). When the parameters cannot all be
identified, the FIM is singular, and the classical CRB results
cannot be applied directly.

The main motivation for this work is the study of the perfor-
mance of certain blind channel estimation problems where the
parameters can indeed be identified only up to a scale or phase
factor. Blind estimation is usually done under certain parameter
constraints to regularize the problem. The performance of blind
methods is not correctly evaluated in general or remains some-
what vague. The performance is often compared to “CRBs”
that do not correspond to the regularization technique used in
the estimation. A constraint often used is to consider one co-
efficient of the channel as known (which is sufficient to render
the estimation problem regular): the resulting performance and
its bound depend on the choice of this coefficient and appear
arbitrary. One of the contributions of this work will be to give
a less arbitrary bound and the corresponding set of constraints.

In this paper, we study the CRBs for estimation under pa-
rameter constraints in the case where the unconstrained prob-
lem leads to nonidentifiability,i.e. the FIM is singular. We fur-
thermore outline the correspondence between the number and
characteristics of FIM singularities and the number and char-
acteristics of independent constraints needed in order to regu-
larize the estimation problem and to be able to define the con-
strained CRB. Furthermore, assuming that we can choose the
set of constraints, we propose a particular CRB for the case
of an unidentifiable unconstrained estimation problem: this
CRB is the Moore-Penrose pseudo-inverse of the FIM. It cor-
responds to a minimum number of independent constraints and
gives the lowest bound on the mean square estimation error,i.e.

tr(CRB).
We apply these results to two classes of blind FIR multichan-

nel estimation problems corresponding to two different models
for the input symbols. The deterministic model, which exploits
no statistical information on the input symbols, takes the input
symbols to be deterministic quantities whereas in the Gaussian
model we consider them to be uncorrelated Gaussian random
variables to exploit their second–order statistics. The determin-
istic model leads to the class of methods that are directly based
on the structure of the received signal; the Gaussian approach
includes methods based on the second–order moments of the
data, like certain prediction approaches [1] or the covariance
matching method [2]. The deterministic methods can identify
the channel up to a scale factor only and the Gaussian methods
up to a phase factor, resulting in singularities of the FIM.

Throughout the paper, we distinguish between the real and
complex parameter cases since they lead to different FIMs,
with different singularities, and require different regularization
constraints. The blind deterministic CRB is computed under
the commonly used norm constraint which imposes the norm
of the channel to be constant. This constraint is sufficient to
regularize the problem when the channel is real, but not when it
is complex in which case an additional constraint is required to
adjust the phase of the channel. This constraint is chosen so that
the resulting constrained CRB is the Moore-Penrose pseudo–
inverse of the FIM and corresponds to a minimal constrained
CRB. When the channel is real the Gaussian FIM is regular.
When it is complex however, the FIM is singular: a constraint
on the phase is necessary as in the deterministic case and the
constrained CRB is again the pseudo–inverse of the FIM.

II. CRBS FORREAL AND COMPLEX PARAMETERS

We review here CRBs for the case of regular FIMs.

A. CRBs for Real Parameters

Letθ be a deterministic real parameter vector andf(Y |θ) the
probability density function of the vector of real observations
Y . The FIM forθ is:

Jθθ = EY |θ

(
∂ ln f(Y |θ)

∂θ

)(
∂ ln f(Y |θ)

∂θ

)T
. (1)
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Let θ̂ be an unbiased estimate ofθ andθ̃ = θ̂−θ the estimation
error. Hence Ẽθ = 0 andCθ̃θ̃ = Eθ̃θ̃T is the error covariance
matrix. WhenJθθ is nonsingular and under certain regularity
conditions [3],J−1

θθ is the Craḿer–Rao Bound and:

Cθ̃θ̃ ≥ CRB = J−1
θθ . (2)

B. CRB for Complex Parameters, Complex CRB.

Whenθ is a complex deterministic parameter, the previous

results can be applied toθR =
[
Re(θ)T Im(θ)T

]T
andY R =[

Re(Y )T Im(Y )T
]T

, the associated real parameters and real
observations.

It is however possible to define the FIM forθR w.r.t. complex
FIM–like matrices. LetJϕψ be defined as:

Jϕψ = EY |θ

(
∂ ln f(Y |θ)

∂ϕ∗

)(
∂ ln f(Y |θ)

∂ψ∗

)H
(3)

Derivation w.r.t. the complex vectorθ = α + jβ is de-

fined as:
∂

∂θ
=

1
2

(
∂

∂α
− j ∂

∂β

)
. The parameterization in

(Re(θ), Im(θ)) is equivalent to a parameterization in terms of
(θ, θ∗) via:

θR =
[

Re(θ)
Im(θ)

]
=M

[
θ
θ∗

]
, M =

1
2

[
I I
−jI jI

]
(4)

whereM is non–singular. Knowing thatJθθ = J∗θ∗θ∗ and
Jθθ∗ = J∗θ∗θ, equation (4) implies:

JθRθR =M
[
Jθθ Jθθ∗
J∗θθ∗ J∗θθ

]
MH . (5)

WhenJθθ∗ = 0, JθRθR is completely determined byJθθ. In
that case,Jθθ can be considered as thecomplex FIMand the
correspondingcomplex CRBis such that:

Cθ̃θ̃ = Eθ̃θ̃H ≥ CRB = J−1
θθ . (6)

If Jθθ∗ 6= 0, J−1
θθ is also a lower bound onCθ̃θ̃, but not as tight

as the (real) CRB,CRBR = J−1
θRθR

.

C. Correspondence between Identifiability and FIM Regularity
for a Gaussian Data Distribution

We consider identifiability as defined in [4], [5]:θ is said to
be identifiable if

∀ Y , f(Y |θ) = f(Y |θ′) ⇒ θ = θ′ . (7)

When the observationsY ∼ N (mY (θ), CY Y (θ)) have a nor-
mal distribution, identifiability is based on the mean and co-
variance:θ is said to be identifiable if:

mY (θ) = mY (θ′) andCY Y (θ) = CY Y (θ′) ⇒ θ = θ′.
(8)

We have local identifiability atθ if identifiability holds forθ′

being restricted to some open neighborhood ofθ. In general,
under some mild conditions on the FIM, we have equivalence
between local identifiability and FIM regularity [6].

III. CRBS FORESTIMATION WITH CONSTRAINTS

In this section, we consider real parameters (henceθ stands
for θR if θ is complex). When the estimation is (locally)
unidentifiable, the FIM is singular and the classical CRB re-
sult (2) cannot be applied.

In order to characterize the non regular estimation perfor-
mance, we define CRBs for estimation under a certain set of
equality constraints: this set of constraints should allow to ad-
just the parameters that cannot be identified and in this way to
regularize the estimation problem.

CRBs for parameter estimation under constraints were de-
rived in [7] in the case where the unconstrained estimation
problem is regular. A simpler derivation of these results was
presented in [8]. The main ingredient of this simpler derivation
was used in [9] to give an alternative expression for the CRB in
the case where the unconstrained problem is unidentifiable. We
shall succinctly restate these results, which appeared already in
[10] for the case of linear constraints.

Consider ak–fold constraint of the form:Kθ = 0 where
Kθ : Rn → R

k is continuously differentiable andk < n, n
being the number of parameters in the vectorθ. A constrained
parameter estimator̂θ is called unbiased if it satisfies the con-
straints (Kθ̂ = 0) and if the parameter estimation bias is zero
for all parameter values that satisfy the constraints [8]. The
constrained CRB depends on the constraints only through the
tangents to the constraint set at the true value ofθ:

Mθ =
{
Z ∈ Rn ; ZT

∂KTθo
∂θ

= 0
}
, (9)

whereθo denotes the true value ofθ. We introduce a full col-
umn rank matrixVθ such that range{Vθ} =Mθ.

Theorem 1(Constrained CRB) Assume the constrained es-
timator θ̂ to be unbiased (̂θ andθ satisfy the constraintsKθ =
0), then

Cθ̃θ̃ ≥ CRBC = Vθ
(
VTθ JθθVθ

)−1 VTθ . (10)

A necessary and sufficient condition for the boundedness of
CRBC is the nonsingularity ofVTθ JθθVθ.
CRBC is independent of the choice ofVθ and in particular

CRBC = PVθ (PVθJθθPVθ )
+
PVθ = (PVθJθθPVθ )

+
. (11)

There is a direct correspondence between the number of FIM
singularities and the number of constraints necessary to have a
finite constrained CRB, which is also the number of constraints
necessary to have local identifiability.

Theorem 2:For the constrained CRB to be defined, it is nec-
essary and sufficient to fulfill the following conditions.

(i) The number of independent constraints should be at least
equal ton− r (r = rank(Jθθ)).

(ii) At least n − r independent columns of
∂KTθ
∂θ

should not

be orthogonal to the null space ofJθθ.
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A constraint of the formKθ = 0 has a local effect only
(trough its tangent) and can be linearized locally.

Theorem 3:The constrained CRB (10) can also be inter-
preted as the CRB under the linear constraint:

θT
∂KTθo
∂θ

= θo T
∂KTθo
∂θ

(12)

which means that the components ofθ in span
{
∂KTθo
∂θ

}
are

known (here we emphasized that∂KTθo
∂θ is evaluated atθ = θo).

This linearization of the constraints is very convenient, as the
derivation of the CRBs or estimation performance using this
linearization gets very simple [11].

A. Minimal constrained CRB

We assume here thatJθθ is singular. When range{Vθ} =
range{Jθθ} and sinceVθ has full column rank,VTθ JθθVθ is
regular (minimal number of independent constraints in this
case) and the constrained CRB is:

CRBC = J +
θθ . (13)

This is a particular constrained CRB: we prove in [12] that,
among all sets of a minimal number of independent constraints,
CRBC = J +

θθ yields the lowest value for tr{CRBC}. This
means that if we want to introduce a priori information in the
form of independent constraints, enough to regularize the es-
timation problem, but not more (minimal number), then all
the constraints should concentrate on the unidentifiable part of

the parameters only (range
{
∂KTθ
∂θ

}
= null {Jθθ}) to minimize

tr {CRBC}.
Consider also the case of the estimation ofθ1 with θ2 be-

ing a nuisance parameter. The overall parameter vector is

θ =
[
θT1 θT2

]T
. Assume thatJθθ is singular butJθ2θ2 is regu-

lar. To regularize the estimation problem, we consider the intro-
duction of (independent) constraints onθ1 only: Kθ1 = 0. As-
sume that range{Vθ1} = range{Jθ1θ1(θ)}, with Jθ1θ1(θ) =
Jθ1θ1−Jθ1θ2J−1

θ2θ2
Jθ2θ1 (J−1

θ1θ1
(θ) would be the unconstrained

CRB forθ1 if Jθθ were regular). Then it can be proven that the
constrained CRB forθ1 separately is [12]:

CRBC,θ1 = J +
θ1θ1

(θ) (14)

Such constraints give the minimal constrained CRB forθ1 over
all sets of a minimal number of independent constraints onθ1.

IV. CRBS FORBLIND FIR MULTICHANNEL ESTIMATION

These results are now applied to blind FIR multichannel es-
timation. Two models are presented here: the deterministic
model and the Gaussian model. We first present the multichan-
nel model, which is fundamental in blind channel estimation
(from second–order statistics).

A. The Multichannel Model

Consider a sequence of symbolsa(k) received throughm
channels of length N with coefficientsh(i):

y(k) =
N−1∑
i=0

h(i)a(k−i) + v(k), (15)

v(k) is an additive independent white Gaussian noise and
rvv(k−i) = Ev(k)v(i)H = σ2

vIm δki. Assume we receive
M samples, concatenated in the vectorY M (k):

Y M (k) = TM (h)AM (k) + V M (k) (16)

Y M (k) = [yT (k) · · ·yT (k−M+1)]T , similarly for V M (k),
and AM (k) = [a(k) · · · a(k−M−N+2)]T . (.)T denotes
transpose and(.)H hermitian transpose. The channel trans-
fer function isH(z) =

∑N−1
i=0 h(i)z−i = [HT1 (z)· · ·HTm(z)]T .

TM (h) is a block Toeplitz matrix filled out with the channel
coefficients grouped inh = [hT(0) · · ·hT(N−1)]T . We shall
simplify the notation in (16) withk = M−1 to:

Y = T (h)A+ V . (17)

A channel will be said to be irreducible if its subchannels Hi(z)
have no zeros in common, and reducible otherwise. A re-
ducible channel can be decomposed asH(z) = HI(z)Hc(z)
whereHI(z) of lengthNI is irreducible and Hc(z) of length
Nc = N −NI + 1 is a monochannel.

B. Deterministic Model

The deterministic model considers the joint estimation of
the unknown input symbolsA and the channel coefficientsh.

The parameter vector isθ =
[
AT hT

]T
. When the channel

is complex, asY is circular, we can work with the complex
probability density function of the Gaussian random variable
Y ∼ N (T (h)A, σ2

vI). As Jθθ∗ = 0, the complex FIMJθθ is
equivalent to the real oneJθRθR and is equal to [10]:

Jθθ =
1
σ2
v

[
T H(h)
AH

] [
T (h) A

]
(18)

When the channel is real, the FIM is the same as in (18). This
equality of the expressions will allow us to treat the complex
and real cases simultaneously.

B.1 Singularities of the FIMs

Identifiability of (A, h) occurs frommY (θ) = X = T (h)A,
the signal part ofY . (h,A) can at best be estimated up to
a scale factor: indeedT (h)A = T (h/α)αA. Blind identi-
fiability in the deterministic model (i.e. identifiability up to a
scale factor) requires the channel to be irreducible and the burst
length and the number of input excitation modes to satisfy cer-
tain minimum requirements [5]. It can be proven that a chan-
nel is blindly identifiable up to a scale factor if and only if the
complex FIMJθθ has exactly one singularity [5]. It can also
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be verified that the complex FIMJθθ has the same number of

singularities asJhh(θ)
4
=

1
σ2
v

AHP⊥T (h)A. If Jhh(θ) were reg-

ular, its inverse would be the CRB forh (with A considered as
nuisance parameters). The unique null vector ofJhh(θ) is h.

In the complex channel case, the real FIMJθRθR(θR) has 2
singularities spanned by:

hS1 =
[

Re(h)
Im(h)

]
= hR and hS2 =

[
−Im(h)

Re(h)

]
.

(19)
The first null vector can be interpreted as corresponding to the
ambiguity in the norm of the channel and the second one to the
ambiguity in the phase factor.

B.2 Regularized Blind CRB

Blind methods commonly consider the quadratic constraint
on the norm of the channelhHh = 1 (see [9]). This con-
straint does not render the problem identifiable: it leaves a sign
ambiguity whenh is real and a continuous phase ambiguity
whenh is complex. In the former case, the computation of
mean squared error (MSE) assumes the right sign (the right
sign could be taken as the sign giving the smallest error). In the
complex case however, which phase factor should be chosen?
A frequent choice consists in imposing one element ofh to be
real and positive; the resulting CRB depends on the choice of
this element however.

The blind regularized CRB proposed here is computed under
the following constraints:
(1) A quadratic constraint:

hHh = hoHho (20)

which allows to adjust the norm of the channel.
(2) In the complex case, an additional constraint is necessary

to adjust the phase factor:

ho TS2
hR = ho TS2

hoR = 0 . (21)

whereho denotes the true value of the channel,h denotes the
variable. In both real and complex cases, these constraints
leave a sign ambiguity which does not lead to FIM singularity,
as we have local identifiability in that case. For MSE evalua-
tion, the ambiguity can be resolved by requiringho Th > 0.

Result 1: Under constraint (20) (and (21) for the complex
case) the CRB forh is the Moore-Penrose pseudo-inverse of
Jhh(θ):

CRBC,h = J+
hh(θ) = σ2

v

(
AHP⊥T (h)A

)+

. (22)

This result is an application of equation (14): note that in the
complex case, the real FIM should be used (and not the com-
plex one) to apply the result in (14).

The choice of the first constraint is not only motivated by its
common use. As mentioned in section III-A, this constraint
(possibly combined with the linear constraint on the phase)
leads to the minimal constrained CRB.

ˆ̂
hLIN

h

ˆ̂
hNO

ˆ̂
hLS

ĥ

‖ĥ‖ = 1

Fig. 1. Deterministic case: asymptotically equivalent constraints.

B.3 Some Equivalent Constraints

Another choice for the constraints leading to the same range

for
∂KThR
∂hR

is the linear constraint:hoHh = hoHho. This con-
straint, which leaves no sign ambiguity, corresponds to forcing
the components ofh in the nullspace ofJhh to their true values.

Often,h is estimated under a unit norm constraint‖ĥ‖ = 1,
and the scale factor is adjusted in different ways. The following
adjustments lead to the same minimal CRB.
• The norm of the channel is adjusted so that‖ĥ‖ = ‖ho‖
and the phase using the phase constraint (21). We denote the

resulting estimatê̂hNO.
• The scale factor is adjusted in the least–square sense [13]

through the criterionminα ‖ho−αĥ‖2 to getˆ̂hLS . To be more
precise, in this case the trace of the corresponding constrained
CRB is tr{CRBC} of equation (22).
Another way to adjust the scale factor consists of adjusting

α by the following linear constrainthoH ˆ̂
hLIN = hoHαĥ =

hoHho, leading to the following channel estimate:ˆ̂
hLIN =

ĥhoH

hoH ĥ
ho .When the estimation ofh is consistent, then, asymp-

totically, the CRB for this constrained channel estimate is the

sameCRBC,h of (22). In figure 1, we shoŵ̂hNO, ˆ̂
hLS , ˆ̂

hLIN
for a real channel of lengthN = 1 and with 2 subchannels.

B.4 Reducible Channel Case

In this case,H(z) = HI(z)Hc(z) where Hc(z) is a monic
(first coefficient equal to 1) polynomial inz−1. h can be
decomposed ash = TI hc whereTI is block Toeplitz with
[hTI 01×(Nc−1)m]T as first column. Then, we can prove as
previously that the CRB for estimating a reducibleh under the
constraintT oHI h = T oHI ho is

CRBC,h = J+
hh(θ) = σ2

v(AHP⊥T (h)A)+ . (23)

C. Gaussian Model

In the Gaussian model, the estimation parameter isθ =[
hT σ2

v

]T
. When the input constellation is complex, the FIM

computation is based on the complex probability density func-
tion ofY : Y ∼ N (mY , CY Y ), withCY Y = σ2

aT (h)T H(h)+
σ2
vI, mY = 0. Let hR = [Re(hT ) Im(hT )]T and θR =

[hTR σ2
v ]T , the real parameter vector. AsJθθ∗ is non zero,
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we cannot consider the complex CRB anymore: the real FIM
JθRθR is determined via (5) thanks to the quantities:

Jθθ(i, j) = tr

C−1
Y Y

(
∂CY Y
∂θ∗i

)
C−1
Y Y

(
∂CY Y
∂θ∗j

)H (24)

Jθθ∗(i, j) = tr

{
C−1
Y Y

(
∂CY Y
∂θ∗i

)
C−1
Y Y

(
∂CY Y
∂θ∗j

)}
(25)

where:
∂CY Y
∂h∗i

= σ2
aT (h)T H

(
∂h

∂h∗i

)
and

∂CY Y
∂σ2

v

=
1
2
I .

(26)
When the input constellation is real, the FIM has a similar ex-
pression [10].

C.1 FIM singularities

Identifiability here occurs fromCY Y (θ) = σ2
aT (h)T H(h)+

σ2
vI asmY (θ) ≡ 0. h can at best be identified up to a phase fac-

tor. Blind identifiability in the Gaussian model does not require
the channel to be irreducible [5]. The zeros can be estimated,
but it cannot be determined if the zeros are minimum phase or
not; but if we know a priori that they are minimum phase for
example, a reducible channel can be estimated up to a phase
factor.

The real/complex channel is locally blindly identifiable if
and only if the FIM is regular/1–singular. Note that locally a
complex channel is identifiable up to a continuous phase factor
but a real channel is locally identifiable strictly speaking.

The Gaussian FIM for a real/complex multichannel is
regular/1–singular and the channel is locally blindly identifi-
able if the channel has no conjugate reciprocal zeros,i.e. there
exists nozo ∈ R/C such thatH(zo) = H(1/z∗o) = 0 (the burst
length should also satisfy certain conditions).

For a complex channelh, under the previous conditions, the
global FIMJθRθR has one singularity as well as:

JhRhR(θR) = JhRhR − JhRσ2
v

(
Jσ2

vσ
2
v

)−1 Jσ2
vhR

. (27)

J−1
hRhR

(θR) would be the unconstrained CRB forh if its esti-

mation were regular. The null space ofJhRhR(θR) is spanned
by

hS =
[
−Im(h)T Re(h)T

]T
= hS2 . (28)

The real FIMJθθ is regular under the local identifiability con-
ditions, as well asJhh(θ).

C.2 Regularized Blind CRBs

When the channel is complex, as in the deterministic case,
we need to define a regularized CRB, by introducing some a
priori knowledge on the parameters, allowing us to determine
the ambiguous phase factor. We assume that the channel is
(blindly) locally identifiable.

The estimation ofhR is considered under the constraint:

ho TS2
hR = 0 (29)

which leads to the constrained CRB forhR:

CRBC,hR = J +
hRhR

(θ) . (30)

This linear constraint does not allow to estimate the phase fac-
tor completely and a sign ambiguity is left but not reflected in
the FIM singularities as it is a discrete ambiguity. For MSE
computation purposes, the sign ambiguity can be resolved by
requiringho TR hR > 0, which together with (29) can be stated
ashoHh > 0.

When the channel is real, no regularization is necessary and
the CRB isJ−1

hh (θ). To compare the MSE for an estimator to
this CRB, the knowledge of the right sign and right phase of
the zeros (e.g.minimum phase in the reducible case) should be
used.

V. CONCLUSION

In blind channel estimation under the deterministic or Gaus-
sian symbol model, the estimation problem has to be aug-
mented with constraints to remove singularities. We have in-
troduced the notion of minimal constraints and shown how sev-
eral intuitively attractive and hence popular constraint sets lead
simply to the pseudo inverse of the FIM as constrained CRB.
For the blind channel estimation problem, we have illustrated
the connection between local identifiability problems and FIM
singularities.

REFERENCES

[1] K. Abed Meraim, E. Moulines, and P. Loubaton. Prediction Error Method
for Second-Order Blind Identification.IEEE Transactions on Signal Pro-
cessing, 45(3):694–705, March 1997.

[2] G.B. Giannakis and S.D. Halford. Asymptotically Optimal Blind
Fractionally-Spaced Channel Estimation and Performance Analysis.
IEEE Transactions on Signal Processing, 45(7):1815–1830, July 1997.

[3] S.M. Kay.Fundamentals of Statistical Signal Processing Estimation The-
ory. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[4] B. Hochwald and A. Nehorai. On Identifiability and Information-
Regularity in Parameterized Normal Distributions.Circuits, Systems ans
Signal Processing, 16(1), 1997.

[5] E. de Carvalho and D.T.M. Slock. Blind and Semi–Blind FIR Multichan-
nel Estimation: Identifiability Conditions. Submitted to IEEE Transac-
tions on Signal Processing.

[6] Peter E. Caines.Linear Stochastic Systems. John Wiley & Sons, 1988.
[7] J.D. Gorman and A.O. Hero. Lower Bounds for Parametric Esti-

mation with Constraints. IEEE Transactions on Information Theory,
26(6):1285–1301, Nov. 1990.

[8] T. Marzetta. On Simple Derivation of the Constrained Multiple Pa-
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