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Abstract—COVID-19 virus has strongly impacted our everyday
life. Without the availability of a vaccine or a well-established and
efficient treatment, we have to live with it. One way to mitigate the
propagation of the virus is to respect social distancing between
persons. Indeed, many governments have adopted it as one of the
key solutions to reduce the propagation of the Virus. However,
it is difficult to enforce social distancing among the population.
In this paper, we propose to combine Internet of Things (IoT)
and Multi-access Edge Computing (MEC) technologies to build
a service that checks and warns people in near real-time, if they
are not respecting the social distancing. The proposed service
is composed of a client application side installed on the users’
smartphone, which periodically sends GPS coordinates to remote
servers sitting at the Edge of the network (i.e. at MEC). The
remote servers use a local algorithm to detect and warn users
that are not respecting the social distancing. The proposed service
respects privacy and anonymity, by hiding the user identity, and
is capable to warn in near real-time users thanks to the usage
of MEC.

Index Terms—IoT, MEC, COVID-19, Low latency, Smart City

I. INTRODUCTION

COVID-19 is a new virus belonging to the CORONA fam-
ily. So far, more than 10 million people have been affected in
the world, and merely half a million have died due to the direct
consequences of the virus [1]. While waiting for a vaccine or
an efficient treatment, it is mandatory to find solutions for
reducing the spread of the Virus. In other words, the world
needs to deal with the Virus while waiting for a treatment
or a vaccine. In this context, Information Communications
Technology (ICT) technologies can play a key role, where
combining IoT and recent other technologies, such as Edge
Computing, Software Defined Networking (SDN), Network
Function Virtualization (NFV) and Machine Learning (ML),
can allow the definition of new applications or services to
be used by doctors, government and persons to fight against
the spread of the Virus. So far, several use-cases have been
envisioned to use IoT as a way to help facing the Virus. For
instance, we can mention the case of elderly people, which
would be followed up closely. In this case, panic buttons,
sensors that monitor movement, energy, and even doors, can be
used in hospitals and rest homes, but also for people who still
live at home; allowing report anomalies and timely action can
be taken. Another use-case can be the monitoring of people in
quarantine. Sensors can be used to track people who should
live in (self) quarantine, and not always follow the rules and
sometimes dare to go outside their zone, posing a high risk of

spreading the virus. In addition, new applications for mobile
devices have appeared, such as StopCovid application [2],
which allows warning persons who have been in contact
with infected persons, and hence to track clusters of infected
persons and isolate them. The StopCovid application uses
Bluetooth in order to save the ID of persons who were close
during a certain period. If one of these persons declares in the
application that he has been affected, an alarm is sent to all
the users who have been in contact with him. The weakness
of this application is the usage of Bluetooth (it must be turned
on in the smartphone), which is known for its concern with
security.
On the other hand, it is well established that one of the key
solutions that needs to be adopted to reduce the spreading of
the Virus is to keep a minimum distance between persons,
namely social distancing. In fact, many studies have shown
that there is a minimum distance to keep between persons in
order to avoid contagion; the minimum distance varies from
1 meter to 2 meters according to the countries. Therefore,
there is a need to have an application or a service that, in
run-time, detects if users, located in a certain area, do not
respect the social distancing. StopCovid does not include such
features as it just records the persons which were in contact,
and if one of them is contaminated by the Virus, it has to
declare it in the application; then, all the persons who were in
contact with that person are warned. Besides being reactive
(i.e. after contamination), the StopCovid application needs
people to actively participate in the application usage. Other
solutions have been developed toward checking, in run-time,
the respect of social distancing. We can mention applications
using Cameras and ML techniques, such as the system used
by Amazon to enforce social distancing at its warehouse [3],
or the one used in [4] to track social distancing. However,
these applications do not warn concerned persons, but police
or managers.
In this work, we propose a novel social distancing detection
service that runs at the edge of the network, and aims at
detecting if users are not respecting the minimum recom-
mended distances to avoid contamination, and warn them
accordingly. To this aim, the proposed service is composed
of an application that runs on user’s smartphones, equipped
with sensors - most notably global navigation satellite system
(GNSS), which periodically sends GPS coordinates to a re-
mote application, sitting at the edge. The remote application’s
role is to compute the distances (Euclidean), using the GPS



coordinates, between users located under the edge server
coverage (i.e. geographical location). Users that are close to
each other, hence not respecting the social distancing, are
warned through messages sent by the remote application to
the smartphone. It is worth noting that the proposed service
requires low latency communications as users need to be
warned rapidly (in near real-time) in case of non-respect of
social distancing. Thanks to edge computing, and particularly
to the ETSI Multi-access Edge Computing (MEC) system, the
proposed service will be deployed at the edge and benefit from
the MEC ETSI ecosystem [5]. Besides ensuring low latency
communication and hence on near real-time reaction, the usage
of MEC will guarantee system scalability, as MEC servers
are deployed in a distributed fashion inside a mobile network,
hence accommodating a high number of users compared to
a centralized solution. Also, the proposed service will ensure
privacy and anonymity as no personal information needs to
be disclosed in order to use the application. User identifiers
are generated and linked only to a valid email address, hence
ensuring anonymity. Last but not least, the proposed solution
does not need a high involvement from users as in StopCovid.
The only requirement is that the application is running on
the smartphones, and the end-users have to be alert to the
notifications.
The remainder of this paper is organized as follows. Section II
gives the envisioned use-case and architecture. Section III
introduces our proposed solution and algorithm. Potential
applications and extensions of our solution are highlighted in
section IV. We discuss the obtained results in section V and
conclude the paper in section VI.

II. ENVISIONED USE-CASE AND ARCHITECTURE

Before describing the envisioned architecture, we will start
by introducing MEC. The latter is a new trend that enables
a new generation of services that operate close to end-users
aiming at reducing the end-to-end latency. MEC allows the
deployment of two types of service: (i) applications that
require low latency access to user plane traffic; (ii) context-
aware applications that adapt the delivered service according
to users’ environment. MEC is an operator-oriented archi-
tecture, which adds computing capability in the vicinity of
base stations, and proposes an orchestration and management
framework to handle the Life Cycle Management (LCM) of
edge applications. ETSI is providing specifications to MEC,
via the ISG MEC group [6] [7] that released several documents
to describe: envisioned use-cases, a reference MEC architec-
ture, a MEC application model (descriptor), MEC services,
MEC Orchestrator, etc. Besides running applications at the
edge, MEC provides services, accessible via a high-level API,
which give information on the mobile users and the cellular
base stations context, such as radio channel quality of users;
allowing building context-aware applications.
In this work, we envision the system architecture as depicted in
Fig. 1, which is composed by MEC servers, users connected to
the servers via the application installed on their smartphones.
We assume that the network operator uses a set of MEC

servers to cover different areas, which allow deploying several
instances of the service to guarantee scalability. The size of the
area to be covered by a MEC server depends on the density
of users. We assume that a MEC server is associated with a
set of base stations (or eNB in LTE and geNB in 5G). The
number of base stations associated with a MEC server depends
on the density of the users. In rural areas, we can imagine
having one MEC server covering a high number of macrocells,
whereas in dense and urban areas, one MEC server covers a
low number of macrocells or a high number of small cells.
This deployment can also be envisioned in the context of smart
cities, where servers are deployed to cover neighborhoods, and
the service is managed by the city. In this case, the service is
deployed by the network operator as a Network Slice [8], and
fully managed by the city, considered then as the vertical. The
social distancing detection application runs inside a container,
and can be duplicated on all the MEC servers. Since users are
mobile, they can be migrated from one MEC server to another
MEC server when they move between two cells, which do not
belong to the same MEC server coverage. Readers may refer
to [9] for more details on service migration in MEC.
We assume a scenario represented in Fig. 1, where users are
spread over locations covered by different MEC servers. The
users have installed the client-side of the service on their
smartphone, and are already connected with the server-side
of the service located at the closest MEC server (i.e. the
one that is covering the geographical location of the user).
While walking, the client-side of the application periodically
communicates the GPS coordinates to the remote detection
application server. The latter receives all the GPS coordinates
of users under the coverage of the MEC server. A local
algorithm is used, which takes as input the GPS coordinates
of all users, and gives as output the Id of users that are
not respecting the social distancing. The concerned users will
receive a warning message from the server, visible directly on
their smartphone as a notification; indicating that they are not
respecting the social distancing.
On the other hand, the social distancing detection instances
are connected to a remote application located in the central
cloud, which back-ups the information on how many people
have been warned, and the different locations of the persons.
It should be noted that the identity of users is protected, only
their Ids are disclosed. The cloud application can use the
obtained information to report statistics to the government
and the city mayor, on the locations where high warning
messages have been triggered, which may help to understand
and organize for instance the concerned locations (i.e. streets)
in order to reduce the warning alarms in the future.

III. PROPOSED SOLUTION AND ALGORITHM

As stated earlier, the proposed social distancing detection
service is composed of a client application and a server
application. The client-side of the application is very simple,
it consists in being connected to the remote server (at the
edge) and periodically sends the GPS coordinates. The most
intelligent part of the service is at the server-side, which uses
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Fig. 1. MEC-Based Architecture for Social distancing detection.

the received GPS coordinates of users in order to calculate
the distances and generates warning messages if deemed
appropriate. The proposed algorithm to be run at the server-
side is shown in Algorithm 1. We distinguish three steps, as
depicted in Fig. 2: (i) The collection of all the GPS coordinates
of users connected to the server (i.e. under its coverage);
(ii) The computation of the distance between users, in a pair
by pair based; (iii) The detection of users not respecting the
distance threshold, and the warning message generation. For
step 1, the collected GPS coordinates are done periodically,
and saved in two vectors: Φt(i) corresponding to the latitude
coordinates and Λt(i) for the longitude coordinates, indexed
by the user id (i.e. i). In step 2, a function Distance is called
for each pair of users (i, j) and takes as inputs Φt(i), Φt(j),
Λt(i), and Λt(j). The details of this function are not included
in this work, but it can be based on any well-known method
such as: Pythagore or Sinus law. Then, the distance function
saves the distances in a matrix dist(i, j) corresponding to the
distance between i and j. In step 3, the algorithm checks
for each user the distance with the other users by pair. If
the distance is not respected, the concerned user (noted i) is
warned, and the loop is stopped for that user, i.e. no need
to check for other users as he is already close to at least
one person, and should be warned. User (j) is also warned,
if he has not been warned before; otherwise, he is ignored
as no need to warn him twice. The two last actions allow
reducing the execution time of the algorithm, as the loop is
stopped when a person is not respecting a distance with at least
one other person. In fact, in terms of computation complexity,
the proposed algorithm has a complexity of N × M , where
1 ≤ M ≤ N − 1, as the first loop stops when the first
person non respecting the social distancing is found. It is worth

recalling that N is the number of users connected to the MEC
server (i.e. users under the coverage). This number is kept
low thanks to the distributed MEC architecture that allows
duplicating the instances of the server-side of the application.
As mentioned before, the algorithm will run periodically. To

avoid synchronizing all the clients with the servers, we propose
that each server opens a window or a period to collect the
GPS coordinates of users sent by the client applications. At
the end of the period, the algorithm is run and concerned
persons are warned. The duration of the period is critical
and needs to be well investigated and tuned when deploying
the service. Indeed, long period duration may decrease the
accuracy of the algorithm to detect users that are not respecting
the social distancing, but reduce the exchanges of messages
with the client-side of the application. One way to improve the
algorithm in order to be less dependant from this period is to
use, in addition to the GPS coordinate, the person speed and
the acceleration that can be obtained from the smartphone’s
accelerometer. However, this will increase the complexity of
the algorithm, and hence the time to run it. The current version
of the algorithm is very fast to run. Even if we consider a
short period to improve accuracy, the size of the message
to exchange is negligible, so no impact on the network is
expected. Indeed, the messages sent by the clients contain
four fields: User Id, timestamp, GPS coordinates (longitude
and latitude), which require only a few bytes of data.

IV. DISCUSSION AND POTENTIAL APPLICATIONS

A. Privacy and anonymity

In order to keep users privacy, the proposed social distancing
detection service does not require personal details, such as
name and mail address to run. At the registration step, a



Fig. 2. The concept of the social distancing detection service

Algorithm 1 Distance Detection
Require: GPS coordinates Φt, Λt, threshold.
Ensure: Send Warning Messages to Users.

1:
2: for i from 1 to N − 1 do
3: for j from i + 1 to N do
4: Dist (i,j) = Distance (i, j)
5: end for
6: end for
7: while i ≤ N and Warn(i) == False do
8: for j from 1 to N do
9: if Dist(i, j) ≥ threshold then

10: Send a warning Message to user i
11: if Warn(j) == False then
12: Send a warning Message to user j
13: end if
14: end if
15: end for
16: end while

user may create an account just by providing a valid email
address (any email valid email address no link with the
identity of the user). Then, the system generates an account
ID linked to the email address and a password is requested
and associated with the user account. Everything is stored in
a distributed Data Base (DB) shared by all the instances of
the application (server-side), which helps to handle migration
of users among the MEC servers. When the user installs the
application on its smartphone, he needs to have access to
the GNSS/accelerometer of the smartphone and to use the
login (account ID) and its associated password. The client
part of the application then opens a socket with the remote
server, and after being authenticated, the communication flows
starts between the Client and Server. At the server-side, the
only information which is available is the account ID and its
associated email, so no direct link can be established with the
person’s identity.

B. Data Collection and Analytic

As mentioned earlier, all the server instances report
statistics to a cloud back-end server; for example, on the
number of warnings sent during the days, the GPS coordinates
(mobility of user) based only on the ID of users to keep
anonymity. This information is critical in order to fight against
the virus propagation. One extension of the proposed service
is to use the collected data to help the local government or
city major, for instance, to understand the correlation between
the number of generated alerts and the location. This will
allow detecting the locations where the social distancing is
not well respected, and then actions can be taken to better
organize the concerned locations.
Another direction we are thinking about is the usage of the
warning alerts to detect contamination and the size of the
cluster (i.e. a group of contaminated persons that are linked
together). Indeed, ML techniques can be used, which take as
input the alarms and the locations as well as inputs from the
health agency about the locations of contaminated persons.
The ML tool will be trained to find a relation between
the alarms, the locations and the number of contaminated
persons. The ML will be later used to predict according to
the generated alarms the probability of contaminated people
in the considered location, hence helping to detect a cluster
of contaminated people, and take actions such as quarantine
or lock down those locations. Moreover, if the probability
to be infected in a location is high, the warning that is sent
to users, which are not respecting social distancing, may
include this probability as additional information. This can
be an incentive to respect the social distancing, or to leave
that area.
On the other hand, the proposed service can behave as
the StopCovid application, by allowing a user to indicate
through the application that it has been contaminated. Then
the algorithm will be run at the central cloud, by taking as
input only that user ID, and applied on the collected data, for
a window of one week. All users that were not respecting
the social distancing with that contaminated person will be
warned and invited to go as soon as possible to check if they
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Fig. 3. The number of generated alarms in two different days with different GPS Collection Frequency (CF). (A) and (B) CF each 100 ms. (C) and (D) CF
each 1s.

were contaminated or not.
Finally, the gathered GPS coordinates can be used in real-time
to identify persons sharing the same mobility behavior in
terms of daily itinerary, working in the same company, living
in the same district, etc. Therefore, the ML discussed in
the preceding paragraph can be extended to associate the
probability of contamination according to the group of users.

V. PERFORMANCE EVALUATION

We evaluate the proposed social distancing detection service
through two different methods. First, we implement our dis-
tance detection scheme in Python. As input for the algorithm,
we used a real existing dataset of mobile people. Second, we
have implemented a prototype of the application and tested
it using the EURECOM’s MEC platform [10], developed on
top of OpenAirInterface (OAI) [11]. Whilst the first method
allows us to check the efficiency of the social distancing
detection algorithm, introduced in Algorithm 1, the second
method permits to show how MEC can help to ensure the near
real-time communication, and hence guarantee short-latency to
receive warnings when non respecting the distances.

A. StudentLife Dataset

In the first method of evaluation, we have used a real dataset
named StudentLife [12] to apply our social distancing detection
algorithm on it, and extract its performances. StudentLife is
a large and a longitudinal dataset that contains sensing data
from the phones of a class of 48 students over a 10 week
spring term. The StudentLife dataset includes rich and in-depth
information over 53 GB of sensed data. Among these data,
it comprises location-based data, corresponding to real-time
GPS coordinates obtained from students’ smartphones. It is
worth noting that this dataset is anonymized in order to protect
the privacy of the participant students. The dataset is used
to provide GPS coordinates to our algorithm, which in turn
will detect users that are not respecting the social distancing
and hence generate alerts accordingly. We used this dataset
instead of simulated GPS coordinate to see the behaviour of
our algorithm when facing a real mobility model.

B. Evaluation of Distance Detection Scheme

Fig. 3 depicts the number of warning messages sent to
the students during two different days, while varying the
social distancing that students have to respect as well as



the Collection Frequency (CF) (or period to collect the data
and run the algorithm) of persons’ GPS coordinates (each
100ms for Fig. 3 (A) and (B), and each 1s for Fig. 3 (C)
and (D)). It should be noted that in these results, we select
randomly five students studying in the same class and we focus
on two different days (03/27/2013 and 04/15/2013); we
focused only on 5 persons. Clearly, we observe that the number
of sent warning alarms increases, as the social distancing
threshold increases. We argue this by the fact that initially
the students are far away from each other (more than half
a meter); but if we increase the social distancing threshold,
the number of generated alarms increases as well. We also
remark that the number of warning alarms decreases as we
decrease the CF of GPS coordinates (cf. Fig. 3 (C) and (D)).
In this case, when decreasing the CF, the MEC server collects
less fresh GPS coordinates, which reduces the accuracy of
the algorithm. Indeed, the non-respect of social distancing
between two successive messages (i.e. GPS coordinates) will
not be detected, leading to generate less number of warning
messages. In this context, it is preferable to increase the CF
aiming at increasing the application accuracy to detect persons
that are not respecting the social distancing. Although this
solution means increasing the exchanged messages between
the client and server, the burden on the network remains low.
Only a few bytes of data is needed to send one message,
which is very negligible compared to the expected high data
rate in the new generation of mobile networks like 5G. One
solution to keep the algorithm accuracy while reducing CF is
to use additional inputs, such as users’ speed and acceleration
in order to predict future user positions; which in turn adds
complexity to the distance detection algorithm.
On the other hand, for each social distancing threshold, we see
that from 12pm to 02pm the number of alarms is higher than
in the other time periods. This is mainly due to the fact that in
this time period, between 12pm to 02pm, students are out of
their classes (and/or school), which results in more non-respect
of the social distancing, as the distances between student are
becoming shorter.

C. Prototype

We have developed a prototype of the service, where the
client part runs on top of an Android phone, and the server
in a docker container at a MEC server. For the infrastructure
we have used the OAI platform to provide 4G connectivity,
and the MEC platform developed by EURECOM to run the
application server at the edge. We have done the test with two
smartphones connected to the server. We have measured the
latency at the client-side when a notification is obtained. The
measures have been done at the application level, which runs
on top of a TCP connection. Here, since only two phones
have been tested, the latency due to algorithm 1 execution
is negligible; the shown values include mainly the network
latency.

Table I illustrates the obtained results, showing: the average,
the maximum, the minimum, and the standard deviation of
the measured latency. We see that using a MEC server allows

TABLE I
MEASURED END-TO-END LATENCY

Average Maximum Minimum Deviation
14.63 ms 55 ms 11 ms 3.59 ms

reducing the end-to-end latency to an average of 14.63ms,
which means that the user is warned practically in near real-
time if the social distancing is not respected, which is one of
the ultimate objectives of the proposed service.

VI. CONCLUSION

In this paper, we introduced a novel social distancing
detection service that runs at the edge of the network. It aims
at detecting, in near real-time, if persons are not respecting the
minimum recommended distances to avoid contamination, and
hence to reduce the propagation of COVID-19. Our scheme
relies on the scalable MEC ETSI system, which ensures low
latency communication and hence guarantee a near-real time
reaction. In addition, the proposed scheme ensures users’
privacy since no personal information is required to run the
service.
To demonstrate the feasibility of our scheme, we evaluated
its behaviour using a real dataset of mobile people as well
as a prototype based on the OAI platform. The obtained
results showed the efficiency of our scheme in alerting users
in near real-time regarding the minimum distance to respect,
regardless of users’ mobility behavior (in indoor or outdoor).
We expect, in future work, to improve the proposed algorithm
by considering other parameters, such as speed and accelera-
tion, and use ML to predict the locations where the probability
of contamination is high. In addition, we aim to test our
solution in a real deployment, with a high number of users.
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