
Using Deep Learning to Replace Domain
Knowledge

Christian Lübben∗, Marc-Oliver Pahl‡∗, Mohammad Irfan Khan†
∗Technical University of Munich, ‡IMT Atlantique, †Eurecom

∗ {luebben,pahl}@s2o.net.in.tum.de; ‡ marc-oliver.pahl@imt-atlantique.fr † khanm@eurecom.fr

Abstract—Complex problems like the prediction of future be-
havior of a system are usually solved by using domain knowledge.
This knowledge comes with a certain expense which can be
monetary costs or efforts to generate it. We want to decrease this
cost while using state of the art machine learning and prediction
methods. Our aim is to replace the domain knowledge and
create a black-box solution that offers automatic reasoning and
accurate predictions. Our guiding example is packet scheduling
optimization in Vehicle to Vehicle (V2V) communication. Within
the evaluation, we compare the prediction quality of a labour-
intense whitebox approach with the presented fully-automated
blackbox approach. To ease the measurement process we propose
a framework design which allows easy exchange of predictors.
The results show the successful design of our framework as well
as superior accuracy of the black box approach.

Index Terms—V2V, V2X, network traffic prediction, deep
learning, ANN

I. INTRODUCTION

A common problem of complex systems is predicting their

future behavior. The intuitive way is asking an expert who uses

his domain knowledge. Experts are not always available or do

not exist for certain problems. To illustrate this, we use an

autonomous driving Vehicle to Vehicle (V2V) communication

scenario. An integrated car systems expert knows about send-

ing conditions of network packets. He is needed for forecasting

at the moment. This knowledge comes with expenses such as

money and time or is closed-source. Therefore, we replace

domain knowledge by automatic reasoning and forecasting.

We compare this black-box approach to a knowledge-driven

white-box approach to evaluate which accuracy we could

achieve while using no knowledge about the problem domain.

The question we answer is:

To which accuracy can domain knowledge be replaced by a

black-box predictor that uses no domain-specific knowledge?

On the way to level 5 fully autonomous driving, many

challenges need to be solved. An approach to allow automated

decision making is collaborative sensing. As standardized by

the European Telecommunications Standards Institute (ETSI),

different message types are used for collaborative measure-

ments and awareness of other vehicles and obstacles. These

messages are sent on a shared medium via the Intelligent

Transport Systems (ITS) Networking & Transport Layer [1].

Messages can have different priorities and QoS requirements

that need to be fulfilled in a real time scenario [2]. However,

the shared broadcast medium has a limited capacity as the

ITS-G5 standard uses IEEE 802.11p as basis which itself uses

CSMA/CA as medium access protocol [2]. Therefore, an intel-

ligent scheduler for transmitting network packets is needed. It

has to consider the respective QoS requirements as well as the

channel load to choose the best fitting time slot for a message

emission. This requires knowledge about the future channel

load. Predicting this load again requires expert knowledge

about the V2V domain. In our example the explicit trigger

conditions listed in the respective ETSI specifications should

allow an accurate estimation of packet emission. By using

recent prediction algorithms and supervised deep learning we

assume this knowledge to be unnecessary.

To evaluate our research question we compare two pre-

diction models. One model is based on domain specific

knowledge (white-box approach, WB) using the information

from the ETSI specifications. The other one follows a deep

learning (black-box, BB) approach where no domain specific

knowledge is involved. Both are then used to predict future

packet emission within a real-world scenario. These predic-

tions are compared to the number of actual sent packets to

evaluate the prediction performance. Our scenario considers

an intelligent vehicle that runs the intelligent scheduler and

tries to predict channel load. All surrounding vehicles that are

in transmission range, and thus visible to our vehicle, are in

the following referred to as neighbors.

To test and evaluate the predictors we introduce a modular-

ized framework that follows a divide and conquer approach.

The incoming network traffic is subdivided into the respective

packet types. Every type has its own predictor (WB & BB).

This architecture guarantees easy replacement of predictors

as well as extensibility to new packet types. In addition to

the packet subdivision we do a traffic assignment for all

neighboring vehicles. This guarantees the ability to predict

traffic separately for each vehicle participating in the network.

Our contributions are:

• Deep learning versus domain expert approach comparison

• An easy to use, extensible prediction framework for

network traffic

• Prediction models for black- and white-box approach

Section II introduces the tools used and the framework

design. Section III presents our testdata and the used scenarios.

Section IV gives a detailed view on our framework and the

predictors. Section V discusses our results. Related works are978-1-7281-8086-1/20/$31.00 ©2020 IEEE

presented in section VI. Section VII answers our question

based on the results and gives an outlook to future work.

II. APPROACH

In this paper we create a prediction framework that allows

performing the measurements for evaluating our research

question while also being extensible to other scenarios. Taking

scenario challenges into account, we first form requirements

for the framework. This is followed by an introduction to

network traffic prediction and message types that have to be

predicted. Finally we introduce our framework design.

A. Requirements

Within the evaluation as well as within the parameter tuning

phase we need to replace prediction models. Therefore, models

have to be exchangeable (R.1). While considering one message

type at the beginning, our framework must be extensible to

new message types that will be added to the V2V network

traffic (R.2). To simplify the prediction task from global traffic

to node specific traffic, overall network load is considered

as sum of all participating node’s traffic. This requires the

interpretation and handling of node specific information (R.3).

Besides the simplification of the prediction task the reuse of

predictors is possible by using this approach. If only vehicles

of the same kind are within the network, one predictor or

one selection of predictors can be reused for each of them

as nodes of a same kind should behave similar. In conclusion

three requirements are set to our framework:

• R.1 Easy exchange of prediction models

• R.2 Extensibility to new message types

• R.3 Individual predictions for every network participant

B. Network traffic prediction

To enable QoS, our intelligent scheduler needs to predict

the optimal timeslot for packet emission. We focus on collab-

orative awareness messages (CAM) as they make up the top

most part of our traffic and thus have a high impact on the

overall traffic prediction. Furthermore they are emitted on a

structural pattern that can be learned by our BB approach and

be used within the WB approach which wouldn’t be possible at

purely random emission. CAM were specified by the ETSI for

the ITS standard and are used to inform nearby vehicles about

the current location and motion parameters of the sender. Their

periodical emission frequency is between 1Hz up to 10Hz and

based on the fulfillment of three motion features [3]:

• Position change of 4 meters

• Speed change of 4 meters per second

• Direction angle change of 4 degrees

Fulfilling at least one of these conditions within a 100ms

interval triggers a CAM emission. If the conditions are not

fulfilled within 10 consecutive timeslots (1000ms) one CAM

is sent to guarantee the minimal emission rate of 1Hz. Basis

for the computation of the delta values are the conditions while

sending the last CAM message.

Traffic

Connector

Intelligent

Vehicle 1

Neighbor 1

CAM

CPM, LDM,

…

Neighbor 2

CAM

CPM, LDM,

…

…

CAM

CPM, LDM,

…

Neighbor n

CAM

CPM, LDM,

…

Intelligent

Vehicle 2

…

Fig. 1. Prediction framework design

C. Prediction framework design

The design of our framework is shown in figure 1. The

input fed into the connector, is the raw network traffic. As

stated before, we consider the global traffic as sum of all

single nodes traffic in the network. This allows us on the

one hand to do node specific predictions and on the other

hand reduces complexity for the predictors as it is part of

the proposed divide and conquer approach. In our scenario

we focus on one intelligent vehicle that tries to predict the

traffic of its surrounding vehicles. Based on the information

contained in a single packet we are able to assign each message

to its origin. Therefore, we can disassemble the traffic into

node specific traffic. Each neighbor is represented by a “box”.

All received traffic belonging to one neighbor is forwarded to

its box for performing the predictions there. In figure 1 we

took Intelligent Vehicle 1 (IV1) as vehicle that is running our

framework. For each neighbor IV1 creates a box. These boxes

can be considered as logical representations of the neighbors.

All prediction modules for one specific neighbor are bundled

within there. A box thus can predict the whole traffic this

neighbor emits (R.3). If we do not have any further information

about the message types this neighbor emits, we can create

one single predictor for all the emitted traffic. Since we know

that we have specific message types, we can split up further.

Each box therefore owns separate predictors for each message

type. In our case this is one predictor for the CAM type. We

assume that all vehicles implement the same specifications

for emitting identical message types, as they are specified by

the ETSI. Therefore, we can reuse the message predictors

in every neighbor box. The specification of which message

types should be considered within the boxes is done in the

intelligent vehicles class. The predictors are then loaded once

in the IV class and referenced from every box. If a prediction

model needs to be updated, it can easily exchanged by loading

the new predictor in the intelligent vehicle class (R.1). New

models can also be added there together with a label for the

corresponding message (R.2). The new predictor is then loaded

and the list of predictors is extended by the new reference. In

Figure 1 a list of additional packet types is indicated at the

bottom. Our approach offers the flexibility to build a collection

of predictors and choice which available predictors to combine

within a scenario while reducing the prediction complexity.

III. DATASET

Our goal is to generate results that are applicable in real-

world scenarios and measurements that reflect real-world

behavior and complexity. Therefore, we took datasets that have

been recorded in real environments. We use these datasets

to train and test our models. Afterwards, we evaluate the

prediction performance on a different subset. We ensure that

no part of the datasets is used twice either in the learning,

testing or evaluation process to avoid overfitting of the model.

As we use real-world data, we also avoid unrealistic patterns

that can occur in artificial generation. In particular we use two

scenarios. One is a highway scenario recorded at Ingolstadt

in Germany. The second one is a city scenario recorded in

Bologna, Italy. We use both since they cover a lot of possible

vehicle states. The highway dataset covers high speeds with

minor changes. The city scenario includes low speeds with lots

of changes due to acceleration and deceleration. With these

datasets we are also able to do cross validation and evaluate

how the predictors perform in the respective other scenario to

gain information about the general applicability of the models.

The size of the model creation dataset is 500k packets each

for highway and city scenario. The dataset split was 80% for

training and 20% for testing.

IV. PREDICTION FRAMEWORK

The prediction framework designed in II-C is now described

in more depth. First we specify the technical setting. This is

followed by the data preprocessing and a top-down specifica-

tion of the framework ending with introducing the predictors.

A. Setting

The first thing we set is the size of the future time slice the

predictions have to be done for. We use time slices of 100ms

as it is the maximum emission frequency of CAM messages

due to [3]. Our question to the predictor thus is:

How many packets will be emitted within the next 100ms?

Due to our divide and conquer approach this leads to the

sub question of how many of our neighbors will emit a packet

within the next time slice of 100ms? Whenever a packet is

received the prediction process is initiated. Within this task a

received packet gets forwarded to the corresponding neighbor

box and further to the predictor of the received message type

which predicts when the consecutive message will be sent.

Input features are the current values sent in the received CAM

message. The time in which a packet will be emitted is given

in multiples of 100ms. The maximum value is 1000ms as it is

the maximum time until a new CAM message is emitted [3].

This results in a range of 10 possible values for the prediction.

These are the output classes for our multiclass prediction

presented within the predictor introduction.

B. Supervised learning

While training our predictors we use supervised learning.

This means that we use labeled data to train our models. As the

needed information is supplied within the CAM messages, we

do not have to manually label the data. Detailed information

about the used labels as well as the used input features for the

predictors is given in the following sections.

C. Preprocessing

Our prediction pipeline starts with preprocessing of the

input data. At first, packets are assigned to the emitting

neighbor and message type as introduced section II. Within

the CAM predictor the payload data of the CAM message is

processed further. A CAM message in our case includes:
SenderID, Timestamp, Position, HeadingAngle, MessageType

This information needs to be processed further to check the

trigger conditions. To check if the position change exceeds

4m the position change between the current and last mes-

sage (∆Position) is needed. In addition the speed within

the current and last packet is needed to compute the speed

change (∆Speed). This involves the Speed value that relies

on ∆Position and ∆T ime. Finally the change of the heading

angle since the last message was sent (∆Angle) needs to

be computed. By storing the information of the last received

CAM message (t-1) and the current values (t) the needed

values can be computed using the following equation:

∆Position = Positiont − Positiont−1 (1)
∆T ime = T imestampt − T imestampt−1 (2)

Speed = |∆Position|/∆T ime (3)
∆Speed = Speedt − Speedt−1 (4)
∆Angle = Anglet −Anglet−1 (5)

D. White-box

To represent the emission conditions, we split the predictor

into three parts. We use one predictor for each trigger condi-

tion. This design is shown in Figure 2, which is a detailed view

of the CAM label from Figure 1. Instead of using the delta po-

sition we use the time dependent speed value as calculated in

(3) to take into account the elapsed time since the last packet.

This is needed since we need a time dependent prediction

when the 4 meters will be passed. The idea by using the speed

is to define speed intervals for each emission frequency. While

driving more than 40m/s for example each 100ms the trigger

condition of ∆Position > 4m will be fulfilled. This is again

done to simplify the problem. We do not have to know the

exact prediction value but only the CAM emission rate which

is in a range of 10 possible frequencies. These frequencies are

used as labels while training the models. They are encoded

as an array of zeroes and a one for the affected interval also

known as one-hot encoding. The translation of this one-hot

encoded vector into the emission frequency and corresponding

time periodicity is given in Table I. While entering the absolute

speed values the speed predictor will predict the emission

frequency for the future packet as one-hot encoded vector.

For the conditions ∆Speed and ∆Angle we construct similar

vectors. To include trends in the change of values we used time

series prediction with one step back in time. After prediction,

the resulting vectors are evaluated by taking their maximum

index as all conditions are equally weighted. This determines

the next emission timeslot. If the highest index within the three

vectors is 5, the predicted emission frequency would be 2 Hz

and the next packet emission is expected in 500ms (Table I).

Speed

Predictor Speed

Emission interval

ΔSpeed ΔAngle

Predictor ΔSpeed Predictor ΔAngle

Emission interval Emission interval

Prediction

MAX

Fig. 2. Whitebox predictor

TABLE I
PREDICTION ENCODING

Index 0 1 2 3 4 5 6 7 8 9
Hz 1 1,112 1.25 1.429 1.667 2 2.5 3,334 5 10

Time 1000 900 800 700 600 500 400 300 200 100

E. Black-box

The black-box approach does not use any further domain

knowledge. Within this approach we use the emission fre-

quency of the packets as label. As our scheduler works with

time slices of 100ms we again convert the learning labels to a

range. While never exceeding 1000ms we consider everything

else as outlier and fix the range to 10 possible values. The

input is a subset of the available features that have been found

within an automated grid search. These are Speed, ∆Speed
and ∆Angle. This design is displayed in Figure 3, which is

the detailed view on the CAM label of Figure 1 for the black-

box case. In contrast to the white-box design, we have only

one predictor that has to learn the emission trigger conditions

by itself. The output is again a one-hot encoded vector that

can be decoded by using the information from Table I.

F. Model creation

Much effort has already been spent on general network

traffic prediction, indicating promising applications of neural

networks [9]. Due to their versatile application fields and

the good results in previous applications we decided to use

neural networks to implement our predictors. We tried to create

the most simple model to avoid high computation overhead.

While using large amounts of neurons one might achieve better

results by risking that the models overfits and saves all model

states. We started using a generic network approach to also

keep the creation of the network simple. We started using

2 hidden layers with 10 neurons each by applying common

guidelines regarding the number of hidden layer neurons in

relation to input and output neuron number. After several

tests we ended up with 50 Neurons within the hidden layers

performing best. On an Intel Xeon E3-1265L V2 the training

took around 1100 seconds per epoch. The resulting network

Speed ΔSpeed ΔAngle

Predictor

Emission interval

Prediction

Fig. 3. Black-box predictor

starts with the input layer consisting of 5 input neurons that

are fed with the 5 input values introduced in section IV-C. The

two hidden layers each consist of 50 neurons. The connected

output layer consists of 10 output neurons representing the one

hot encoded output vector holding the classification results. We

use categorical crossentropy loss function for our multiclass

classification problem and rmsprop optimizer. We stopped

training if the loss did not significantly improved anymore.

While training the use of 3 epochs with a batch size of

1 performed good results. After training models for both

scenarios they are loaded into our prediction framework. As

stated in section II-C the predictors are loaded once within

the intelligent vehicle class. For each received packet the

predictor will classify the duration till the consecutive packet

is expected. Each prediction run consists of:

• Make predictions for each received packet and save the

expected time of arrival (ETA) within the neighbor box

• Collect all ETA that fall into the current prediction

timeframe (next 100ms) from all neighboring boxes

Thus it is known how many packets are expected within the

next timeframe in general and which neighbors are expected

to send a packet. This answers our question to the predictor

and implements R.3.

However, what happens if a packet gets lost and is re-

transmitted? As reasons for retransmissions can be manifold,

we do not cover this case at the moment. Since we are not

entirely sure if the expected time of arrival is the real time

of arrival, we cannot be sure if a not received packet results

in a retransmit or is just a prediction error. Another cause for

not receiving a packet can be vehicles that leave the observed

area. As current considerations produce more overhead and

error than real value for the scenario, we decided to neglect the

case of retransmissions. Another question within our ad-hoc

network is: How to detect new network participants? In a pure

random setting we cannot forecast which vehicle will enter our

observation area. However, when we consider the number of

entering vehicles equals the number of leaving vehicles the

total number of vehicles should be balanced. In addition it is

only one packet that is not predicted. After the first packet the

neighbor is known and considered within the predictions.

2000 4000 6000 8000 10000
Interval

12

14

16

18

20

22

24

26

M
es

sa
ge

s

Kind
 Actual Rx
 White-box RX
 Black-box RX

Fig. 4. Highway - Highway Model

2000 4000 6000 8000 10000
Interval

5

10

15

20

25

M
es

sa
ge

s

Kind
 Actual Rx
 White-box RX
 Black-box RX

Fig. 5. Highway - City Model

City WB City BB Highway WB Highway BB
ID

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ac
tu

al
 R

X
- P

re
di

ct
ed

 R
X

Fig. 6. Highway Boxplot

0 20000 40000 60000 80000 100000
Interval

0

10

20

30

40

M
es

sa
ge

s

Kind
 Actual Rx
White-box Rx
Black-box Rx

Fig. 7. City - City Model

0 20000 40000 60000 80000 100000
Interval

0

10

20

30

40

M
es

sa
ge

s

Kind
 Actual Rx
White-box Rx
 Black-box Rx

Fig. 8. City - Highway Model

City WB City BB Highway WB Highway BB
ID

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ac
tu

al
 R

X
- P

re
di

ct
ed

 R
X

Fig. 9. City Boxplot

V. EVALUATION

In the following we evaluate the results of our predictors

within the two V2V scenarios. The evaluation is followed a

comparison of both approaches. In total we perform eight dif-

ferent tests. First we use the trained models in their respective

scenario. Second we cross check the models in the respective

other scenario. The results are displayed in Figures 4, 5, 6

for the Highway scenario and in Figures 7, 8, 9 for the city

scenario. The naming scheme of the graph first denotes the ap-

plied scenario and second the scenario where the used models

have been trained in. The x-axis denotes the 100ms intervals

for which the predictions are done. 1000 for example denotes

the interval between 1000 and 1100. The y-axis denotes the

number of packets within a 100ms interval. The three kinds

of graphs within each Figure visualize the number of packets

that have been actually received and have been forecasted by

the WB and BB model. The Boxplots visualize the difference

between actual received packets and the predicted amount of

packets per predictor (ActualRX−PredictedRX). The mean

absolute error (MAE) for each test run is printed in Table

II. Within our evaluation we also check the requirements set

to the framework. The requested easy exchange of prediction

models (R.1) and extensibility to new message types (R.2) are

realized through loading each model within the main class. By

changing one code line models can be changed and by adding

one line new models can be included. Individual predictions

for every network participant are implemented by design (R.3).
TABLE II

MEAN ABSOLUTE ERROR

Scenario Highway WB Highway BB City WB City BB
Highway 2.167 2.334 10.467 4.689

City 2.21 2.479 1.925 2.223

A. White-box

Boxplots (Fig. 6, 9) show that the WB predictors are able

to predict packet emission with high accuracy resulting in a

MAE of about 2.2 and 1.9 packets per interval. Even though

there is a small error rate, we are still able to predict the

general behavior to gain timeslots with high and less traffic

(Fig. 4, 7). Since all predictors suffer from underprediction, a

positive bias could be added. Within the cross check the city

predictor performs significantly worse in the highway scenario

(MAE>10) whereas the highway predictor only performs

slightly worse in the city scenario (MAE 2.21).

B. Black-box

Within both scenarios the BB predictors suffer from light

underprediction resulting in MAE of about 2.2 and 2.3 pack-

ets. Within the cross check, the highway predictor performs

slightly worse in the city scenario with a MAE of almost

2.5 packets. Within the highway scenario, the city predictor

performs significantly worse with a MAE of almost 4.7.

C. Comparison

In all scenarios the predictors tend to underpredict but also

reflect the general trend of packet emission. Within the city

scenario, the BB predictors perform slightly worse than their

WB counterparts, resulting in higher MAE and wider variation

(Fig. 9). Within the highway scenario, the respective WB

and BB predictors perform almost equal whereas both city

predictors differ significantly. Unexpected is the fact that the

City BB predictor performs significantly better within the cross

check than the WB predictor with a half as high MAE (4.7 vs.

10.5) and considerable less variation (Fig. 6). Comparing the

WB and BB approaches shows that further knowledge of the

problem domain results in a higher prediction accuracy in most

cases. However, this is no surprise as it is to be expected. The

question is, if the additional effort spent on implementing the

domain knowledge is worth the effort. Compared to our black-

box model we use three instead of one predictor, representing

every trigger condition. This invokes more computation power

and resource usage. As the prediction performance is in three

cases almost the same and in one case significantly worse,

at least in our guiding example, the additional effort and

knowledge offer no sufficient gain in accuracy.

VI. RELATED WORK

[4] presents a design for a reusable machine learning

service that offers easy extensibility and reusability. Like in

this work, different predictors to validate the approach are

used. However, the focus lied in simplifying the configuration

and usage of ML on a usability scale instead of simplifying

the whole model creation process. [5] discusses the usage

of machine learning for vehicular networks. They give an

overview and an example of a deep learning approach used

in a vehicular network while proposing LSTM and RNN

as potential improvements. The LSTM based approach for

network traffic prediction that was presented in [6] is the

basis of this work. It was shown that a RNN based approach

can be used to predict future network traffic. However, there

was no investigation of the invested domain knowledge like

it is done in this work. As found out in this work, we could

substitute the domain knowledge used there by a deep learning

approach. [8] proposed a deep learning based algorithm for

traffic prediction within a highway scenario which was later

applied to a more general domain within the almost identical

work by [7]. However, their approach targets on prediction

traffic as a whole. We try to simplify the prediction problem

by subdivision into network participant and packet type which

is automated and easily possible through the included informa-

tion provided by the transmitted packets. In [10] Rudin argues

in favor of interpretable ML models. She claims that error

and behavior prediction of BB models cannot be foreseen.

She uses three examples where BB models lead to heavily

wrong predictions. We support the statement that those models

are not inherently better performing than interpretable models.

However, we state that domain knowledge can be expensive

or unavailable. Therefore, we claim BB models to be an easy

way to implement predictors. In addition they can be more

portable to other domains as they are not domain specific

built. Our results show that the BB model does not necessarily

outperform the domain specific solution but was easier to build

while achieving good results.

VII. CONCLUSION & FUTURE WORK

In this work we compared two prediction approaches. One

involving as much domain specific knowledge as possible

and one that invests no domain specific knowledge. Both

are validated and compared in two real-world scenarios. The

evaluation showed that the benefit of using domain specific

knowledge is minimal in both scenarios. In one case the black-

box version even outperformed the white-box one. This leads

us to an answer to our research question:

To which accuracy can domain knowledge be replaced by a

black-box predictor that uses no domain-specific knowledge?

In our scenario that is based on a structured emission of

packets we were able to replace domain knowledge through

automatic reasoning with almost no loss in accuracy. In

addition, the cross check reveals that the BB predictor seems

to adapt better to new scenarios. However, the answer to this

question also depends on the costs of the knowledge and

the additional effort. This effort usually consists of time to

invest, computing power or complexity to include the domain

knowledge. In our case these costs support the replacement

of our WB predictors. Since our guiding example was chosen

as an exemplary prediction problem, our results should also

be applicable in other domains that involve a non-random

packet emission. Through the modular design the proposed

framework can easily be equipped with predictors for new

packet types or even be applied to new use cases. Further, it

needs to be mentioned that often cases do not allow building

white-box views as trigger conditions might not be known or

are kept closed-source. Concerning those cases, we showed

that black-box predictors combined with simplification of the

prediction problem are able to produce good results.

There are still some open challenges including the extension

of our framework to more packet types as well as the predic-

tion of additional future timesteps. An aspect we did not cover

in this work is the resource consumption and real time per-

formance. These should be investigated on different hardware

platforms, including special neural computation accelerators.

REFERENCES

[1] European Telecommunications Standards Institute (ETSI), “ETSI EN
302 665”, “Intelligent Transport Systems (ITS);Communications Archi-
tecture”, Sept. 2010.

[2] European Telecommunications Standards Institute, “Final draft ETSI
ES 202 663”, “Intelligent Transport Systems (ITS);European profile
standard for the physical and medium access control layer of Intelligent
Transport Systems operatingin the 5 GHz frequency band”, Nov. 2009.

[3] European Telecommunications Standards Institute (ETSI), “Final draft
ETSI EN 302 637-2”, “Intelligent Transport Systems (ITS);Vehicular
Communications; Basic Set of Applications; Part 2: Specification of
Cooperative Awareness Basic Service”, Sept. 2014.

[4] M.-O. Pahl and M. Loipfinger, ”Machine learning as a reusable mi-
croservice”, NOMS 2018, April 2018.

[5] H. Ye and L. Liang and G. Y. Li and J. Kim and L. Lu and M. Wu ,
”Machine Learning for Vehicular Networks”, arXiv e-prints, Dec. 2017.

[6] M. I. Khan et al., ”Deep Learning-aided Application Scheduler for
Vehicular Safety Communication”,arXiv:1901.08872, Jan. 2019.

[7] W. Wang et al., ”A network traffic flow prediction with deep learning
approach for large-scale metropolitan area network,” NOMS 2018, 2018.

[8] Y. Lv et al., ”Traffic Flow Prediction With Big Data: A Deep Learning
Approach,” IEEE Transactions on Intelligent Transportation Systems,
vol.16, no.2, pp. 865-873, Apr. 2015.

[9] M. Joshi and T. H. Hadi, ”A Review of Network Traffic Analysis and
Prediction Techniques”, 2015.

[10] C. Rudin, ”Stop Explaining Black Box Machine Learning Models for
High Stakes Decisions and Use Interpretable Models Instead”, 2018.

