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Abstract

This contribution elaborates on the concept of blind identi"cation of multiple FIR channels with transmission "lter
knowledge (WTXFK). This prior knowledge could, in fact, include not only the transmitter (TX) (pulse shaping) "lter but
also the receiver (RX) "lter present in digital communication systems. Exploitation of this side information allows the
estimation to concentrate on the impulse response of the actual propagation channel itself. Hence this estimation can be
done more accurately. Since the prior information is expressed in terms of the channel impulse response, we review
a number of blind channel estimation methods that are parameterized directly by the channel and consider their
extension to incorporate the prior knowledge. These methods include essentially subchannel response matching (SRM),
subspace "tting and maximum likelihood (ML) techniques. All these methods are formulated for burst mode transmis-
sion. We also discuss performance limits in the form of Cramer}Rao bounds (CRBs). Both the methods and the CRBs are
discussed in a deterministic and a Gaussian context for the unknown transmitted symbols. Simulation results indicate
that the exploitation of the prior knowledge can lead to signi"cant improvements, a capability of the extended method to
identify ill-conditioned channels, that one particular version SRM WTXFK often outperforms another one, and that ML
methods can still further improve performance. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Beitrag arbeitet das Konzept der blinden Identi"zierung mehrerer FIR KanaK le mit Wissen uK ber das Sende"lter
(`with transmission "lter knowledgea, WTXFK) aus. Dieses Vorwissen koK nnte tatsaK chlich nicht nur den Sende"lter
(`transmitter "ltera, TX) (Pulsformer), sondern auch das in digitalen Kommunikationssystemen vorhandene
Empfangs"lter (`receiver "ltera, RX) beinhalten. Ausnutzen dieser Seiteninformation erlaubt es der SchaK tzung sich auf
die Impulsantwort des tatsaK chlichen Ausbreitungskanals zu konzentrieren. Deshalb kann diese SchaK tzung genauer
durchgefuK hrt werden. Da das Vorwissen durch die Kanalimpulsantwort ausgedruK ckt wird, rekapitulieren wir eine
Anzahl blinder KanalschaK tzmethoden, die direkt durch den Kanal parametrisiert sind und betrachten ihre Erweiterung
dahingehend, das Vorwissen einzubezichen. Diese Methoden beinhalten im wesentlichen `Subchannel Response Match-
ing (SRM)a, `Subspace Fittinga und `Maximum Likelihood (ML)a Techniken. All diese Methoden werden fuK r die
UG bertragung im Burst-Modus formuliert. Wir diskutieren ebenfalls Grenzen der LeistungsfaK higkeit durch Cramer}Rao
Schranken (`Cramer}Rao Boundsa CRBs). Sowohl die Verfahren als auch die CRBs werden in einem deterministischen
und einem Gau{schen Kontext fuK r die unbekannten Sendesignale diskutiert. Simulationsergebnisse deuten an, dass das
Ausnutzen von Vorwissen zu signi"kanten Verbesserungen fuK hren kann, dass die erweiterte Methode faK hig ist, schlecht
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konditionierte KanaK le zu identi"zieren, dass eine spezielle Version } SRM WTXFK } oftmals bessere Ergebnisse als-
andere Verfahren erzielt und dass ML Methoden die LeistungsfaK higkeit noch weiter verbessern koK nnen. ( 2000
Elsevier Science B.V. All rights reserved.

Re2 sume2

Cette contribution preH sente le concept de l'identi"cation aveugle des canaux multiples à reH ponse impulsionnelle "nie
(RIF) avec connam( ssance des "ltres de transmission. Cette information a priori peut en reH aliteH non seulement inclure le
"ltre de transmisssion (TX) ("ltre de mise en forme) mais aussi le "ltre de reception (RX), preH sents dans les systèmes de
communications numeH riques. L'exploitation de cette information interne permet à l'opeH ration d'estimation de se
concentrer sur la reH ponse impulsionnelle de la vraie partie à estimer du canal (canal de propagation) en soi. Par
conseH quent, l'estimation peut e( tre faite de fac7 on plus preH cise. Comme l'information a priori est exprimeH e en terme de la
reH ponse impulsionnelle du canal, nous reconsideH rons une classe de meH thodes d'estimation aveugle du canal qui sont
paramètriseH es directement par le canal et nous consideH rons leur extension pour incorporer l'information a priori. Ces
meH thodes incluent essentiellement le `Subchannel Response Matchinga (SRM), l'ajustement de sous-espace et les
techniques de Maximum de Vraisemblance (MV). Toutes ces meH thodes sont formuleH es pour un mode de transmission par
paquets. Nous discutons aussi les limites de performance sous forme de bornes de Cramer}Rao (BCR). Les meH thodes et
les BCRs sont discuteH es dans deux contextes des symboles inconnus transmis : deH terministe et gaussien. Les reH sultats de
simulation indiquent que l'exploitation de l'information a priori peut conduire à des ameH liorations signi"catives, à une
capaciteH de la meH thode eH tendue pour identi"er les canaux mal-conditionneH s, qu'une version particulière de SRM
WTXFK est souvent supeH riuere (d'un point de vue de performance) à une autre version, et que les meH thodes de MV
peuvent encore ameH liorer la performance. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a mobile radio transmission context, channels
are speci"c in that they may vary rapidly. Due to
bandwidth limitations and multipath propagation,
the transmission channel distorts the signal being
transmitted, leading to inter-symbol interference
(ISI). In order to recover the emitted data, the
receiver needs to identify this channel distortion
and equalize it. Classical system identi"cation tech-
niques require the use of both system input and
output, which leads to the transmission of a train-
ing sequence, i.e. a set of "xed data (that do not
carry information) that are known to both trans-
mitter and receiver. The use of a training sequence
reduces the transmission rate, especially when the
training sequence has to be retransmitted often, due
to the possibly fast channel variations that occur
in mobile communications and consequently de-
creases the bandwidth e$ciency. To the contrary,
blind equalizers adapt without using a training
sequence.

The identi"cation of a non-minimum phase
channel requires the use of higher-order statistics
(HOS) in the case of stationary signals. When the
signal is cyclostationary, which is the case for mo-
bile communications signals, the channel can be
identi"ed using only second-order statistics (SOS)
of the output. The su$ciency of SOS to identify the
channel is due to an introduction of a linear multi-
channel formulation in the blind channel identi"ca-
tion problem [29,30]. The multiple channels
obtained in this formulation can arise in three
di!erent ways. The "rst way is perhaps arti"cial. It
arises when using fractionally spaced equalizers.
When the received signal is oversampled with a fac-
tor two w.r.t. the symbol rate, the even and odd
received samples can be considered as two dis-
crete-time received signals, corresponding to two
symbol rate discrete-time channels that are the
even and odd samples of the oversampled continu-
ous-time channel response. Another possibility is to
physically have multiple channels, which occurs
when multiple antennas are used. The third way
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Fig. 1. A typical digital communication system.

arises if the symbol constellation is one dimensional
(e.g. PAM or BPSK) and the transmitted signal is
modulated [14]. In that case, the baseband channel
impulse response has a real and imaginary com-
ponent, wheras the input is purely real. Hence
working with real signals only, we get a one-in-
put}two-output system.

A large proportion of recent research dealing
with blind channel estimation and/or equalization
has been devoted to techniques based on SOS of
the received data. This attention is generally justi-
"ed by the lower complexity of the methods based
on SOS which makes the use of this class of blind
channel estimation methods more desirable com-
pared to, e.g. HOS-based techniques [3,9,10,20].
The fact that SOS can be su$cient for channel
identi"cation is due to the multichannel aspect.
Our belief is that the fact that the channel can be
estimated fairly accurately using relatively few data
(a must for mobile communications) is due to the
good estimability of the signal subspace with this
few amount of data whereas the second-order mo-
ment cannot be well estimated. The "rst method for
blindly identifying a linear channel from the SOS of
the cyclostationary oversampled received signal
was introduced by Tong et al. [29]. Since then,
many researchers have investigated new blind iden-
ti"cation/estimation techniques based on SOS.
A "rst class of these SOS-based techniques deals
with subspace-based algorithms [18,19,23,24,30].
The second class concerns multichannel linear pre-
diction-based techniques [22,23]. However, chan-
nel identi"cation using SOS alone is not su$ciently
robust to be adoptable in standards. Therefore, it is
necessary to exploit side information also. A "rst
case of considering such side information could be
the exploitation of a short training sequence [5].
Such a training sequence may be too short to allow

reliable channel identi"cation by itself. Hence, an
extension of the blind multichannel techniques to
incorporate the knowledge of a short training
sequence can be considered. Such channel identi-
"cation techniques are called semi-blind. In [5],
Cramer}Rao performance bounds for semi-blind
channel identi"cation are investigated and a com-
parison with blind and training-sequence-based
techniques is presented. In this paper, we consider
the side information due to the prior knowledge
corresponding to the transmitter (TX) and/or re-
ceiver (RX) "lters present in digital communication
systems, as illustrated in Fig. 1. This is motivated
by the fact that in a digital communication frame-
work, such as mobile communications, the receiver
will have knowledge about the pulse shaping "lter
used at the transmitter. Hence, using this side in-
formation will simplify the channel estimation
problem and reduce the number of parameters to
be estimated which could require less signal power
or less data length to solve the channel identi"ca-
tion problem. Furthermore, in the case of ill-condi-
tioned channels, SOS-based blind multichannel
estimation techniques fail to estimate the channel
because the matrix used in the optimization cri-
terion is ill-conditioned. When transmission "lter
knowledge is used, the matrix of the new optimiza-
tion criterion often becomes well conditioned and
hence blind multichannel identi"cation methods
WTXFK can accurately identify the channel in
those cases. Indeed, from an identi"ability point of
view, a SOS-based blind multichannel identi"ca-
tion technique will not work if the monochannel,
that corresponds to the factorization of common
zeros from the subchannels, is non-minimum phase.
However, if the monochannel corresponds to the TX
and/or RX "lters then the problem is "xed because
we have prior knowledge of these "lters.
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This paper is organized as follows: in Section 2,
we introduce the data model corresponding to the
blind channel identi"cation problem where we
specify the multichannel aspect. In Section 3, we
present the di!erent blind channel estimation
methods that are directly parameterized by the
channel. In Section 4, the basic approach of incor-
porating the side information in the blind estima-
tion methods is formulated based on the polyphase
representation of the channel. This problem for-
mulation is exploited in Section 5 where we
reformulate the minimization criteria of the blind
estimation methods and we specify the minimiz-
ation constraints for the extended methods
(methods incorporating the prior knowledge). The
channel identi"ability issues are discussed in Sec-
tion 6, we show that methods using the side in-
formation can identify the channel for a certain
channel class where methods without prior know-
ledge fail to achieve this channel identi"ability.
Section 7 deals with performance analysis through
the Cramer}Rao bounds (with or without prior
knowledge) for both deterministic and Gaussian
symbols cases. This is followed in Section 8 by some
numerical experiments illustrating a comparison
between the di!erent Cramer}Rao bounds (with
and without prior knowledge) and the performance
of the (extended) blind channel estimation methods.

2. Problem formulation

The goal of blind identi"cation is to identify the
unknown channel using the received signal only.
Most of the work on blind identi"cation considers
the entire channel which includes the shaping "lter,
the actual propagation channel and the receiver
"lter. However, usually the only unknown quantity
is the multipath, the &propagation channel'. Blind
channel identi"cation exploiting the prior know-
ledge of TX/RX "lters has been introduced in [21]
and further explored in [7]. These blind techniques
exploit a multichannel formulation corresponding
to a single input}multiple output (SIMO) vector
channel. The channel is assumed to have a "nite
delay spread N¹. The multiple FIR channels can
be obtained by oversampling a single received
signal, but can also be obtained from multiple re-

ceived signals from an array of antennas (in the
context of mobile digital communications [22,26])
or from a combination of both. For m channels the
discrete-time input}output relationship can be
written as

y(k)"
N~1
+
i/0

h(i)a(k!i)#*(k)"HA
N
(k)#*(k), (1)

where y(k)"[y
1
(k)2y

m
(k)]T, h(i)"[h

1
(i)2

h
m
(i)]T, *(k)"[v

1
(k)2v

m
(k)]T, H"[h(N!1)2

h(0)], A
N
(k)"[a(k!N!1)2a(k)]T and super-

script T denotes transpose. Let H(z)"
+N~1

i/0
h(i)z~i"[H

1
(z)2H

m
(z)]T be the SIMO

channel transfer function, and h"[hT(N!1)2
hT(0)]T. Consider the symbols i.i.d. if required and
additive independent white Gaussian circular noise
*(k) with r**(k!i)"E*(k)*(i)H"p2

v
I
m

d
ki

where
superscript H denotes Hermitian transpose. As-
sume we receive M samples:

Y
M

(k)"T
M

(H)A
M`N~1

(k)#V
M

(k), (2)

where Y
M

(k)"[yT(k!M#1)2yT(k)]T and sim-
ilarly for V

M
(k). T

M
(X) is a block Toeplitz matrix

with M block rows and [X 0
pC(M~1)q

] as "rst block
row, X being considered as a block row vector with
p]q blocks. We shall simplify the notation in (2)
with k"M!1 to

Y"T(H)A#V. (3)

We assume that mM'M#N!1 in which case
the channel convolution matrix T(H) has more
rows than columns. If the H

i
(z), i"1,2, m, have

no zeros in common, then T(H) has full column
rank (which we will henceforth assume). For obvi-
ous reasons, the column space of T(H) is called the
signal subspace and its orthogonal complement the
noise subspace. The signal subspace is para-
meterized linearly by h.

3. Blind channel estimation

The channel can either be parameterized by its
impulse response h or by the noise-free multivariate
prediction error "lter P(z) and h(0) which satisfy
P(z)H(z)"h(0) [26]. However, it is not clear how to
express prior information on the TX/RX "lters in

2052 J. Ayadi, D.T.M. Slock / Signal Processing 80 (2000) 2049}2062



terms of the prediction "lter. Hence, we stick here
to blind methods that are parameterized in terms of
h. Two approaches exist, depending on whether the
symbols are considered deterministic or Gaussian
unknowns.

3.1. Methods for deterministic symbols

3.1.1. Subchannel response matching (SRM)
The SRM approach was introduced in [2] and

correponds also to Liu and Xu's deterministic
approach [15}17]. The SRM approach was also
presented in [11] and used as initialization method
in Yingbo Hua's algorithm [13]. In order to ex-
plain the SRM technique, consider "rst the case of
two channels: m"2. One can observe that for
noise-free signals, we have H

2
(z)y

1
(k)!H

1
(z)

y
2
(k)"0, which can be written in matrix form as

[H
2
(z)!H

1
(z)]y(k)"HMs(z)y(k)"HMs(z)H(z)a(k)

"0 where, e.g. Hs(z)"HH(1/zH). Stacking these
zeros into a vector for the signal My(k)N

k/0,2,M~1
,

we get an expression of the form Yh"0 for some
structured matrix Y. Under the constraint
DDhDD

2
"1, we "nd h"<

.*/
(YHY) where <

.*/
(A)

denotes the eigenvector corresponding to the min-
imum eigenvalue of A. For m'2, blocking
equalizers HMs(z) can be constructed by considering
the (sub)channels in pairs. The choice of HMs(z) is
far from unique. To begin with, the number of pairs
to be considered, which is the number of rows
in HMs(z), is not unique. The minimum number
is m!1 whereas the maximum number
is m(m!1)/2, with corresponding HM

.*/
(z) and

HM
.!9

(z). The choice of HM
.*/

(z) is not unique. The
convolution HM(z)y(k) involving My(k)N

k/02M~1
can be written in matrix form as T(hM)Y. Since for
the noise-free signal we get T(hM)Y"0, the SRM
method minimizes the criterion DDT(hM)YDD2

2
. By the

law of large numbers, asymptotically this criterion
can be replaced by its expected value, which can be
rewritten in the frequency domain as

J"

1

2pj Q trMHK MsSyyHK MN
dz

z

"

p2
a

2pj Q HsHK MHK MsH
dz

z
#

p2
v

2pj Q trMHK MsHK MN
dz

z
.

(4)

We shall call HM
"!-

(z) balanced if trMHMs(z)HM(z)N"
aHs(z)H(z) for some real scalar a. In that case

min
@@hK @@/1

J"ap2
v
DDhK DD2#

p2
a

2pj
min

@@hK @@/1
QHsHK MHK MsH

dz

z

(5)

which leads to the correct value hK "h (and hence
an unbiased estimate!) apart from a scale factor
(and assuming the channel order is chosen cor-
rectly). Here the motivation for chosing a balanced
HM(z) becomes apparent. The minimum number of
rows in HMs

"!-
(z) is m in which case a"2. The choice

for such a HM
"!-,.*/

(z) is not unique. Note that
HM

.!9
(z) is balanced with a"m!1. The choice of

the noise subspace parameterization HMs(z) as
HMs

.*/
(z) corresponds to Xu's deterministic least-

squares channel identi"cation approach [17]. In
the literature, the SRM method is always proposed
using HM

.!9
(z). We get for instance

HMs
.*/

(z)"C
!H

2
(z) H

1
(z) 2 0

F F } F

!H
m
(z) 0 2 H

1
(z)D , (6)

HMs
"!-,.*/

(z)

"C
!H

2
(z) H

1
(z) 0 2 0

0 !H
3
(z) H

2
(z) 2 F

F } } 0

H
m
(z) 0 2 0 !H

1
(z)D .

(7)

Continuing with this HMs
"!-

(z), its ith row can be
written as

HMs
"!-,i

(z)"HT(z)P
i
, P

i`1
"CP

i
CH,P

1

"C
0 1 0 2

!1 0 2

0 F }

F D , C"C
0 2 0 1

1 0 2 0

0 } F

F 0 1 0D .
(8)
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For this HMs
"!-

(z), the SRM criterion DDT(hM)YDD2
2

can
be written as the minimization w.r.t. h of

trMT(hM)YYHTH(hM)N

"trGhMA
M~1
+

k/N~1

Y
N
(k)YH

N
(k)BhMHH

"(M!N#1)trMhMRK
YY

hMHN, (9)

where the ith row of hM is hM
i
"hTS

i
,S

i
"I

N
?P

i
and ? denotes Kronecker product. Hence the
SRM criterion in (9) becomes

min
h

hHB h, where B"

m
+
i/1

S
i
RK H

YY
SH

i
. (10)

It is expected that the use of a HMs
"!-

(z) with more
rows leads to improved performance.

If the exact R
YY

is used, then the noise contribu-
tion to criterion (10) is 2p2

v
DDhDD2. Hence the minimiz-

ation of (10) subject to DDhDD"1 leads to the
consistent SRM estimate h"<

.*/
(B), at least if the

order is chosen correctly. Since p2
v
"j

.*/
(R

YY
), the

minimum eigenvalue of R
YY

, the noise contribu-
tion can be eliminated by replacing RK

YY
by

RK
YY

!j
.*/

(RK
YY

)I or, even better, by replacing B by
A"B!j

.*/
(B)I (the former choice does not make

B singular with a "nite amount of data). With this
modi"cation, the criterion in (10) becomes (asymp-
totically) insensitive to the noise contribution and
any normalization of h will lead to a consistent
estimate.

3.1.2. Signal subspace xtting (SSF)
The structure of the covariance matrix of the

received signal Y is

R
YY

"EYYH"T(H)R
AA

TH(H)#p2
v
I
mM

, (11)

where R
AA

is the symbol covariance matrix
EAAH'0. The covariance matrix R

YY
can be de-

composed into signal and noise subspace contribu-
tions:

R
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S
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N
K

N
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N
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In the eigen decomposition of the covariance
matrix R

YY
given in (12), the real non-nega-

tive eigenvalues j
i

are ordered in descending

order, j
i
'p2

v
for i"1,2,M#N!1; K

N
"

p2
v
I
(m~1)M~N`1

and the sets of the eigenvectors
V

S
and V

N
are orthonormal: VH

S
V

N
"0.

Since RangeMT(H)N"RangeMV
S
N, both T(H)

and V
S

should span the signal subspace, so we can
introduce the following signal subspace "tting
problem:

min
h,T

DDT(H)!V
S
¹DD

F
, (13)

where DDXDD2
F
"trMXHXN. The optimal transforma-

tion matrix ¹ can be found to be

¹"VH
S
T(H). (14)

Using (14), we obtain [26]

min
@@h@@2/1

trMTH(H)PMV
S
T(H)N" min

@@h@@2/1

hHA h, (15)

where PM
X
"I!P

X
"I!X(XHX)`XH and ` de-

notes Moore}Penrose pseudo-inverse. A can be
determined from PMV

S
"PV

N
. The solution is again

h"<
.*/

(A).

3.1.3. Noise subspace xtting (NSF)
Similarly, since VH

N
T(H)"0, V

N
spans the

noise subspace and TH(hM) spans most of it. So we
can introduce the following noise subspace "tting
problem:

min
h,T

DDTH(hM)!V
N
¹DD

F
. (16)

After optimization w.r.t. ¹, we obtain

min
@@h@@2/1

trMT(hM)PMV
N
TH(hM)N

"trMhMBhMHN"hHA h, (17)

where B can be determined from PMV
N
"PV

S
and

A"+m
i/1

S
i
BHSH

i
for HMs

"!-
(z) de"ned in (7).

3.1.4. Deterministic ML (DML)
Introduced in [22] for the case of m"2 channels

and extended in [26] to an arbitrary m, the DML
method was adapted to the multi-user case in
[24,25].

The considered likelihood is conditional on the
transmitted symbols and the channel parameters,
which are hence treated as deterministic unknowns.
The stochastic part only comes from the additive
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noise. With the Gaussian white noise assumption,
maximizing the likelihood reduces to

min
A,h

DDY!T(H)ADD2. (18)

This minimization problem is separable: for a "xed
h, the optimal transmitted symbol estimates are

A"(TH(H)T(H))~1TH(H)Y, (19)

eliminating A in terms of h via (19) from (18), we get
minh YHPMT(H)

Y, which means that the DML cri-
terion boils down to adjusting the noise subspace
via H. Now, we have approximately PMT(H)

+PTH(hM)
where the approximation error disappears asymp-
totically. Hence, we get

min
@@h@@/1

YHPTH(hM)
Y

"YHTH(hM)[T(hM)TH(hM)]`T(hM)Y

"hH(YH[T(hM)TH(hM)]`Y)h"hHAh, (20)

where T(hM)Y"Yh for some Y. The choice of the
noise subspace parameterization HMs(z) using all
pairs of channels leads to Yingbo Hua's ML
method [12,13]. The optimization problem in (20)
is non-linear. It can easily be solved iteratively in
such a way that in each iteration, a quadratic prob-
lem appears. The iterative quadratic (IQ) strategy
considers the quadratic `numeratora of the cri-
terion, and for hM in the `denominatora the value
from the previous iteration is used. If the initializa-
tion is consistent, then only one iteration leads to
an ABC estimate. Note that interpreting the SRM
method as a least-squares (LS) problem, the DML
criterion is the corresponding optimally weighted
LS problem: the noise in T(hM)Y is T(hM)V with
covariance matrix p2

v
T(hM)TH(hM). Asymptotically,

any choice for HM(z) leads to the same performance
(evry HMs(z) contains a HMs

.*/
(z)) since

PHM(z)
"PHM

.*/ (z)
"PMH(z)

. (21)

3.1.5. Determination of H(z) from PM (z)"hMH(0)P(z)
This technique was proposed in [26] and uses

a prediction-based noise subspace parameteriz-
ation (PM (z)) which is not linear in terms of the

channel impulse response). To begin with, consider
"rst the linear prediction approach introduced in
[22], let P(z)"+L

i/0
p(i) z~i with p(0)"I

m
be the

MMSE multivariate prediction error "lter of order
¸ for the noise-free received signal y(k). If
¸*¸

M
"v(N!1)/(m!1)w , then it can be shown

[26] that (with probability 1, for a completely ran-
dom FIR channel impulse response)

P(z)H(z)"h(0). (22)

From (22) it is clear that H(z) and P(z), h(0) are
equivalent parameterizations. Consider the full
rank m](m!1) matrix hM(0) de"ned such that
hMH(0)h(0)"0, then (22) implies that PM (z)"
hMH(0)P(z) is a (m!1)]m polynomial that satis"es

PM (z)H(z)"0. (23)

PM (z) or equivalently P(z) and h(0) can be estimated
using linear prediction or IQDML. If PM (z) is esti-
mated in a way that is robust to order overestima-
tion, then the order of H(z) is known and H(z) can
be estimated straightforwardly from PM (z). This can
be done using the following criterion:

min
h

1

2pjQHs(z)PM s(z)PM (z)H(z)
dz

z
. (24)

Since H(z)"Q(z)h"[z~(N~1)I
m

z~(N~2)I
m

2

I
m
] h, the minimization problem given in (24) can

be written as

min
h

1

2pj QhHQs(z)PM s(z)PM (z)Q(z)h
dz

z

"min
h

hHA
1

2pj QQs(z)PM s(z)PM (z)Q(z)
dz

z Bh (25)

which is again of the form minh hHAh.

3.2. Methods for the Gaussian symbol model

Whereas with deterministic symbols the channel
can only be determined blindly up to an arbitrary
complex scale factor, in the Gaussian symbols
case also the norm of the channel gets estimated.
One main approach in the Gaussian case is
ML (GML). In this case Y&N(0,R

YY
) with
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R
YY

"p2
a
T(H)TH(H)#p2

v
I. The negative log like-

lihood to be minimized is

L(h)"c5#ln det R
YY

#YHR~1
YY

Y. (26)

Standard optimization techniques such as the
Gauss}Newton or scoring methods can be applied.
Another approach for the Gaussian symbol model
is covariance matching [8].

4. TX/RX 5lter knowledge

The exploitation of TX/RX "lter knowledge re-
quires, in principle, that the sampling rate satisfy
the Nyquist criterion and hence oversampling w.r.t.
the symbol rate be used. Assume at "rst the case of
a single receiver antenna. Consider now the overall
impulse response h(t)"c(t) * g(t) being the convo-
lution of two systems: g(t) is either the TX "lter
pulse shape or its convolution with the RX "lter,
and c(t) is either the propagation channel convol-
ved with the RX "lter or just the propagation
channel resp. In the frequency domain we get
H( f )"C( f ) G( f ). Consider now that g(t) is band-
limited. Then G( f )"G( f ) F( f ) where F( f ) is an
ideal lowpass "lter (unit height rectangle) with
bandwidth greater or equal to that of G( f ). Hence
H( f )"G( f )(F( f )C( f )) where both factors G( f ) and
F( f )C( f ) are now band-limited. With (su$cient)
oversampling (essentially satisfying the Nyquist cri-
terion for G( f )), the sampled version of h(t) can be
considered as the convolution of the sampled ver-
sion of g(t) with a certain discrete-time representa-
tion for c(t), corresponding to a sampled version of
F( f )C( f ). Note that if the sampling rate exceeds the
bandwidth of G( f ), then F( f ) is not unique since its
bandwidth can be chosen arbitrarily in between the
bandwidth of G( f ) and the sampling frequency. So
also the discrete-time representation for c(t) is then
non-unique.

Consider now a certain oversampling factor
m and let the oversampled transfer function
H(z)"C(z)G(z) of the overall channel be the cas-
cade of the actual channel C(z) and the combined
TX/RX "lter G(z). Each of these transfer functions
can be decomposed into its polyphase components
at the symbol rate, e.g. H(z)"+m~1

i/0
z~iH

i
(zm).

These components can also be represented in vec-
tor form, G(z)"[G

1
(z)2G

m
(z)]T"+K~1

k/0
u(k)z~k

and C(z)"[C
1
(z)2C

m
(z)]T"+L~1

k/0
c(k)z~k with

K#¸!1"N. The relations between the poly-
phase components can be obtained from

m~1
+
i/0

z~iH
i
(zm)

"A
m~1
+
k/0

z~kG
k
(zm)BA

m~1
+
l/0

z~lC
l
(zm)B. (27)

In particular, for m"2 we get

C
H

0
(z)

H
1
(z)D"C

G
0
(z) z~1G

1
(z)

G
1
(z) G

0
(z) DC

C
0
(z)

C
1
(z)D

"C
C

0
(z) z~1C

1
(z)

C
1
(z) C

0
(z) DC

G
0
(z)

G
1
(z)D (28)

or H(z)"G
M
(z)C(z)"C

M
(z)G(z). In the time domain,

we get

T
M

(H)"T
M

(G
M
)T

M`K~1
(C), (29)

where C is similar to H and

G
M
"[u

6
(K!1)2u

6
(0)], u

6
(k)"C

g
0
(k) g

1
(k!1)

g
1
(k) g

0
(k) D

(30)

and we assume g
1
(K!1)"0. The relation be-

tween h and c is h"TT
L
(G
M
5)c where t denotes

transposition of the blocks: G
M
5"[u

6
T(K!1)2

u

6
T(0)].
In CDMA applications, large excess bandwidth

exists and hence large oversampling factors can be
used. In TDMA applications, only a small excess
bandwidth is available and the oversampling factor
will usually be limited to m"2. However, more
channels can be obtained by, e.g. exploiting mul-
tiple antenna signals (see [1]). In that case we
get H

i
(z)"G

M i
(z)C

i
(z) for every antenna signal

i"1,2, q (where G
M i
(z) may be independent of

i) and H(z)"[HT
1
(z)2HT

q
(z)]T"blockdiagMG

M 1
(z)2

G
M q

(z)NC(z) where now H(z) and C(z) regroup mq
channels.
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5. Blind methods WTXFK

Prior TX/RX "lter knowledge gets exploited
by expressing h"TT

L
(G
M
5)c and searching for c.

Since all "ve deterministic methods discussed
above are of the form min

@@h@@/1
hHAh, we get

minc cHTH(G
M
5)ATT(G

M
5)c. In all methods except

SRM, we can use DDcDD"1 as non-triviality con-
straint. For SRM however, the noise contribution
has to be taken into account properly in order to
avoid bias. One solution as proposed indepen-
dently in [27] is to translate DDhDD2"1 into the
constraint cHTH(G

M
5)TT(G

M
5)c"1 which leads to

a generalized eigenvalue problem that can alterna-
tively be transformed into a regular eigenvalue
problem. This solution consists again in constrain-
ing the "lter in such a way that it has no in#uence
on the noise component. A second solution consists
of (asymptotically) removing the noise contribution
altogether. For a balanced HM, the contribution of
the noise to EA is a multiple of identity, whereas the
contribution of the signal is singular. Hence, the
noise contribution can be removed by consider-
ing min

@@c@@/1
cHTH(G

M
5)(A!j

.*/
(A) I)TT(G

M
5)c. For

GML and covariance matching, one needs to rep-
arameterize h in terms of c.

6. Identi5ability issues

Based on [4], the identi"ability conditions when
considering the overall channel were established:
the subchannels must not share common zeros
[29,30]. An interpretation of this identi"ability
condition is the following: if the subchannels have
zeros in common, these terms can be factorized and
the representation of the overall channel will in-
troduce a monochannel (corresponding to the
factorized terms) followed by a multichannel rep-
resentation. For the deterministic symbol model,
the monochannel cannot be separated from the
input sequence. For the Gaussian symbol model,
the monochannel aspect makes SOS insu$cient to
identify the channel (the factorized terms are not
minimum phase in general).

Here, we discuss the identi"ability issues when
the estimation exploits the TX "lter knowledge. It

is clear that if either the unknown part or the
known part of the channel is unidenti"able, or the
product of the two corresponding transfer func-
tions gives common zeros, the overall channel is
unidenti"able for methods without prior know-
ledge. Taking into acount the prior knowledge, the
blind estimation method can identify the channel
even when the transmission "lters are unidenti"-
able and the propagation channel is identi"able. To
explain this, consider the case of two channels
(m"2). The subchannels H

1
(z) and H

2
(z) satisfy

the identi"ability conditions means that there exist
two polynomials F

1
(z) and F

2
(z) such that

F
1
(z)H

1
(z)#F

2
(z)H

2
(z)"1. (31)

Replacing the expressions of H
1
(z) and H

2
(z) given

by (28) in (31), gives

F
0
(z)(G

0
(z)C

0
(z)#z~1G

1
(z)C

1
(z))

#F
1
(z)(G

1
(z)C

0
(z)#G

0
(z)C

1
(z))"1. (32)

This can be rewritten as follows:

C
0
(z)(F

0
(z)G

0
(z)#F

1
(z)G

1
(z))

#C
1
(z)(z~1F

0
(z)G

1
(z)#F

1
(z)G

0
(z))"1. (33)

Equality (33) implies that there exist two poly-
nomials Q

1
(z)"F

0
(z)G

0
(z)#F

1
(z)G

1
(z) and

Q
2
(z)"z~1F

0
(z)G

1
(z)#F

1
(z)G

0
(z) such that

Q
1
(z)C

1
(z)#Q

2
(z)C

2
(z)"1 which is the identi"a-

bility condition for the propagation channel (C
1
(z)

and C
2
(z) are coprime). Observe that no conditions

are required on G
1
(z) and G

2
(z) in (33), which

means that even in the case where G(z) is not
identi"able, we can identify the channel.

7. Cramer}Rao bounds WTXFK

7.1. Unconstrained deterministic Fisher information
matrix (FIM)

In [26], the deterministic FIM for the estimation
of h from (2) was derived:

J(h)"p~2
v

AH
M,N

PMT(H)
A

M,N
, (34)
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where A
M,N

"A
M,N

?I
m

is such that
A

M,N
h"T

M
(H)A. The matrix A

M,N
is a Hankel

matrix de"ned as

A
M,N

"C
a(!N#1) a(!N#2) 2 a(0)

a(!N#2) 2 2 F

F 2 2 F

a(M!N) 2 2 a(M!1)D .
(35)

7.2. Unconstrained Gaussian FIM

For the Gaussian case, things are a bit more
intricate. Consider the estimation problem
for h. We have Y&N(T

M
(H)A,R

YY
), R

YY
"

p2
a
T

M
(H)TH

M
(H)#p2

v
I. The corresponding prob-

ability density function is

f (Y/h)"
1

pmMdetR
YY

e~(Y~T
M (H)A)HR~1

YY (Y~T
M (H)A).

(36)

Let the Fisher information matrices (FIM) Jrt be
de"ned as

Jrt"EY@hA
L ln f (Y/h)

LuH BA
L ln f (Y/h)

LtH B
H

(37)

and we will consider Jhh and JhhH . In the determinis-
tic case, JhhH"0. In that case, Jhh can be considered
as a complex FIM, and ChI t

*Jh̀h , the complex
CRB. If JhhHO0 as in the Gaussian case, Jh̀h

is also a bound on ChI , but not as tight as the
actual CRB which we obtain by considering
h
R
"[Re(h)T Im(h)T]T, the associated real para-

meters. We get

J
R
(h

R
)"2C

Re(Jhh) !Im(Jhh)

Im(Jhh) Re(Jhh) D
#2C

Re(JhhH ) !Im(JhhH )

Im(JhhH ) Re(JhhH ) D (38)

and

Jh
i
h
j
"trGR~1

YY A
LR

YY
LhH

i
BR~1

YY A
LR

YY
LhH

j
B

H

H, (39)

Jh
i
hH
j
"trGR~1

YY A
LR

YY
LhH

i
BR~1

YY A
LR

YY
LhH

j
BH, (40)

LR
YY

LhH
i

"p2
a
T

M
(H)TH

MA
LH
Lh

i
B. (41)

7.3. Cramer}Rao bounds WTXFK

The unconstrained FIM or CRB can easily be
transformed into the constrained CRB WTXFK.
Since h"TT

L
(G
M
5)c, the h WTXFK satis"es the con-

straint PMTT
L (GM

5)
h"0. This leads to the CRB for the

unbiased estimation error hI "h!hK WTXFK
[1,28,6]

ChI "EhI hI H*[PTT
L (GM

5)
J(h)PTT

L (GM
5)
]`, (42)

where superscript # denotes Moore}Penrose
pseudo-inverse. The fact that the pseudo-inverse is
used means that the component(s) of h in the null
space of PTT

L (GM
5)
J(h)PTT

L (GM
5)

are known. This means
"rst of all that the components of h outside of the
column space of TT

L
(G
M
5) are known to be zero (due

to the constraint). Note, furthermore, that TT
L
(G
M
5)

may not be full column rank (if the sampling rate is
higher than the Nyquist rate). Also, another singu-
larity appears which is inherent in blind channel
estimation. For the deterministic method, the chan-
nel can only be estimated up to a scale factor. We
can adjust the scale factor by taking as "nal chan-
nel estimate hKK "ahK where a is obtained from
mina DDh!ahK DD.

For the Gaussian symbol model, we need to
work with the associated real parameters, which
can be represented in the following vector form
from h"TT

L
(G
M
5)c,

h
R
"C

Re(h)

Im(h)D
"C

Re(TT
L
(G
M
5)) !Im(TT

L
(G
M
5))

Im(TT
L
(G
M
5)) Re(TT

L
(G
M
5)) Dc

R
"G

R
c
R
.

(43)

The Gaussian CRB WTXFK is then the same as in
(42) but with h and TT

L
(G
M
5) replaced by h

R
and G

R
.

The estimation indeterminacy in the Gaussian case
corresponds to a phase factor, hKK "e+(hK , which
can be adjusted by requiring that hHhKK be real and
positive.
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Fig. 2. Performance of SRM, LD SRM and SRM WTXFK. Fig. 3. The overall channel.

Apart from a proper interpretation for the
pseudo-inverse, these results for the Gaussian
case were derived independently in [27], where
some examples show that the Gaussian assumption
improves the estimation quality considerably in
certain cases.

8. Simulation results

In Fig. 2, the performance of the estimation of
h for SRM and SRM WTXFK are compared to the
corresponding deterministic CRB and CRB
WTXFK. The data frame length is M"162, over-
sampling factor m"2 and the symbols are i.i.d.
BPSK. The overall channel, presented in Fig. 3, is
the convolution of a raised cosine pulse limited
to 13¹ with rollo! factor a"0.9, and a two-ray
multipath channel c(t)"d(t)!0.82 d(t!¹) (with-
out exploitation of the TX "lter, the overall channel
is unidenti"able in this case [30]). The performance
measure is the normalized MSE (NMSE) which is
averaged over 100 Monte-Carlo runs:

NMSE"

1

100

100
+
i/1

hHPMhK (i)h/DDhDD2,

where hHPMhK h"min
a

DDahK !hDD2. (44)

The signal-to-noise ratio (SNR) is de"ned as:

SNR"

p2
a
DDhDD2
p2
v

. (45)

The deterministic CRBs are normalized and com-
puted as trMCRBhN/DDhDD2. Our simulation results
show that in terms of CRB, the approach WTXFK
outperforms the one without this prior informa-
tion. The di!erence between SRM and SRM
WTXFK is even more spectacular: SRM on the
complete channel su!ers from channel zeros that
are almost in common, whereas SRM WTXFK
performs well. In order to illustrate that the exploi-
tation of transmission "lter knowledge does not
simply result in a lower dimensional (LD) problem,
we consider the performance of the SRM method
weighted with the ratio of the number of estimated
parameters: ¸/N. The obtained performance (curve
corresponding to LD SRM) does not reach the
performance of SRM WTXFK. Indeed, apart from
the reduction of the number of parameters to be
estimated, exploiting the transmission "lter know-
ledge improves considerably the conditioning of
the matrix in the optimization criterion. These two
elements act simultaneously to improve the quality
of the channel estimates. The same simulations
(SSF, SSF WTXFK and LD SSF) were performed
for the SSF technique, the results illustrated in
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Fig. 4. Performance of SSF, LD SSF and SSF WTXFK.

Fig. 5. Comparison of SRM WTXFK with DDcDD"1 and DDhDD"1.

Fig. 6. Comparison of SRM WTXFK and IQML WTXFK.

Fig. 4 lead to analogous conclusions as those noted
for the SRM method.

In Fig. 5, we used the same data and we compare
the two unbiased forms of SRM WTXFK: the one
using DDhDD"1 and the one using DDcDD"1 but with
A!j

.*/
(A)I: it is clear that the second approach

outperforms the "rst one (by a factor of more than
5 at SNR"13 dB).

In the simulation illustrated in Fig. 6, the idea is
to study the behavior of the SRM WTXFK and
IQML WTXFK (one iteration initialized with

SRM WTXFK) methods versus the conditioning of
the propagation channel c. We adopt the same
pulse-shaping "lter as before and we consider
a propagation channel de"ned as

C"C
1 1

1 aD. (46)

When a"1, the two subchannels are parallel (zero
in common), and when a"!1 the two subchan-
nels are orthogonal (channel well conditioned).
Simulation results, at SNR"33 dB, and for values
of a ranging from !1 to 0.8, show that on the
average IQML does not perform drastically better
than SRM (the best improvement is about a factor
of two, obtained for a"0.4); but we have noted
that for some realizations IQML outperforms
SRM signi"cantly.

9. Conclusions

Second-order blind channel estimation methods
can give signi"cantly improved performance by ex-
ploiting the knowledge of the TX and/or the RX
"lters: this introduces the concept of blind channel
estimation with side information. A certain class of
these blind methods: methods that are directly
parameterized by the channel, can easily be
extended to handle this side information. The
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extended methods outperform the original ones on
two levels (our simulations were performed for
SRM and SSF techniques but the conclusions hold
for all the previously described blind multichannel
estimation methods). The "rst one concerns the
performance bounds (CRBs): the CRB correspond-
ing to methods WTXFK can be orders of magni-
tude lower than the CRB corresponding to
methods without the side information. The second
level can be seen in terms of the used method itself:
methods WTXFK give NMSE lower than the clas-
sical methods, and close to the CRB. An important
issue that characterizes methods WTXFK is the
capability to identify `di$culta channels (channels
having almost common zeros). Notice that, apart
from the improvement of the conditioning of the
matrix of the criterion to be optimized, methods
WTXFK reduce the number of parameters to be
estimated and consequently often the computa-
tional complexity of the considered method.
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