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Semantics-Empowered Communication
for Networked Intelligent Systems

Marios Kountouris and Nikolaos Pappas

Abstract—Wireless connectivity has traditionally been re-
garded as an opaque data pipe carrying messages, whose
context-dependent meaning and effectiveness have been ig-
nored. Nevertheless, in emerging cyber-physical and au-
tonomous networked systems, acquiring, processing, and
sending excessive amounts of distributed real-time data, which
ends up being stale or useless to the end user, will cause
communication bottlenecks, increased latency, and safety
issues. We envision a communication paradigm shift, which
makes the Semantics of Information, i.e., the significance and
usefulness of messages, the foundation of the communication
process. This entails a goal-oriented unification of information
generation, transmission, and reconstruction, by taking into
account process dynamics, signal sparsity, data correlation,
and semantic information attributes. We apply this struc-
turally new, synergetic approach to a communication scenario
where the destination is tasked with real-time source recon-
struction for the purpose of remote actuation. Capitalizing on
semantics-empowered sampling and communication policies,
we show significant reduction in both reconstruction error
and cost of actuation error, as well as in the number of
uninformative samples generated.

I. INTRODUCTION

Today’s communication technology offers a cornucopia
of wireless connectivity solutions and is the foundation
of our hyperconnected society and automated economy.
The interconnection of myriad autonomous smart devices
(robots, vehicles, drones, etc.) empowered with advanced
sensing, computing, and learning capabilities is forecast
to generate a staggering amount of data (on the order of
zettabytes). For example, data gathered by an autonomous
car starts from 750 MB/s. A swarm of mobile robots may
involve transmission of 1 GB aggregated data per second
for target tracking or collaborative sensing.

In this expanding ecosystem, wireless networks are
evolving to cater to emerging cyber-physical and mission-
critical interactive systems, such as swarm robotics, self-
driving cars, and smart Internet of Things (IoT). These sys-
tems call for reliable real-time communication, autonomous
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interactions, and automated decision making. Their suc-
cessful operation entails the processing and exchange of
massive volumes of multimodal, often high-dimensional,
distributed data in an efficient, effective, and timely manner.
Simply generating and communicating data traffic, which
often ends up being outdated or irrelevant to the end user’s
application, will cause severe communication bottlenecks.
These bottlenecks could inevitably jeopardize the proper
functioning of wireless networks, leading to unnecessary
network congestion, wasteful resource utilization, and ex-
cessive energy consumption.

A. The End of the Current Communication Paradigm?

Virtually all of today’s wireless systems are built upon
fundamental principles of reliable communications over
noisy channels, first developed in the locus classicus of
information theory [1]. Despite various endeavors [2]–
[6], most existing communication paradigms are content-
agnostic, in particular at the lower protocol layers where
the significance and the effectiveness of transmitted mes-
sages have been set aside. The main objective has been
to optimize conventional key performance indicators, such
as throughput, delay, and packet loss; quality of service
is usually provided through network over-provisioning and
resource reservation control.

The dichotomy of information content and significance
was a conceptual advance, which has been suitable for clas-
sical data communication targeting error-free high-speed
data transmission. In sharp contrast, this approach comes
short of meaningfully scaling and of supporting the needs of
emerging networked intelligent systems and machine-type
communication. Consider, for example, a large number of
autonomous mobile robots communicating with one another
to reach timely consensus in the negotiation for collision
avoidance. Achieving this goal is neither simply a question
of understanding the throughput-reliability-delay trade-off,
nor of delivering streams of “random” bits from one robot to
another while maximizing throughput or minimizing delay.
For safe and successful operation, it is crucial to factor into
the communication process the urgency and the value of
messages provided by each robot. That way, transmissions
are prioritized efficiently, and the application demands are
met with greater accuracy.
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Recent work on status update systems (e.g., environ-
mental monitoring, news reports, web crawlers) and net-
worked control systems has started addressing data pri-
oritization issues. Therein, first steps towards importance-
aware communication have harnessed the concepts of age of
information (AoI) [7], value of information (VoI) [8]–[11],
and quality of information [12]. Several application-driven
technologies have recently emerged for the upper layer
network management and orchestration, including named-
data networking [13], semantic-plane protocols [14], zero-
touch networks, as well as software-defined and intent-
based networking. Most of these networking paradigms rely
on high-level abstractions and leverage machine learning
to configure and continuously maintain the network in a
desired state according to business intents.

B. Towards Goal-oriented Semantic Communication

Looking beyond the aforementioned confined view of
wireless connectivity, we place ourselves in a setting where
communication is not an end in itself but a means to
achieving specific goals. Our vision entails a communica-
tion paradigm shift to enable the generation and the timely
provisioning of the appropriate information to the right
processing point. This can be realized, in a nutshell, by
making the Semantics of Information the foundation of the
entire communication process. Differently from its common
use in linguistics, logic, or computer science (e.g., Semantic
Web, databases, ontologies, etc.), semantics is employed
here with its etymological meaning, that of significance.
Semantics here is a measure of the usefulness of messages
with respect to the goal of data exchange. Concretely, we
propose a semantics-empowered communication system,
whose foundations entail a goal-oriented unification of
data generation, information transmission, and usage. Our
approach capitalizes on the largely untapped innate and
contextual attributes (semantics) of information. That way,
the entire communication process can be tailored to meet
the networked applications’ requirements, thus enabling
to achieve specific goals. Considering a simple actuation-
oriented real-time reconstruction scenario, we show that this
paradigm shift has the potential to entirely transforming sev-
eral prevailing design principles. We showcase its potential
to significantly reduce the number of uninformative data
samples, the real-time reconstruction error, and the cost of
actuation error.

II. SEMANTICS-EMPOWERED COMMUNICATION

A. Defining the Semantics of Information

A first natural question is how to define and measure
the information semantics. We advocate for assessing and
extracting the semantic value of data at three different
granularity levels.

1) Microscopic scale: At the source level, semantics
refers to the relative importance of different, often equiprob-
able, events, outcomes, or observations from a stochastic
source of information or a process. For instance, these pri-
mary information sources could represent sensor measure-
ment data, patterns of a physical phenomenon (e.g., vehi-
cle’s trajectory), or the state of a dynamical system. Imagine
two equally rare events, occurring with very low probability,
one of which carries a major safety risk while the other
is just a peculiarity. Although they provide the same high
amount of information, the information conveyed by the
first event is evidently of higher significance. This disparity
in importance can be incorporated into key information
measures (e.g., entropy rate, mutual information) and sta-
tistical similarity metrics (e.g., f -divergences) using weight
functions. These functions may be context-dependent and
could incorporate various temporal variations and spa-
tial patterns in information utility. Semantics can also be
captured using Rényi’s information measures [15], which
are instrumental in assessing compressability, sparsity, and
trackability of stochastic processes, signal complexity, as
well as information gain efficiency in decision making
(e.g., robotic exploration, importance sampling, multi-goal
reinforcement learning).

2) Mesoscopic scale: At the link level, semantics of
information is a composite nonlinear multivariate function
of the vector of information attributes. These qualitative
attributes of information can be either innate (objective) or
contextual (subjective). The former are attributes inherent
to information regardless of its use; they depend on the
information generated by a source and on its transforma-
tions (e.g., compression). Representative innate attributes
include freshness or AoI (the time elapsed since the newest
successfully received sample was generated) and precision
(a measure of the degree of closeness of measured values to
each other and of the reproducibility of the measurement).
The latter are attributes that depend on the particular context
or goal for which information is being used. The most
relevant ones are timeliness, i.e., the time instant by which
information has to be available for use at a point of compu-
tation or decision making, and completeness, an information
relevance attribute that measures the difference between the
information amount and the total information of the real
world. For example, an image delivered by the network for
remote monitoring has a certain freshness, field of view, and
resolution (precision). Mission-critical applications impose
stringent requirements on timeliness and availability of data.

A widely used attribute is accuracy, which describes the
degree of correctness and can be perceived as both intrinsic
and contextual. It is related to distortion, which is the
distance between the measured or estimated value or state
and the true value or state. As stated above, information
semantics can be formally defined as a composite function,
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where a context-dependent, cost-aware function is applied
to a multidimensional function of information attributes.
In a simple example, semantics can be a weighted sum
of accuracy and timeliness, where timeliness (contextual)
could in turn be an exponentially decreasing function of
information freshness (innate).

Information value dualism: It is important to highlight
that information may have a value per se, in addition to
its “utilitarian”, context-dependent value. For instance, the
precision of a sensor measurement has an intrinsic value
related to the quality of how accurately it represents a
phenomenon, whereas this same measurement has different
value depending on its context of use and the application
requirements (e.g., whether it monitors temperature in a
smart home or in a nuclear plant). In Section III, we
introduce the cost of actuation error, which may cast the
reconstruction error to the context of the application.

3) Macroscopic scale: At the system level, semantics of
information is related to the end-to-end, effective distortion
and timing mismatch between information generated at
a point or region in spacetime and its reconstructed or
estimated version at another point in spacetime, factoring in
all sources of variability and latency (sensing latency and
accuracy, data gathering, transmission latency, decoding,
processing, etc.). The spacetime coordinates represent an
event. For example, the original information may represent
the system state of the physical world at a certain area,
while its estimation may represent the perceived informa-
tion about this physical world at a remote unit (virtual
world, digital twin). In many real-time networked systems,
the objective is to provide the observer at the receiver
side with an instantaneous and accurate estimate of the
information generated at the transmitter side. This calls for
a relativistic information transfer theory that allows us to
synchronize the state evolution at both communication ends.
In other words, the evolution of reconstructed information is
aligned to the temporal dynamics of the original information
source, while at the same time the closeness between
the estimated and the true state is maximized. Roughly
speaking, that could minimize the time duration a remote
unit remains in an erroneous and/or time mismatched state,
via necessary transformations compensating for the system
timing dilation (to draw an analogy with relativistic clock
synchronization). This holds the promise to provide the
theoretical foundations for applications targeting real-time
experience, such as extended reality, tactile internet, and
holographic communication.

B. Semantics-empowered Communication Model

In this section, we present the envisioned semantic com-
munication model. In sharp contrast to most prevailing com-
munication systems that assume uncontrolled exogenous

traffic arrivals, the communication process in our proposed
architecture starts from information generation and data
acquisition. This radical departure capitalizes on smart
devices’ ability to control their traffic via semantic-aware
active sampling, in which samples are generated at will
or trigger-based. Furthermore, the entire communication
process extends up to goal-oriented signal reconstruction
and information usage and exploitation.
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Fig. 1: End-to-end goal-oriented semantic communication
model.

The general end-to-end semantic communication model
is depicted in Fig. 1 and mainly includes the following
building blocks.
• Multiple continuous or discrete time, possibly correlated,

signals (stochastic processes) and information sources,
which represent a time-varying real-world physical phe-
nomenon in space, are observed by spatially distributed
smart devices. In general, these devices may have het-
erogeneous sensing, computational and learning/inference
capabilities.

• Smart devices access a shared communication medium
to send data samples (e.g., observations, measurements,
updates) to one or multiple destinations (e.g., fusion
center, control unit). Samples are generated at will using
process-aware, non-uniform active sampling, according
to the source variability (e.g., changes, innovation rate,
autocorrelation, self-similarity), the communication char-
acteristics, and the semantics-aware applications’ require-
ments. That way, only the most valuable and informative
samples are generated and prioritized for transmission.

• Source samples could be preprocessed prior to being
encoded and scheduled for transmission over noisy and
delay-/error-prone communication channels. This oper-
ation may include quantization, compression, and fea-
ture extraction, to name a few. Scheduling is performed
according to semantic information value and priority,
extracted from data.

• The input signals (sources) are finally reconstructed at
the destinations from causally or non-causally received
samples to serve the application purpose, e.g., collision
avoidance, remote state estimation, control and actuation,
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situation awareness, and learning model training, to name
a few. In general, the reconstructed signals may alter the
recipients’ states and may initiate specific actions at the
receiving ends (actionable intelligence).

C. Joint sampling, communication, and reconstruction un-
der real-time constraints

A fundamental element of the proposed communication
paradigm is the cohesion of the entire process of infor-
mation generation, transmission, and reconstruction, which
has to be synergistically redesigned under the prism of
semantic information. Let us highlight this with an example
from networked robotics. A mobile robot generates and
sends updates of a continuous stochastic process (e.g., a
vehicle’s trajectory) to a remote tracking unit for real-time
causal reconstruction. Conventional approaches decouple
sampling from transmission, resulting in simple yet sub-
optimal solutions. Sampling is optimized based on signals
changes, therefore samples might become stale before being
successfully received. Transmission is optimized based on
quality of service metrics (e.g., delay, rate, timeliness)
ignoring the source variations; samples may be received
on time but contain no useful information or could even
be misleading about the system’s true state. This simple
example reveals the structural links between sampling and
communication, which are generally non-separable in se-
mantic communication. This means that one cannot just
take the best sampling policy, place it before the best
communication scheme, and expect to get the best out of
both. The key challenge is to develop a theory of optimal,
semantics-aware joint active sampling, transmission, and
reconstruction of multidimensional signals, in particular
under stringent timing constraints. This is of cardinal
importance for enabling timely decision making and for
efficiently meeting the requirements of real-time networked
applications.

III. AN ILLUSTRATIVE EXAMPLE

We consider an end-to-end communication system in
which a device monitors a two-state Markovian source. The
source initiates certain actions to a robotic object at the
transmitter side, and the goal is to have a digital twin of that
robotic object at the receiver side (Fig. 2). We consider a
slotted-time system in which the monitoring device samples
the process and transmits updates on the source’s status
to a remote actuator. Status update packets are transmitted
over a wireless erasure channel, in which realizations are
independent and identically distributed over time slots. We
consider two cases, one with low channel quality, in which
the probability of successful transmission is 0.4, and one
with high channel quality and success probability 0.9. Real-
time source reconstruction is performed at the end-point,

upon receipt of status updates, as a means to achieve the
real-time actuation goal of the digital twin.

Original source
Reconstructed

Tx Rx

Fig. 2: The setup for the illustrative example.

A. Sampling and Transmission Policies

We consider the following four policies for information
generation and transmission.

Uniform. In this source-agnostic policy, sampling is
performed periodically, independent of the evolution of the
source process. Thus, there could be several state transitions
(changes) between two collected samples, especially for
rapidly varying sources. If transmission fails, the most
recently acquired measurement (sample) is communicated.

Age-aware. In this policy, acquisition and transmission
of a new sample is triggered by the receiver once the
AoI reaches a given threshold. Note that this could also
model the case where the transmitter knows the AoI at
the receiver side (using feedback acknowledging, or not,
the receipt of sample). Since AoI can be viewed as a
concrete, quantitative surrogate for semantics, the age-aware
policy can be considered as a first, simple semantics-aware
scheme. Whenever a transmission fails, the receiver tries to
anticipate the update based on the statistics of the source
process. In that case, the receiver, given its current state,
tries to predict the next state based on the state transition
probabilities, which are assumed to be known (or can be
learned after a period of time).

Semantics-aware. This is a source change-triggered pol-
icy, i.e., sample generation is triggered at the transmitter
side whenever a change at the state of the source is observed
(since the previous sample). In a way, this can be seen as
a VoI-aware sampling policy. Consider that in a given time
slot, the source is in a certain state, in which it remains for
a certain period of time. At the end of that period, the state
changes; hence the transmitter generates and transmits a
new status update sample. Notice that this policy takes into
account only changes occurring and tracked at the source
side (transmitter).

E2E Semantics. In this end-to-end policy, sample acqui-
sition is triggered whenever there is discrepancy between
the states at the two communication ends. It extends the
semantics-aware policy so that the amount of change is
not solely measured at the source, but is tracked by the
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difference in state between the two ends. Let us clarify
what is meant by difference here. Assume that in a given
time slot, both source and destination are in the same state.
Then, a change in the state at the source occurs in the next
slot; hence, a new sample is generated and transmitted. In
the case of erasure, the reconstructed source will remain
in the previous state. In the next slot, the original source
returns back to the state that was two time slots before. This
means that no discrepancy exists now between the original
and the reconstructed source; thus, there is no need to send
an update.

B. Metrics and Performance Evaluation

Performing sampling and transmission at each slot could
evidently provide the best result for the application. How-
ever, this approach does not scale; an excessive number of
(not necessarily useful) samples is generated, which require
a tremendous increase in communication resources for their
transmission. Our semantic approach primarily aims at re-
ducing or even eliminating the generation of uninformative
sample updates, thus improving network resource usage.

Performance is assessed using the following metrics of
interest: real-time reconstruction error and cost of actuation
error. The reconstruction error measures the discrepancy in
real time of the values between the original and the recon-
structed source as time evolves. The cost of actuation error
captures the significance of the error at the actuation point
given the fact that some errors can be non-commutative and
may have higher impact than others. We consider here two
cases for the error occurrence: when the original source is
in the first state, but the reconstructed source believes that is
in the second state, the cost of actuation is low (e.g., set to
one), while in the opposite case, the cost is assumed to be
relatively high (e.g., equal to five). The latter corresponds
to a case where the penalty or the loss from taking a wrong
action upon a misconceived system’s state is high. When
the sources are in the same state, there is no actuation error.

We have two scenarios regarding the source variability,
the first being when the source is slowly changing, depicted
in Fig. 3, and the second being when the source is rapidly
changing, depicted in Fig. 4. We observe that in the case
of low source variability, the age-aware policy outperforms
the semantics-aware one when the communication channel
quality is poor. This is due to the fact that if a transmission
error occurs and the receiver fails to anticipate the right
state, it leads to high reconstruction error. This is the case
where a uniform sampling policy could perform better.
However, the performance from the perspective of cost
of actuation error is different; the semantics-aware policy
outperforms uniform sampling.

For slow varying sources, E2E semantics significantly
outperforms the semantics-aware scheme due to the fact that

the system manages to eliminate the discrepancy fast, even
in the case of a low-quality channel. On the other hand, for
rapidly varying sources, both semantics-empowered poli-
cies exhibit similar reconstruction error performance, while
E2E semantics provides the lowest actuation error without
wasting resources transmitting uninformative samples.

Uninformative samples reduction. We provide here the
percentage of uninformative samples each policy generates.
E2E semantics, by definition, does not create redundant
samples, since it accounts for the end-to-end discrepancy
among sources in both ends. Uniform and age-aware poli-
cies generate, in most cases, the highest percentage of
redundant (uninformative) samples. Despite being expected
for uniform sampling, the explanation for the age-aware
scheme is as follows. For the purpose of real-time remote
reconstruction, metrics based solely on information fresh-
ness are inefficient since baseline AoI does not take into ac-
count the source variability. The performance of semantics-
aware policy is relatively good, despite operating only at the
transmitter side. The percentage of uninformative samples is
less than 10% when the channel is good for a slow varying
source and less than 5% for a rapidly varying source.

In a nutshell, semantics-empowered policies basically
generate informative samples, that is, samples conveying
the most valuable information for the purpose of real-time
reconstruction and actuation, for which the timing when
this information has been acquired is crucial. Note that ad-
ditional gains, mainly in terms of savings in communication
load and in the number of samples generated, could be
achieved by learning the patterns of the source evolution,
for instance, via reinforcement learning.

IV. SEMANTICS-AWARE NETWORKING

In this section, we present key functionalities required for
reliable and timely communication of concisely represented
valuable information in semantics-aware networks. The
main operations span from local goal-oriented information
acquisition, representation, and semantic value inference, up
to data prioritization mechanisms and in-network processing
(e.g., fusion, compression). Specifically, they will allow to
be performed:
• Semantic filtering for avoiding unnecessary redundancy

during data acquisition and information encoding using
active sampling and censoring. That way, only useful and
relevant information is generated and transmitted. More-
over, semantics-aware data acquisition can significantly
reduce the average sampling rate (sub-Nyquist limit)
and channel utilization without affecting reconstruction
accuracy.

• Semantic preprocessing, which enables goal-oriented
sparse representations (e.g., feature extraction, labeling,
embedding, segmentation) and computations on infor-
mation manifold. For example, a robot could compute
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Fig. 3: The case of a slowly varying source.
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Fig. 4: The case of a rapidly changing source.

local estimates of the state (tracked target’s velocity and
location) from visual features or scene labeling extracted
from an image instead of sending raw data. Another in-
stance is in distributed learning, where only data samples
that are semantically representative (core set selection) or
informative are processed and transmitted.

• Semantic reception for fast partial or approximate source
reconstruction, as well as goal-dependent information
recovery, fusion, and querying. Reconstruction quality is
conventionally measured by distortion metrics, such as
the time-averaged mean squared error (MSE) between the
estimated and the original input signal, or via entropy-
based measures. Depending on end user’s objectives,
approximate results with different distortion or perceptual
quality could be sufficient for achieving a specific goal.
For example, a low quality, highly compressed video
may be sufficient for remote surveillance during non-
alert mode. Furthermore, in many scenarios involving,
among others, images, patterns, and machine learning,
low distortion does not necessarily mean high perceptual
quality. In that case, reconstruction efficiency could be as-
sessed using a semantic quality indicator based on diver-
gence measures or distance functions (e.g., Kantorovich-
Wasserstein). In the illustrative example (Section III), we
saw that a scheme can have higher cost of actuation
error (low perception quality) in spite of achieving lower
reconstruction error (low distortion) than others.

• Semantic control, which enables agile orchestration of
multi-quality multimodal information gathering and fu-
sion and efficient resource utilization. Metadata process-
ing is required for scalability whenever the amount of
metadata carrying information on semantic attributes and
the number of network nodes become prohibitively large.

V. FUTURE CHALLENGES

We now discuss key open problems and technical chal-
lenges associated with this promising avenue of research.

Semantic Metrics: A key challenge is to establish con-
crete metrics, which incorporate qualitative attributes of
information in the existing communication-theoretic edifice.
These new semantics-based metrics should capture both
source and network dynamics, as well as potential nontrivial
interdependencies among information attributes.

Semantics-Aware Multiple Access: Consider a large
number of heterogeneous devices that transmit, either in
time- or event-triggered process-aware manner, signals con-
veying multi-quality information (not necessarily from the
same codebook) to a remote destination. For optimally
utilizing the shared medium, devices have to adapt their
access patterns and transmission attempts not only based
on exogenous traffic arrivals and the other nodes’ status,
but also based on the source or process variability, the
information semantics, and the applications’ demands.
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Goal-Oriented Resource Orchestration: Semantic real-
time data networking requires efficient scheduling and re-
source allocation policies for gathering multi-source multi-
modal - often correlated - information, acquired at different
levels of quality. The objectives of emerging networked
applications could be achieved by utilizing one of multiple
alternative sets of multi-quality data objects. For example,
a remote monitoring system could normally operate in non-
alert mode using sensing data (e.g., images) with precision
above α% and freshness above β. These problems fall in
the realm of real-time scheduling with multiple choices,
for which online algorithms may select which piece of
information, from where and when, to gather and transmit
under communication and processing resources constraints.

Multi-Objective Stochastic Optimization: Semantics-
aware data gathering and prioritization require multi-criteria
optimization with goal-oriented, end-user-perceived utili-
ties, which assess the relative degree of priority among
different information attributes. A multi-objective stochastic
optimization framework based on cumulative prospect the-
ory, which incorporates semantics via risk-sensitive mea-
sures and multi-attribute entropy-based utility functions,
and performs rank-dependent nonlinear semantic weighting,
seems to be a promising endeavor.

VI. EPILOGUE

Supporting autonomous, real-time, and connected intel-
ligence applications in future wireless networks necessi-
tates fundamental theoretical advances in communication,
information theory, and signal processing. It requires trans-
forming commonly held design assumptions and prevailing
communication paradigms. We propose a structurally new,
synergistic approach that accounts for the information se-
mantics and aims at harnessing the high potential benefits of
a goal-oriented unification of information generation, trans-
mission, and usage, which have hitherto been treated sep-
arately. Semantic networking will enable carrying around
only the most informative data samples, thus conveying
to the end user only information that is timely, useful,
and valuable for achieving its goals. Semantics-empowered
communication will significantly improve network resource
usage, energy consumption, and computational efficiency,
thus supporting the scalability of future massive, networked
intelligent systems. It will pave the way for the design of
next-generation real-time data networking and will provide
the foundational technology for a plethora of socially useful
services, including autonomous transportation, consumer
robotics, environmental monitoring, and telehealth.
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