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Abstract—Thermal face image analysis is favorable for certain
circumstances. For example, illumination-sensitive applications,
like nighttime surveillance; and privacy-preserving demanded
access control. However, the inadequate study on thermal face
image analysis calls for attention in responding to the industry
requirements. Detecting facial landmark points are important
for many face analysis tasks, such as face recognition, 3D face
reconstruction, and face expression recognition. In this paper,
we propose a robust neural network enabled facial landmark
detection, namely Deep Multi-Spectral Learning (DMSL). Briefly,
DMSL consists of two sub-models, i.e. face boundary detec-
tion, and landmark coordinates detection. Such an architecture
demonstrates the capability of detecting the facial landmarks
on both visible and thermal images. Particularly, the proposed
DMSL model is robust in facial landmark detection where the
face is partially occluded, or facing different directions. The
experiment conducted on Eurecom’s visible and thermal paired
database shows the superior performance of DMSL over the
state-of-the-art for thermal facial landmark detection. In addition
to that, we have annotated a thermal face dataset with their
respective facial landmark for the purpose of experimentation.

I. INTRODUCTION

In recent years, infrared spectrum (IR) imagery has been

utilized to facilitate the development of computer vision (CV)

applications mainly due to its light-insensitive nature. For

instance, IR camera can capture images under unfavorable

illumination situations, hence it can be used at night or

even under completely dark conditions. Most conventional

IR imagery today uses an active approach which senses

reflected electromagnetic radiation (EMR) within the Near

infrared (NIR) or Short-Wave infrared (SWIR) spectrum. This

approach relies on the external IR illumination [1]. As a result,

it can be deteriorated by different illumination conditions.

Thermal, a.k.a Long-Wave infrared (7 µm - 14 µm wave-

length), is regarded as a promising direction to extend imaging

technology [2]. Thermal imagery is a passive IR technology

that primarily captures the emitted EMR specifically the heat

energy from the object, hence thermal spectrum is insensitive

to illumination variations. However, it can be affected by

ambience temperature.

Bourlai and Cukik [3] presented some scenarios which

require images captured from multiple electromagnetic spectra

to perform facial recognition. This suggests that multi-spectral

imagery technology can be employed to tackle some CV

problems that involve working under a variety of illumina-

tion conditions. Chang et al. [4] showed that the images

from multiple spectra can be fused together to perform face

recognition under poor illumination conditions. They also

presented a way to fuse visible and thermal face images. There

are some scenarios where the visible and thermal imagery

can work in conjunction with each other for a more robust

performance than a single spectral system. For instance, in real

time facial image analysis, we can have a dual camera setup

equipped with visible and thermal cameras such as (FLIR

Duo Pro R 640), this camera has a thermal sensor as well

as visible light sensor designed for camera drone. Depending

on the illumination conditions, we can switch in between both

configurations, or combine the input to perform a seamless

analysis.

One of the main prerequisites of facial image analysis is

facial landmark detection as it plays a key role in many tasks,

such as automatic face recognition [5] [6], expression recog-

nition [7], 3D face reconstruction [8]. Many facial landmark

detectors have been designed for face images in the visible

spectrum and they are proved to be very reliable. However,

these detectors fail to achieve good performance for thermal

images [9]. To achieve multi-spectral analysis, there is a need

for an efficient thermal facial landmark detector as well. In

recent years, deep learning methods have been successfully

applied to many areas such as image recognition due to their

automatic learning capabilities, and have brought significant

improvements in these areas. Therefore, this paper focuses on

the thermal facial landmark detection based on deep learning

methods.

Due to the expensive capture devices and limited dataset,

there are only few works on thermal facial landmark detection.

Active Appearance Models [10] is a relatively traditional

method initially used to model faces given facial landmark

positions [11]. This method is a handcrafted model designed

to compute the mean shape and appearance metric of a given

dataset and use to it to predict the landmark of an unseen

image. Like most handcrafted techniques, this method does

not work well with high data variability.

A current trend towards thermal facial landmark detection is

to apply deep learning models that are designed for detecting

visible facial landmarks and adapted to the thermal image

domain. Poster et al.[12] noted that the state-of-the-art visible



facial landmark detection models work poorly with thermal

images due to relatively low information contained in thermal

images. This work shows that thermal images aligned with

modern landmark detection algorithms often fail to achieve

thermal-to-visible face verification results compared to manu-

ally aligned imagery. The models being tested in this study

include Deep Alignment Network (DAN) [13], Multi-task

Convolutional Neural Network (MTCNN) [14], and Multi-

class Patch-based fully convolutional neural network (PBC)

[12].

Another solution is to transform thermal images into visible

images, and then to detect the landmarks from the transformed

images using existing landmark detectors designed for visible

images [9]. The transformation is achieved by developing a

CycleGAN model [15]. This method is shown to be unreliable,

for example, CycleGAN mode collapse. This solution also

offers room for inconsistency as it involves transforming a

low information image into a higher information domain. To

tackle this problem, an end-to-end landmark detection model

based on two-stage training mechanism is proposed in [9]. The

first stage of this solution is to train a U-Net [16] to outline the

face of a given image. A fully connected network is attached

to the U-Net at the second stage to estimate facial landmark

coordinates from the outline. An auxiliary output layer is used

to detect the facial expression to enhance the training outcome.

This solution however, are only able to detect front facing faces

with no occlusion. Even self occlusion from slight face tilting

to different direction results in landmark distortion.

Based on the aforementioned discussion, thermal facial

landmark detection is still a challenging task. In this paper,

we proposed a Deep Multi-Spectral Learning (DMSL) model

for facial landmark detection. The proposed model is a stack

of two independent sub-models, an auxiliary model for de-

tecting face boundary, and a main model for detecting facial

landmarks. DMSL is a unified model that can detect facial

landmarks from both thermal and visible images, this leads

to efficient and convenient solution for multi-spectral facial

image analysis. Another core strength is that this model is

robust for thermal facial landmark detection when a face is

not front facing or when there is occlusion. Additionally, we

annotated a thermal image dataset by a 68 points landmark

configuration. This dataset is used for the experimentation of

our proposed deep learning model based on U-Net to detect

facial landmarks on thermal images.

The rest of this paper is organized as follows. In Section II,

we present the proposed model architecture and pipeline. In

section III, we describe the dataset used for experimentation.

The steps for pre-processing, and dataset annotation, are

outlined in section IV. In section V, we describe the metrics

used to evaluate our model. In section VI, we explain the

experiment process in detail as well as illustrate the perfor-

mance and effectiveness of the model. Finally we conclude

with a discussion in section VII.

II. MULTI-SPECTRAL FACIAL LANDMARK DETECTOR

A. Model intuition

Compared to visible images, thermal images contain rel-

atively low information and has a narrower pixel intensity

range. When a network is being trained directly to detect facial

landmarks, it is easy for the network to overfit and recognise

area such as neck or large beard as facial landmarks.

To address this problem we use an auxiliary model to

highlight the face region within a given image and blackout

other pixels first. This allows the main landmark detector to

focus on the targeted region for more precise facial landmark

detection.

B. Model task formulation

Let the auxiliary model of the DMSL that outputs face

boundary be Mb. When given a face image F , the aux-

iliary outputs an array B that contains four values B =
[β1, β2, β3, β4]. These values represent the (x, y) coordinate

of the leftmost highest point, width w, and height h of the

boundary respectively. An example is depicted in figure 1.

Fig. 1: Array B value depiction.

Boundary loss Lb represented by equation 1 is used as the

loss function for Mb:

Lb =
1

V

V
∑

i=1

(βi − β̂i)
2 (1)

where V denotes the number of output values. In the case of

face boundary detection, V = 4. β denotes the ground truth

value and β̂ denotes predicted value. This is the mean squared

error between ground truth and predicted value.

Fig. 2: Illustration of 68 point facial landmark configuration.

Figure taken from [17].

The main model for facial landmark detection referred to

as Ml is trained to output an array Λ that contains P facial



landmark coordinates when given a face images F . We used a

well established 68 point facial landmark configuration from

Multi-PIE [18] shown in figure 2. Each point is represented

by an (x, y) coordinate. Λ is an array of x and y coordinates

arranged in the form of Λ = [x1, y1, x2, y2, x3, y3, ..., xP , yP ],
where P = 68.

Ml is trained using landmark loss Ll implemented by [9].

Ll is defined as:

Ll =
1

P

P
∑

i=1

((xi − x̂i)
2 + (yi − ŷi)

2) (2)

where P denotes the number of landmark points. This cal-

culates with the squared difference between ground truth

coordinates Λ, and predicted coordinates Λ̂.

C. Model architecture

We use a modified version of U-Net developed by [16].

U-Net is originally used for biomedical image segmentation

to tackle the issue of limited availability of data within the

domain. This solves our problem of having only small datasets.

Another reason to use U-Net is because our task is similar to

image segmentation. In biomedical image segmentation, the

goal is for the model to outline the target area required by

user. This fits our purpose because we need to outline the

prominent landmark features on the face and then to find the

corresponding coordinates.

Fig. 3: The configured U-Net structure.

U-Net is a neural network that is only composed of convo-

lutional layers. There are two major paths in this architecture,

down-sampling and up-sampling. Figure 3 shows our config-

uration of U-Net. The left side of the U shape structure is the

down-sampling path, which is similar to typical convolutional

layers in convolutional neural network (CNN). One down-

sampling step involves two 3 × 3, stride 1 convolution and

a 2× 2 max pooling with stride 2. An up-sampling step starts

with a 2×2 deconvolution with stride 2, and followed by two

3×3, stride 1 convolution. At every up-sampling step, features

from the down-sampling path with the same dimension are

concatenated to the up-sampled feature. This is represented

by the gray arrow in figure 3. Finally, we have a 1 × 1,

stride 1 convolution operation to create an output with the

same dimension as input but with depth set to one. With this

configuration, the output dimension should be the same as the

input, which in our case is 128× 128. The activation function

used throughout is ReLU.

Fig. 4: Illustration of our proposed pipeline.

Figure 4 shows the pipeline of DMSL. F represents an

input image and F̂ represents the image with non-face region

blacked out using the output from the auxiliary model. From

figure 4, Auxiliary model illustrates Mb. The output dimension

of U-Net in Mb is flatted to 16384×1. It is then connected to a

fully connected network with a hidden layer with 1024 nodes

and an output layer with 4 nodes for predicting array B. Ml

is represented by the main model in figure 4. The difference

between the two models is that the output layer in Ml has 136
nodes for the prediction of array Λ. The sigmoid function is

used for all fully connected layers.

III. DATASET

Eurecom’s VIS-TH visible and thermal paired face database

(VIS-TH) is used in this study [19]. The dataset is composed of

50 subjects with varying ethnicity, sex, and age. The camera is

set to capture two images simultaneously, one capturing EMR

from the thermal spectrum and another capturing visible EMR.

Fig. 5: Example of visible and thermal image pair with all

variations. Figure taken from [19]

The image pair for all variations is shown in figure 5. Each

subject has 21 visible (VIS) images and 21 thermal (TH)

images. This results in a total of 2100 images included in the

dataset. It is worthy to highlight that VIS-TH dataset fits our

settings due to the pixel-to-pixel registered images for both

VIS and TH face. This makes it convenient for annotation

purposes.



IV. PRE-PROSSESSING, AUGMENTATION, AND

ANNOTATION

All images are cropped into a 1 : 1 ratio image without

cutting part of the subject face to match the input dimension

of the U-Net convolution layer (120×12). To mitigate the issue

of having a small dataset, we generate a vertically mirrored

version for each image within the dataset. This increases the

final number of images to 4200. There is a particular variation

where an image is taken under all lights off condition. The

resulting black VIS image are omitted from the experiments,

making the total usable images count 4100.

Dlib-ml [20] is used to annotate facial landmark on all VIS

images. Taking advantage of this dataset having both TH and

VIS image being captured simultaneously, the annotated data

is subsequently superimposed on their TH image counterpart.

This gives us ground truth array Λ. Figure 6 shows the

landmark plot for multiple images. The first row shows the

VIS images being used for detection, while the second row

represents plots of the superimposed coordinates on TH image.

This is used as ground truth array B.

Fig. 6: Example of annotated images.

In many cases, there are some misalignment of landmark

points by Dlib. To counter this, we manually calibrate in-

accurate points to fit the face within an image. From the

adjusted landmark coordinates, we find the leftmost highest

point, rightmost point and, the lowest point from it. From

this, we can calculate the width and height of face. These

value along with the two coordinate value from the leftmost

highest point is used to represent the boundary of face.

V. EVALUATION METRICS

The performance of DMSL is evaluated by measuring

normalized mean error (NME) used by [17]. It normalises the

distance between ground truth and predicted value with the

distance of both eyes. This is represented by equation 3

NME =
1

N

N
∑

i=1

∥

∥

∥
Λi − Λ̂i

∥

∥

∥

P ×Di

(3)

In equation 3,
∥

∥

∥
Λ− Λ̂

∥

∥

∥
represents the L2 norm between

ground truth, Λ and predicted value, Λ̂. Di represents the inter-

ocular distance for that particular face. This is calculated by

the euclidean distance between the outer corner of two eyes.

For our configuration, the right eye is represented by point

37 while the left eye is marked with point 46 as illustrated

in figure 2. P denotes the number of facial landmark points.

Finally, N represents the number of sample images used.

VI. EXPERIMENT AND RESULTS

A. Training and testing protocol

We train and test the model using a 10-fold cross validation.

The 50 subjects are divided into 10 groups by their ID number.

Each iteration we use 1 group for testing, 2 for validating, and

the rest for training.
The experiments are conducted on a Linux server equipped

with one NVIDIA Titan Xp graphics processing unit (GPU).

The deep learning models are constructed and tested with

TensorFlow 2.0.0-rc0 using Python 3.7.

B. Training

To produce an optimised DMSL model, Both Mb and Ml

are trained individually using a two stage training procedure

similar to the training process in [9]. This is to maximise the

advantage of using a U-Net as feature extractor. In essence,

we have two individual models and both require a two stage

training procedure.
1) Face boundary detection model Mb: The first stage is

to train a U-Net to outline the face boundary in the original

image. A boundary mask shown in figure 7(b) is generated

from our face boundary ground truth annotation.

(a) TH

image
(b) Ground

truth

(c)

Predicted

Fig. 7: Example of face boundary mask.

The goal is to train the U-Net to get an output similar to the

boundary mask shown in figure 7(b). Figure 7(c) shows the

output by this U-Net. This is achieved by minimising U-Net

loss defined in equation 4.

Lu = −
1

N

N
∑

i=1

mi log m̂i + (1−mi) log(1− m̂i) (4)

where, m, and m̂ represents ground truth mask and predicted

mask respectively with N represents the number of used

sample images. This computes the softmax cross-entropy loss

between the two masks.
The second stage is for training the attached fully connected

network to output the B array. The parameters of the convo-

lutional U-Net are frozen and the fully connected network is

trained by minimising boundary loss represented by equation

1.
Figure 8 shows a comparison between images cropped using

values predicted by the auxiliary model against values from

ground truth. These cropped images will be the input of the

main model that detects facial landmark.



(a) Ground

truth VIS

(b) Predicted

VIS

(c) Ground

truth TH

(d) Predicted

TH

Fig. 8: Example of non-face region blacked out using ground

truth value and Mb generated value.

2) Facial landmark detection model Ml: The main model

uses the same two stage training procedure. The labels for first

stage are mask generated from the landmark coordinates with

algorithm 1. Figure 9(b) is an example of the mask generated.

Algorithm 1: Generate Landmark Mask

input : Coordinates, Dimensionx, Dimensiony

output: Mask

Initialize 2D array (Mask) according to Dimensionx,

and Dimensiony;

while i ≤ length(Coordinates) do

x← Coordinates[i]×Dimensionx;

y ← Coordinates[i+ 1]×Dimensiony;

for j = 1, j ≤ X −Dimension do

for k = 1, j ≤ Y −Dimension do

if Mask[j][k] < 255 then
Mask[j][k]+ =
0.5max (|x−j|,|y−k|) × 255;

end

end

end

end

Algorithm 1 is based on the method used by [9]. The idea

behind this mask is to highlight all the 68 facial landmark

points. The surrounding area are set to gradually dim creating

a glowing effect. This helps the model to outline the facial

landmarks.

(a) TH

image
(b) Ground

truth

(c)

Predicted

Fig. 9: Example of facial landmark mask.

The goal in stage one is to train a U-Net to output an image

similar to Figure 9(b). The training is done by minimising U-

Net loss. Figure 9(c) shows an example of the U-Net output.

Stage two is for training the attached fully connected

network of the main model to output the Λ array. The convolu-

tional U-Net parameters are frozen, while the fully connected

network are trained by minimising the loss represented by

equation 2.

C. Performance of Landmark Detection

Figure 10 shows the plotted facial landmark output by our

model. The model is able to detect facial landmarks with

samples facing different directions.

Fig. 10: Sample plots of output from our model with different

face pose.

The model also works fairly well when certain areas such

as eyes or mouth are occluded. This is shown in figure 11.

Fig. 11: Sample plots of output from our model with different

face occlusions.

We evaluate the performance of our model against Dlib-

ml [20], the optimal AAM method examined in [10], and a

two stage fully connected multi-task U-Net [9]. The output of

both models is evaluated using our manually annotated ground

truth.

TH VIS
AAM [10] 0.1311 0.1434
Dlib [20] 0.0293 0.0581
Chu et al. [9] 0.0222 0.0556
Ours 0.0210 0.0544

TABLE I: Model performance comparison in terms of NME

Fig. 12: Normalised mean error comparison between varia-

tions.



Comparison between each method is shown in table I. Our

model is able to achieve a better result for TH images and

a competitive result for VIS images. The samples that Dlib-

ml and AAM models are unable to detect are excluded. By

doing so, we ensures a fair comparison of flaws. These samples

consist of 711 TH images and 139 VIS images including the

mirrored version. VIS images shows a higher NME because

the portion of occluded images present are higher compared

to TH images. Figure 12 illustrates the performance of our

DMSL model in detail. This shows the average error value

for each variation with all available images included.

VII. DISCUSSION AND CONCLUSION

An interesting observation from the experiments is that by

training model with images from both spectrum yields better

results for thermal landmark detection. This is illustrated in

figure 12 where the class Dark that is trained with a lack of

a usable VIS image have relatively poor performance when

compared to other variations.
Experimental results have shown that our DMSL model can

outperform existing landmark detection methods. However,

we still have a small amount of cases where the model

outputs ill-shaped or compressed landmark coordinates. An

example of this output is illustrated in figure 13. This could

be potentially mitigated in the future by experimenting with

more loss functions and adjusting the fully connected network.

Fig. 13: Ill-shaped facial landmark output.

The main contribution of this study is that we have devel-

oped a DMSL model for facial landmark detection This model

can detect facial landmarks in TH and VIS images regardless

of which direction the target is facing. In addition, the model

can still detect landmark on faces that are partially occluded

by objects such as sunglasses, hand, and hat. Both of this

capability are not present in existing state-of-the-art thermal

facial landmark systems. Another contribution of this study is

to provide a facial landmark annotation for a TH image dataset

[19].
This study can be further applied for an array of future

research involving multi-spectral or thermal imagery. This in-

cludes but not limited to facial recognition, thermal-to-visible

face generation, and real-time surveillance. Since we are

using information collected from heat generated by a human

body, this research can be potentially integrated with facial

biometrics tasks with body temperature detection. This could

help with public health investigation for disease detection.
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