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Main Messages

There are many Bayesian estimation problems, many of which are LMMSE (Wiener, Kalman),
which contain hyperparameters to be tuned, using various approaches.

Information combining: from weighted least-squares to message passing in a more general overall
Bayesian formulation (e.g. cooperative location estimation)

Empirical Bayes (EB) as principled framework for bias-variance trade-off

but not necessarily using empirical Bayes for hyperparameter estimation: SURE, Cross Validation

compressive sensing, sparse models, generalization of model order selection to support region,
model complexity and structure

Sparse Bayesian Learning (SBL) is one EB instance, allowing to exploit (approximate) sparsity for

compressed sensing

can be extended to time-varying scenarios with sparse variations also
can be extended to dictionary learning, in particular with Kronecker structured
dictionaries

message passing (approximate iterative) inference techniques: easy to get the mean (estimate)
correct but more difficult to get correct posterior variances
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Main Messages (2)

free energy optimization framework, guided by mismatched Cramer-Rao Bound (mCRB) for split
in various MP simplification levels (Belief Propagation (BP), Variational Bayes (VB) - Mean
Field (MF)), allowing performance-complexity trade-off

large system analysis (LSA) yields simplified asymptotic performance analysis for certain
measurement matrix models, allowing to show optimality and to justify algorithmic simplifications

Approximate Message Passing (AMP) very similar to approximate large turbo receivers for
CDMA for which heuristic LSA was performed based on Replica Method Analysis.

AMP can be derived more rigorously from BP, using asymptotically justifiable first-order Taylor
series expansions and Gaussian approximations.

LSA allows tracking of the AMP MSE through the iterations, called State Evolution (SE),
showing convergence to MMSE and hence optimality.

SE requires statistical models for the measurement matrix A. Pushing these model assumptions
completely through to the xAMP algorithms may be an unnecessary simplification. The main
requirement is independent rows/columns as in CDMA random spreading.

Most xAMP versions require i.i.d. x , which is not suited for SBL. We present new LSA for
SBL-AMP.
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Kalman Filter

Linear state-space model:

state update equation:

xk+1 = Fk(θ) xk + Gk(θ) wk

measurement equation:

yk = Hk(θ) xk + vk

for k = 1, 2, . . ., with uncorrelated

initial state x0 ∼ N (x̂0,P0),

measurement noise vk ∼ N (0,Rk(θ)),

state noise wk ∼ N (0,Qk(θ)).

State model known up to some parameters θ.

Often Fk(θ), Gk(θ), Hk(θ) linear in θ: bilinear case.
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering
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Numerous Applications

LMMSE wireless channel estimation:

xk = FIR filter response, θ: Power Delay Profile, AR(1) dynamics in e.g. diagonal F and Q
Bayesian adaptive filtering (BAF):
analogous to LMMSE channel estimation, except measurement equation: only one 1D
measurement is available per instance. An extremely simplified form of BAF is the so-called
Proportionate LMS (P-LMS) algorithm.

Position tracking (GPS):

θ: acceleration model parameters (e.g. white noise, AR(1))

Blind Audio Source Separation (BASS):

xk = source signals,
θ: (short+long term) AR parameters, reverb filters
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Static LMMSE (Wiener) Applications

Direction of Arrival (DoA) estimation: x = decorrelated sources, apart from the DoA parameters
there could also be antenna array calibration parameters or source and noise covariance
parameters.

Blind and semi-blind channel estimation. In the techniques that exploit the (white) second-order
statistics of x , (the unknown part of) x gets modeled as Gaussian. Numerous variations:
single-carrier, OFDM and CDMA versions, single- and multi-user, single- and multi-stream, with
black box FIR channel models or propagation based parameterized channel models.
Image Deblurring, NMRI Imaging

LMMSE receiver (Rx) design: x = Tx symbol sequence to be recovered on the basis of Rx signal,
in single- or multi-user settings and other variations as in the channel estimation case. The
crosscorrelation between Tx and Rx signals depends on the channel response, which is part of the
parameters. The Rx signal covariance matrix on the other hand can be modeled in various ways,
non-parametric or parametric. Account for the channel estimation error in the LMMSE Rx
design. Another approach: consider the LMMSE filter directly as the parameters.
LMMSE Tx design, partial CSIR/CSIT.
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Adaptive Kalman Filter solutions

Extended Kalman Filter (EKF)

other generic nonlinear Kalman Filter extensions:
Unscented Kalman Filter (UKF), Cubature Kalman Filter (CKF), Gaussian Sum
Filter, Particle Filter (PF)

Recursive Prediction Error Method (RPEM) Kalman Filter

Second-Order Extended Kalman Filter (SOEKF)

Expectation-Maximization (EM)/Variational Bayes (VB) Kalman Filter
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Time Varying Sparse State Tracking
Sparse signal xt is modeled using an AR(1) process with diagonal correlation coefficient matrix F .

Define: Ξ = diag(ξ), F = diag(f).
fi : correlation coefficient and xi,t ∼ CN (xi,t ; 0, 1

ξi
). Further, wt ∼ CN (wt ; 0,Γ−1 = Ξ−1(I− FFH))

and vt ∼ CN (vt ; 0, γ−1I). VB leads to Gaussian SAVE-Kalman Filtering (GS-KF).
Applications: Localization, Adaptive Filtering.
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Compressed Sensing Problem

Noiseless case: Given underdetermined y , A, the optimization problem is

min
x
‖x‖0 subject to y = Ax .

Can recover x and its support for small N − ‖x‖0

(small overdetermination if support were known)

Noisy case:
min

x
‖x‖0 subject to ‖y − Ax‖2 ≤ ε.

l0 norm minimization: an NP-hard problem.

Constrained problem ⇒ Lagrangian, Convex Relaxation (using p norm, p > 1):

min
x
‖y − Ax‖2

2 + λ ‖x‖p .

Restricted Isometry Property (RIP): ATA sufficiently diagonally dominant

Most identifiability work considered noiseless data & exact sparsity
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Sparse Signal Recovery Algorithms
Convex Relaxation based Methods:

Basis pursuit (l1 norm) 1.

LASSO(l1 norm)2

Dantzig selector3

FOCUSS (lp norm, with p < 1).

Greedy Algorithms:

Matching Pursuit4

Orthogonal Matching Pursuit (OMP)5

CoSaMP6

Iterative Methods:
Iterative Shrinkage and Thresholding Algorithm (ISTA)7or Fast ISTA.

Approximate Message Passing variants (xAMP)- more details to follow.

Very recent: Deep learning based methods such as Learned ISTA (LISTA)8, Learned AMP
(LAMP) and Learned Vector AMP (LVAMP)9.

1Chen, Donoho, Saunders’99, 2Tibshirani’96, 3Candes, Tao’07
4Mallat, Zhang’93, 5Tropp, Gilbert’07, 6Needell, Tropp’09
7Daubechies, Defrise, Mol’04, 8Gregor, Cun’10, 9Borgerding, Schniter, Rangan’17
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James-Stein Estimator

Bayesian interpretation of (possibly overdetermined) Compressed Sensing:

min
x
‖y − Ax‖2

2 − 2σ2
v ln p(x)

Stein and James10 showed that for i.i.d. linear Gaussian model p(x) = N (x ; 0, ξ−1I), it is possible
to construct a nonlinear estimate of x with lower MSE than that of ML for all values of the true
unknown x .

A popular design strategy: is to minimize Stein’s unbiased risk estimate (SURE), which is an
unbiased estimate of the MSE.

SURE directly approximates the MSE of an estimate from the data, without requiring knowledge
of the hyperparameters (ξ), it is an instance of empirical Bayes.

Stein’s landmark discovery lead to the study of biased estimators that outperform minimum
variance unbiased estimators (MVU) in terms of MSE, e.g. work by Yonina Eldar11.

Shrinkage estimators and penalized maximum likelihood (PML) estimators.

10James, Stein’61
11Eldar’08
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Kernel Methods in Automatic Control

Kernel methods in linear system identification12 (y = Ax + v , v ∼ N (v ; 0, γ−1I)).
Traditional methods: maximum likelihood (ML) or prediction error methods (PEM)
ML/PEM optimal in the large data limit.
Questions: Model structure design for ML/PEM. Achieving a good bias-variance trade off.
Solution: Parameterized Kernel design and hyperparameter estimation. Methods for
hyperparameter estimation include cross-validation (CV), empirical Bayes (EB), Cp statistics and
Stein’s unbiased risk estimate (SURE).
Regularized least square estimator (P is symmetric and +ve semidefinite kernel matrix):

x̂ = arg min
x∈RM

‖y − Ax‖2 +
1

γ
xTP−1x .

Parameterized family of matrices, P(η), where η ∈ Rp. η are the hyperparameters.
Can be interpreted as a constrained form of SBL, with a zero-mean Gaussian prior for x of which
the covariance matrix is a linear combination of some fixed matrices (SBL being a special case
with fixed matrices eie

T
i ).

A good overview of Kernel methods, connection with machine learning13.
12Pillonetto, Nicolao’10
13Pillonetto, Dinuzzo, Chen, Nicolao, Ljung’14
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Kernel Hyperparameter Estimation

Empirical Bayes (EB=Type II ML):

η̂EB = arg min
η

fEB(P(η)),

fEB(P(η)) = yTQ−1y + ln det(Q) with Q = APAT + 1
γ

IN .

Two SURE methods:

SURE 1: MSE of signal reconstruction (MSEx(P) = E(‖x̂ − x‖2)):

SUREx : η̂Sx = arg min
η

fSx(P(η)), with

fSx(P(η)) = 1
γ2 yTQ−TA(ATA)−2ATQ−1y + 1

γ
tr{2R−1 − (ATA)−1},

R = ATA + 1
γ
P−1.

SURE 2: MSE of output prediction (MSEy (P) = E(‖Ax̂ + v∗ − y‖2)), v∗ independent from v :

SUREy : η̂Sy = arg min
η

fSy (P(η)), with

fSy (P(η)) = 1
γ2 yTQ−TQ−1y + 2 1

γ
tr{APATQ−1}
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Asymptotic Properties of Hyperparameter Estimators

Derived first order optimality conditions. In general, no closed form expression shown except for
special cases for e.g diagonal A, ridge regression with ATA = NIM .

Theorem 1

14Assume that P(η) is any +ve definite parameterization of the kernel matrix and AT A
N

N→∞→ Σ, where
Σ is positive definite. Then we have the following almost sure convergence.

η̂MSEx → η∗x , η̂Sx → η∗x
η̂MSEy → η∗y , η̂Sy → η∗y
η̂EEB → η∗EB , η̂EB → η∗EB

η̂MSEx , η̂MSEy , η̂EEB being the ORACLE estimators which are optimal for any data length N.

The two SURE estimators converge to the best possible hyperparameter in terms of MSE in the
asymptotic limit, “asymptotically consistent”.

EB estimator converges to another best hyperparameter minimizing the expectation of the EB
estimation criterion (EEB).

Convergence of EB is faster than that of the two SURE estimators.
14Mu, Chen, Ljung’18
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Sparse Bayesian Learning - SBL

Bayesian Compressed Sensing: 2-layer hierarchical prior for x as in 15, inducing sparsity
for x (conjugate priors: posterior pdf of same family as prior pdf) :

px(xi,t |ξi ) = N (xi,t ; 0, ξ−1
i ), p(ξi |a, b) = Γ−1(a)baξa−1

i e−bξi

⇒ sparsifying Student-t marginal

px(xi,t) =
baΓ(a + 1

2 )

(2π)
1
2 Γ(a)

(b + x2
i,t/2)−(a+ 1

2 )

Sparsification of the Innovation Sequence: we apply the (Gamma) prior not to the
precision of the state x but of it’s innovation w , allowing to sparsify at the same time the
components of x AND their variation in time (innovation).
The inverse of the noise variance γ is also assumed to have a Gamma prior,
pγ(γ|c , d) = Γ−1(c)dcγc−1e−dγ .

15Tipping’01
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering

ICASSP 2020, Dirk Slock, EURECOM, FRANCE 16 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

Outline

1 Introduction

2 Static SBL

3 Combined BP-MF-EP Framework

4 Posterior Variance Prediction: Bayes Optimality

5 Performance Analysis of Approximate Inference Techniques (mCRB)

6 Dynamic SBL

7 Kronecker Structured Dictionary Learning using BP/VB

8 Numerical Results and Conclusion

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering
ICASSP 2020, Dirk Slock, EURECOM, FRANCE 16 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

Original SBL Algorithm (Type II ML)

Original SBL16, for a fixed estimate of the hyperparameters (ξ̂, γ̂), the posterior of x is Gaussian,
i.e.

px(x |y , ξ̂, γ̂) = N (x ; x̂ ,ΣL)

leading to the (Linear) MMSE estimate for x

x̂ = γ̂(γ̂ATA + Ξ̂)−1AT y ,
ΣL = (γ̂ATA + Ξ̂)−1.

(1)

The hyperparameters are estimated from the likelihood function by marginalizing over the sparse
coefficients x , the marginalized likelihood being denoted as py (y |ξ, γ). ξ, γ are estimated by
maximizing py (y |ξ, γ) and this procedure is called as Type-II ML. Type-II ML is solved using EM,
which leads to the following updates for the hyperparameters.

ξ̂i =
a+ 1

2(
<x2

i
>

2
+ b

) , where < x2
i >= x̂2

i + σ2
i . < γ >=

c+ N
2(

<||y − Ax||2>
2

+ d

) ,
where, < ||y − Ax | |2 >= ||y | |2 − 2yTAx̂ + tr

(
ATA(x̂ x̂T + Σ)

)
,

Σ = diag(ΣL) = diag(σ2
1 , σ

2
2 , ..., σ

2
M), x̂ = [x̂1, x̂2, ..., x̂M ]T .

16Tipping’01, Wipf,Rao’04
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Type I vs Type II ML

Type I =⇒ standard MAP estimation (involves integrating out the hyperparameters)

x̂ = arg max
x

[log py (y |x) + px(x)].

Type II =⇒ hyperparameters (Ψ = {ξ, γ}) are estimated using an evidence maximization
approach

Ψ̂ = arg max
Ψ

pΨ(Ψ|y) = arg max
Ψ

pΨ(Ψ)

∫
py (y |Ψ) = arg max

Ψ
pΨ(Ψ)

∫
py (y |x , γ)px(x |ξ)dx .

Why Type II is better than Type I? 17 In the evidence maximization framework instead of looking

for the mode of the true posterior px(x |y), the true posterior is approximated as px(x |y ; Ψ̂),

where Ψ̂ is obtained by maximizing the true posterior mass over the subspaces spanned by the
non zero indexes.

Type I methods seek the mode of the true posterior and use that as the point estimate of the
desired coefficients. Hence, if the true posterior distribution has a skewed peak, then the Type I
estimate (Mode) is not a good representative of the whole posterior.

17Giri, Rao’16
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Variational Bayesian (VB) Inference
The computation of the posterior distribution of the parameters is usually intractable. As in
SAGE, SAVE is simply VB with partitioning of the unknowns at the scalar level. Define
θ = {x , ξ, γ}, θi represents each scalar and θi denotes θ excluding θi .

q(θ) = qγ(γ)
M∏
i=1

qxi (xi )
M∏
i=1

qξi (ξi ).

VB compute the factors q by minimizing the Kullback-Leibler distance between the true posterior
distribution p(θ|y) and the q(θ). From 18,

KLDVB = DKL (q(θ)||p(θ|y)) =
∫
q(θ)ln q(θ)

p(θ|y)
dθ.

The KL divergence minimization is equivalent to maximizing the evidence lower bound (ELBO)19.

ln p(y) = L(q) + KLDVB = −DKL(q(θ)||p(θ, y)) + DKL(q(θ)||p(θ|y)), where,

ln p(y) is the evidence, and minKLDVB becomes equivalent to max L(q), the ELBO.

We get for the element-wise VB recursions: (Expectation Maximization (EM) = special case:
θ = {θs ,θd},

θs random, hidden
θd deterministic)ln(qi (θi )) =< ln p(y ,θ) >θ

i
+ ci ,

18Beal’03, 19Tzikas, Likas, Galatsanos’08
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Low Complexity-Space Alternating Variational Estimation (SAVE)

Mean Field (MF) approximation: VB partitioned to scalar level (MF vs VB // SAGE vs EM),
results in a SBL algorithm without any matrix inversions.
The resulting alternating optimization of the posteriors for each scalar in θ leads to

ln(qi (θi )) =< ln p(y ,θ) >k 6=i +ci ,

p(y ,θ) = py (y |x , ξ, γ)px(x |ξ)pξ(ξ)pγ(γ).

where θ = {x , ξ, γ} and θi represents each scalar in θ.

ln p(y ,θ) = N
2

ln γ − γ
2
||y − Ax | |2 +

M∑
i=1

(
1

2
ln ξi −

ξi
2
x2
i

)
+

M∑
i=1

((a− 1) ln ξi + a ln b − bξi ) + (c − 1) ln γ + c ln d − dγ + constants.

Gaussian approximate posterior for xi :

ln qxi (xi ) = −<γ>
2

{
< ||y − Aīxī | |2 > − (y − Aī < xī >)TAixi −

xiA
T
i (y − Aī < xī >) + ||Ai | |2x2

i

}
− <ξi>

2
x2
i + cxi = − 1

2σ2
i

(xi − x̂i )
2 + c ′xi .
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SAVE Iterations Continued...

The SAVE iterations for x get obtained as

σ2
i = 1

<γ>||Ai ||2 + ξi
, x̂i = σ2

i AT
i (y − Aī x̂ī ) < γ > .

Hyperparameter estimates: same as EM iterations. Gamma posterior for ξi and γ.

No matrix inversions.

Update of all the variables, x , ξi , γ, requires simple addition and multiplication operations

yTA, ATA and ||y ||2 can be precomputed, so only need to be computed once.

Remarks: From LMMSE expression in (1), i th row of γATAx̂ + Ξx̂ = γAT y :

γAT
i Ax̂ + ξi x̂i = γAT

i y or (γ ‖Ai‖2 + ξi )x̂i = γAT
i (y − Ai x̂i )

Hence SAVE does linear PIC iterations to compute the LMMSE estimate.

However, for the posterior variances : σ2
i = ((Σ−1

L )i,i )
−1 ≤ (ΣL)i , i with equality only for

diagonal ΣL
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Convergence of SAVE
Theorem 2

The convergence condition for the sparse coefficients xi of the SAVE algorithm a can be written as

ρ(D−1H) < 1, where D = diag(γ̂ATA + Ξ̂),H = offdiag(γ̂ATA). ρ(·) denotes the spectral radius.
Moreover, if SAVE converges, assuming the estimate of hyperparameters are consistent, the posterior
mean (point estimate) always converges to the exact value (LMMSE). However, the predicted posterior
variance is quite suboptimal.

aThomas,Slock’18

Remark: To fix the convergence of SAVE (when ρ(D−1H) > 1), we can use the diagonal loading
method20. The modified iterations (with a diagonal loading factor matrix Λ) can be written as,

(D + Ξ̃)x (t+1) = −(H− Ξ̃)x (t) + γ̂AT y , =⇒
x (t+1) =−(D + Ξ̃)−1(H−Ξ)x (t) +(D + Ξ̃)−1γ̂AT y .

The convergence condition gets modified as ρ((D + Ξ̃)−1(H− Ξ̃)) < 1. Another point worth noting

here is that, if the power delay profile Ξ is also estimated using MF, γ̂diag(ATA) + Ξ̂, where

Ξ̂ = Ξ + Ξ̃, with Ξ̃ > 0. In this case, Ξ̃ may represent an automatic correction factor (diagonal
loading) to force convergence of SAVE for cases where ρ(D−1H) > 1.

20Johnson, Bickson, Dolev’09
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering

ICASSP 2020, Dirk Slock, EURECOM, FRANCE 22 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

NMSE Results
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Figure 4: NMSE vs the number of observations (M = 200, L = 40, L is the number of non-zero
elements).

For sufficient amount of data, SAVE has significantly lower MSE than the other fast algorithms.

Why? The resulting problem of alternating optimization of x and the hyperparameters ξ and γ
appears to be characterized by many local optima. Apparently, the component-wise VB approach
appears to allow to avoid a lot of bad local optima, explaining the better performance, apart
from lower complexity.

At very low amount of data, suboptimal approaches such as AMP which don’t introduce
individual hyper parameters per x component and assume that the xi behave i.i.d, behave better
because of the lower number of hyper parameters to be estimated.
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An Overview of Fast SBL Algorithms

Fast SBL using Type II ML by Tipping 21: greedy approach handling one xi at a time, plus
replacing precisions by their convergence values, leading to pruning of the small xi components,
i.e. explicit sparsity.

Fast SBL using VB by Shutin et. al.22: Shutin uses VB while Tipping is Type II ML as in original
SBL. They do both replace precisions by their convergence values. Shutin also added some extra
view points in terms of the pruning condition being interpreted as relating between sparsity
properties of SBL and a measure of SNR. Main message of the both being faster convergence
compared to original SBL, not much reduction in per iteration complexity.

BP-SBL23: In SBL, with fixed hyperparameters, MAP or MMSE estimate (follows from the
Gaussian posterior) of x can be efficiently computed using belief propagation (BP), since all the
messages involved are Gaussian (without any approx.).

Inverse Free SBL (IF-SBL)24: Optimization using a relaxed ELBO.

Hyperparameter free sparse estimation25: Does not require hyperparameter tuning compared to
SBL. Uses covariance matching, equivalent to square root LASSO.

21Tipping, Faul’03, 22Shutin, Buchgraber, Kulkarni, Poor’11
23Tan, Li’10, 24Duan, Yang, Fang, Li’17
25Zachariah, Stoica’15
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Complexity Comparisons-SBL Algorithms
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Approximate Inference Cost Functions: An Overview
ML min. KLD of py (y |θ) to empirical distribution of y (py (y)=δ(y − y)):

θmin,KL = arg minθ DKL(py (y)||py (y |θ)) = arg max
θ

ln(py (y |θ)) = θMLE .

VB minimizes KLD of factored approximate posterior (q(θ) =
∏
i

qθi
(θi )).:

KLDVB = DKL (q(θ)||p(θ|y)) .

Variational Free Energy (VFE) (U(q) = Average System Energy, H(q) = Entropy). Assume actual

posterior p(θ|y) = p(θ,y)
p(y)

=
∏

a pa(θa)

Z
and FH = − lnZ (Helmholtz Free Energy or log-partition function).

F (q(θ)) = DKL(q(θ)||p(θ|y)) + FH = −
∑
θ

q(θ)
∑
a

lnpa(θa)︸ ︷︷ ︸
U(q)

+
∑
θ

q(θ) ln q(θ)︸ ︷︷ ︸
−H(q)

= DKL(q(θ)||
∏

a pa(θa)).

Figure 5: A small factor graph representing the posterior p(x1, x2, x3, x4) = 1
Z
fA(x1, x2)fB (x2, x3, x4)fC (x4)26.

26Yedidia, Freeman, Weiss’05
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Approximate Inference Cost Functions: An Overview (2)

F (q) ≥ FH , equality only if q(θ) = p(θ|y). Practical approach: upper bound FH by minimizing
F (q) over a restricted class of probability distributions leading to Kikuchi, BP or MF
approximations.

Belief Propagation (BP) minimizes Bethe Free Energy (BFE), Mean Field (MF) minimizes MFFE
(MF Free Energy). BP converges to exact posterior when the factor graph is a tree. For MF (VB

pushed to scalar level), q(θ) =
M∏
i=1

qθi (θi ).

MFFE ≥ BFE ≥ VFE .

Region based Free Energy approximations (RFE) (more details in the next slide): The intuitive
idea behind a RFE approximation is to break up the factor graph into a set of large regions that
include every factor and variable node, and say that the overall free energy is the sum of the free
energies of all the regions. BP is a special case of this.

Expectation Propagation (EP): derived using BFE under moment matching constraints.
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Region Based Free Energy
A region R of a factor graph to be a set VR of variable nodes and set AR of factor nodes, such that
a ∈ AR =⇒ all variable nodes connected to a are in VR . θR is defined as the set of all variable nodes
belonging to the region R.

Region energy is defined as ER(θR) = −
∑

a∈AR

ln pa(θa).

Region free energy using region entropy and region average energy:

UR(qR) =
∑
θR

qR(θR)ER(θR), HR(qR) =
∑
θR

qR(θR) ln qR(θR).

and FR(qR) = UR(qR)− HR(qR).

Region-based free energy using region-based entropy and region-based average energy:

UR({qR}) =
∑

R∈R
cRUR(qR), HR({qR}) =

∑
R∈R

cRHR(qR).

and FR({qR}) = UR({qR})− HR({qR}).

The intuitive idea: break up the factor graph into a set of large regions that include every factor and
variable node, and say that the overall VFE is the sum of the VFEs of all the regions. If some of the large
regions overlap, then we will have erred by counting the free energy contributed by some nodes two or
more times, so we then need to subtract out the free energies of these overlap regions in such a way that
each factor and variable node is counted exactly once (weight cR takes care of this).

BP: Each factor node (and it’s neighbouring variable nodes) form one set of regions. Another set of
regions which contain only one variable node.

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering
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Variational Free Energy (VFE) Framework

Intractable joint posterior distribution of the parameters θ = {x ,A, f,Γ, γ}.

Actual posterior: p(θ)= 1
Z

∏
a∈ABP

pa(θa)
∏

b∈AMF

pb(θb)

︸ ︷︷ ︸
factor nodes

, where ABP ,AMF = set of factor nodes

belonging to the BP/MF part with ABP ∩ AMF =∅.
The whole θ is partitioned into the set θi (variable nodes), and we want to approximate the true
posterior p(θ) by an approximate posterior q(θ) =

∏
i qi (θi ).

NBP(i), NMF (i)− the set of neighbouring factor nodes of variable node i which belong to the
BP/MF part.

IMF =
⋃

a∈AMF

N (a), IBP =
⋃

a∈ABP

N (a). N (a)− the set of neighbouring variable nodes of any

factor node a.
The resulting Free Energy (Entropy − Average Energy) obtained by the combination of BP and
MF27 are written as below (let qi (θi ) represents the belief about θi (the approximate posterior))

FBP,MF =
∑

a∈ABP

[DKL(qa(θa)||pa(θa) + DKL(qa(θa)||
∏

i∈N (a) qi (θi ))]+
∑

b∈AMF

DKL(
∏

i∈N (b)

qi (θi )||pb(θb)),

27Riegler, Kirkelund, Manchón, Fleury’13
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Message Passing (MP) Expressions

The beliefs have to satisfy the following normalization and marginalization constraints∑
θi

qi (θi ) = 1, ∀i ∈ IMF \ IBP ,
∑
θa

qa(θa) = 1,∀a ∈ ABP ,

qi (θi ) =
∑

θa\θi
qa(θa), ∀a ∈ ABP , i ∈ N (a).

The fixed point equations of the constrained optimization of the approximate VFE:

qi (θi ) = zi
∏

a∈NBP (i)

mBP
a→i (θi )

∏
a∈NMF (i)

mMF
a→i (θi ), =⇒ Product of incoming beliefs

ni→a(θi ) =
∏

c∈NBP (i)\a
mc→i (θi )

∏
d∈NMF (i)

md→i (θi ), =⇒ variable to factor nodes

mMF
a→i (θi ) = exp(< ln pa(θa) > ∏

j∈N (a)\i
nj→a(θj )

), <>q is the expectation w.r.t q

mBP
a→i (θi ) =< pa(θa) > ∏

j∈N (a)\i
nj→a(θj )

factor to variable nodes

(2)

Expectation Propagation (EP): The constraints in BFE can often be too complex to yield computationally
tractable messages, the following constraint relaxation leads to EP 28.

Eqa (t(θi )) = Eqi (t(θi ) ⇒ mBP
a→i (θi ) =

Projφ(
∫
qa(θa)

∏
j∈N (a), 6=i dθj )

ni→a(θi )
, qa(θa) = 1

za
pa(θa)

∏
j∈N (a) nj→a(θj )

where φ represents the family of distributions characterized by the sufficient statistics t(θi ).
28Minka’01
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What do the MP Expressions Indicate?
BP-MF combo = alternating optimization of Lagrangian29:

L = FBP,MF +
∑
a
γa[
∑
θa

qa(θa)− 1] +
∑
i
γi [
∑
θi

qi (θi )− 1] +
∑
i

∑
a∈N (i)

∑
θi

λai (θi )[qi (θi )−
∑

θa\θi
qa(θa)].

At any iteration or convergence:

qa(θa) = pa(θa)(
∏

i∈N (a)

qi (θi ) exp [−λai (θi )]) exp [γa − 1] = 1
za

pa(θa)
∏

i∈N (a)

qi (θi )

ma→i (θi )︸ ︷︷ ︸
ni→a(θi )

, a ∈ ABP

qi (θi ) = exp
[
|NBP(i)| − 1 + IIMF \IBP (i) γi

]︸ ︷︷ ︸
1/zi

∏
a∈NMF (i)

exp(< ln pa(θa) >qj (θj ),j∈N (a)\i )︸ ︷︷ ︸
mMF

a→i (θi )

∏
a∈NBP (i)

exp(λai (θi ))

︸ ︷︷ ︸
mBP

a→i (θi )

.

where IA(i) = indicator function for i ∈ A.
Applying the marginalization constraint qi (θi ) =

∑
θa\θi

qa(θa), ∀a ∈ ABP leads to the expression for

mBP
a→i (θi ) as in (2).

The Lagrange multipliers λai are indeed the log of the BP messages and γa, γi lead to the normalization
constants za, zi for the beliefs qa(θa), qi (θi ), respectively.

λai (θi ) = lnmBP
a→i (θi ).

29Yedidia, Freeman, Weiss’05
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SBL using BP: Predictive Posterior Variance Bayes Optimality

.

.

.

.

.

.

 

 

 

 

.

.

.

.

.

.

 

 

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

Illustration of Message Passing 

 
 

Figure 6: Factor Graph for the static SBL. Dark square nodes are the factor nodes and circle
nodes represent the variable nodes.

All the messages (beliefs or continuous pdfs) passed between them are all Gaussian30. So in
message passing (MP), it suffices to represent them by two parameters, which are the mean and
variance of the beliefs.

We represent σ−2
n,k as the inverse variance (precision) of the message passed from variable node n

(corresponding to xn) to factor node k (corresponds to yk) and x̂n,k be the mean of the message
passed from n to k, total NM of them.

Similarly σ−2
k,n, x̂k,n for messages from k to n.

35Tan, Li’10
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SBL using BP: Message Passing Expressions

We start with the MP expressions derived in36. Define the matrix S with entries σ−2
k,n. The Gaussian

beliefs are parameterized as mk→n(xn) = N (xn; x̂k,n, σ
2
k,n) and nn→k (xn) = N (xn; x̂n,k , σ

2
n,k ).

Interpretation of mn→k (xn) : Bayesian information combining: At variable node n, we have

x̂n =

 x̂1,n

...
x̂N,n

 =

 1
...
1

 xn +N (x̃n; 0, diag(S:,n)−1) with prior N (xn; 0, ξ−1
n ) .

xn, x̂k,n (x̂n excluding x̂k,n) are jointly Gaussian and hence lead to ”extrinsic” ”posterior” message for

node k: x̂n,k = σ2
n,k

∑
i 6=k

σ−2
i,n x̂i,n , σ−2

n,k = ξn +
∑
i 6=k

σ−2
i,n .

Interpretation of mk→n(xn): Interference Cancellation: Substituting xm = x̂m,k + x̃m,k (”extrinsic”
information from variables m 6= n for measurement k) in yk =

∑
m

Ak,mxm + vk leads to the 1-1

measurement
(yk −

∑
m 6=n Ak,m x̂m,k ) = Ak,nxn + (vn +

∑
m 6=n Ak,m x̃m,k ) ,

with total ”noise” vn +
∑

m 6=n Ak,m x̃m,k of variance γ−1 +
∑

m 6=n A
2
k,mσ

2
m,k .

So the (deterministic) estimate and variance from this measurement by itself are

x̂k,n = A−1
k,n(yk −

∑
m 6=n Ak,m x̂m,k ) and σ−2

k,n =A2
k,n( 1

γ
+
∑
m 6=n

A2
k,mσ

2
m,k )−1.

36Tan, Li’10
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SBL using BP: MP Expressions in Matrix Form

Posterior marginals: xn, x̂f are jointly Gaussian and hence MMSE estimate leads to the messages
CN (xn; x̂n, σ

2
n): σ2

n = (ξn +
∑

i σ
−2
i,n )−1, x̂n = σ2

n(
∑

i σ
−2
i,n x̂i,n).

In matrix form (S′,M ′ of dimension M × N, S,M of dimension N ×M with entries
σ−2
n,k , x̂n,k , σ

−2
k,n, x̂k,n, respectively):

S′ = Ξ 1M1T
N + ST (1N1T

N − IN),
L = diag(STM) 1N1T

N − (S ◦M)T , M ′ = S′inv ◦ L, M ′n,k = x̂n,k .

Similarly, for the messages at the factor nodes, define C to be the matrix with entries A2
k,nσ

2
k,n (◦

represents Hadamard (element-wise) product,Ainv denotes element-wise inverse.)

C =
(

1
γ

IN + diag(BS′inv )
)

(1N1T
M)− B ◦ S′Tinv , S = Cinv ◦ Binv , B = A ◦ A,

V = (y − diag(AM ′)1N)1T
M + A ◦M ′T , M = Ainv ◦ V,

Computational complexity O(dMN), d � M,N.
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Existing Convergence Conditions of Gaussian BP

In loopy GaBP, if the mean of the posterior belief converges, it converges to the true posterior37.
Independently analyzed in 38.

Posterior variances (if initialized with values > 0) always converge to a unique stationary point,
but need not to the true posterior variance.

Further in39 show that the convergence condition of GaBP can be shown to be to related to the
spectral radius of a matrix |R| (element-wise absolute values), where J = I − R, with
J = γATA + Ξ, which is indeed the posterior precision matrix.

Diagonally dominant J is one such example which satisfies this condition.

37Rusmevichientong, Van Roy’01
38Weiss, Freeman’01
39Malioutov, Johnson, Willsky’06
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Existing Convergence Conditions of Gaussian BP (Cont’d)

In40shows that depending on the underlying graphical structure (Gaussian Markov Random Field
(GMRF) or factor graph based factorization) Gaussian BP (GaBP) may exhibit diffferent
convergence properties.

They prove that the convergence condition for the mean provided based on the factor graph
representation encompasses much larger class of models than those given by the GMRF based
walk-summable condition 41.

GaBP always converges if the factor graph is a union of a single loop and a forest (a forest is a
disjoint union of trees).

Moreover, they also analyze the convergence of the inverse of the message variances (message
information matrix) and analytically show that with arbitrary positive semidefinite matrix
initialization, the message information matrix converges to a uniques positive definite matrix.

So we can conclude that for BP there is a decoupling between the dynamics of the variance
updates and that of the mean updates.

(Generalized) approximate message passing (GAMP or AMP) or their variant vector approximate
message passing (VAMP) exhibit convergence to Bayes Optimal MMSE for i.i.d. or right
orthogonally invariant matrices A.

40Du, Ma, Wu, Kar, Moura’18, 41Malioutov, Johnson, Willsky’06
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Large System Analysis: Useful Results

Theorem 3 (Theorem 142)

Let QM ∈ CM×M be a Hermitian deterministic matrix and AM = XMDXH
M =

∑N
i=1 dixix

H
i , with

diagonal D and XM containining N independent columns xi with covariance matrix Θi . Also, assume
that QM , Θi have uniformily bounded spectral norms. Then, for any z > 0

1
M

tr{QM(AM + zIM)−1} − 1
M

tr{QMT(z)} M→∞−−−−→
a.s

0, with,

T(z) =

(
N∑
i=1

diΘi
1+ei (z)

+ zIM

)−1

, where,

ei (z) = e
(∞)
i (z) is defined as the unique positive solution of

ei (z) = 1
M

tr{diΘi

(
N∑
i=1

diΘi
1+ei (z)

+ zIM

)−1

}.

Lemma 4 (Lemma 4, Appendix VI, WagnerTIT2012)

xH
MAMxM − 1

M
tr{AM}

M→∞−−−−→ 0 when the elements of xM are iid with zero mean and variance 1/M and

independent of AM , and similarly when yM is independent of xM , that xH
MAMyM

M→∞−−−−→
a.s

0.

42Wagner, Couillet, Debbah, Slock’12
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering

ICASSP 2020, Dirk Slock, EURECOM, FRANCE 37 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

Bayes Optimality of Per Component MSE of Gaussian BP

Theorem 5

In the large system limit (LSL), under i.i.d A, the predicted (by BP or xAMP algorithms) per
component MSE (or the posterior variance σ2

n) converges exactly to the Bayes optimal values (i.e. the
diagonal elements of the posterior covariance matrix for LMMSE). This result being applicable for
AMP (Generalized AMP (GAMP) also under i.i.d A), since the derivation of AMP follows from BP
under the LSL.

Outline of the derivation:
In the large system limit, we can approximate (neglecting terms of O(A2

i,j))

σ−2
n,k = ξn +

∑
i σ
−2
i,n = σ−2

n , independent of k. Further we define S = diag(σ−2
n ).

Considering the term σ−2
k,n = A2

k,n( 1
γ

+
∑

m 6=n A
2
k,mσ

−2
m,k)−1, in the LSL it can be approximated by

σ−2
k,n = A2

k,n( 1
γ

+ Ak,:S
−1AT

k,:)
−1. Ak,:S

−1AT
k,:

M→∞−−−−→
a.s

1
N

tr{S−1} = τBP . Ak,: represents the k th

row of A. From posterior belief variances, it follows that MSE = tr{S−1}. Further we obtain,

σ−2
n = ξn + ( 1

γ
+ τBP)−1∑

i A
2
i,n,
∑

i A
2
i,n

M→∞−−−−→
a.s

1, thus σ−2
n = ξn + ( 1

γ
+ τBP)−1.

Define: Ai represents the matrix obtained by removing the i th column of A. Similarly, we define
Ξi .
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Outline of Derivation

τBP = 1
N

M∑
n=1

(ξn + ( 1
γ

+ τBP)−1)−1. (3)

Next step is to simplify the expression for LMMSE posterior covariance in the LSL using similar
techniques as above.

ΣL = Ξ−1 −Ξ−1AT (AΞ−1AT + 1
γ

)−1AΞ−1,

AT
i (AΓ−1AT + 1

γ
)−1Ai

M→∞−−−−→
(a)

Di,i , Di,i = e
1+ e

ξi

where (a) follows from first applying matrix inversion lemma and then Theorem 1 in 43 to the term
AT

i (AiΓ
−1

i
AT

i
+ 1

γ
)−1Ai in the denominator and e is defined as the unique positive solution of the

following fixed point equation ( 1
N

tr{ΣL} = τ),

e = ( 1
N

M∑
i=1

ξ−1
i

1+ e
ξi

+ 1
γ

)−1, τ = 1
N

M∑
i=1

ξ−1
i

1+ e
ξi

,

From e, 1
e
− 1

γ
= 1

N

M∑
i=1

ξ−1
i

1+ e
ξi

, 1
e

= 1
γ

+ τ,

τ = 1
N

M∑
i=1

ξ−1
i

( 1
γ

+τ)−1ξ−1
i +1

= 1
N

M∑
i=1

1

ξi+( 1
γ

+τ)−1 .

(4)

Conclusion: From (3), (4), τ, τBP can be obtained as the solution of same fixed point equation, which
also proves that per component MSE is Bayes optimal (comparing expressions of σ2

n and (ΣL)n,n).
43Wagner, Couillet, Debbah, Slock’12
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State of the Art: Approximate MP (xAMP)

AMP44 is originally derived from Gaussian approximations of loopy BP and first order Taylor
series approximations.

AMP is proven to be asymptotically Bayes optimal in MMSE (only for i.i.d. A).

Generalized AMP (GAMP)45 - AMP generalized to arbitrary input and output product
distributions. Applications in nonlinear (e.g. amplitude only) compressed sensing, 1-bit ADC
communication systems, etc. However, state evolution (SE) only for i.i.d. A.

S-AMP46 extends AMP to more general matrix ensembles (similar to VAMP). The fixed points of
S-AMP are stationary points of (EP-)VFE under a set of moment consistency constraints in the
large system limit (LSL).

Vector AMP (VAMP)47 - rigorous scalar SE that holds for the much broader class of
right-orthogonally invariant random matrices A.

ADMM-GAMP48- GAMP algorithm based on direct minimization of a LSL approximation of the
BFE (LSL-BFE), convergent for much wider class of A compared to GAMP.

44Bayati, Montanari’11
45Rangan’11
46Çakmak, Winther, Fleury’14
47Rangan, Schniter, Fletcher’19
48Rangan, Fletcher, Schniter, Kamilov’17
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Posterior Mean in the Large System Limit (LSL)

Further defining the following terms,

zk,n = yk −
∑
m 6=n

Ak,mx̂m,k , So x̂k,n = A−1
k,nzk,n. (5)

Also, in the LSL, x̂n,k can be written as, x̂n,k = x̂n + δn→k , where δn→k is of the O( 1√
N

). This

approximation follows from writing x̂n,k = σ2
n,k(
∑
i

σ−2
i,n x̂i,n − σ

−2
k,nx̂k,n) = x̂n + δn→k , with

δn→k = σ2
n,kσ

−2
k,nx̂k,n, where σ−2

k,nx̂k,n ∝ Ak,n ∝ 1√
N

. Substituting x̂n,k in zk,n,

zk,n = yk −
∑
m

Ak,mx̂m −
∑
m

Ak,mδm→k + Ak,nx̂n + O( 1
N

) = zk + δk→n, all the terms containing A2
i,j or

Ai,jδj→i becomes O( 1
N

) and δk→n = Ak,nx̂n, also here

zk = yk −
∑
m

Ak,mx̂m −
∑
m

Ak,mδm→k . (6)

x̂n,k ≈ σ2
n( 1
γ

+ τBP)−1∑
i 6=k Ai,nzi,n. (7)

We can write x̂n,k = fn(
∑

i 6=k Ai,nzi,n). Here fn is a linear function for the Gaussian case (i.e.

fn(x) = σ2
n( 1
γ

+ τBP)−1x).
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Posterior Mean in the LSL (Onsager Correction)

Performing a first order Taylor series approximation of f around∑
i

Ai,nzi,n, x̂n,k = fn(
∑
i

Ai,nzi,n)− Ak,nzk,nf
′
n (
∑
i

Ai,nzi,n), f ′n being derivative evaluated at
∑
i

Ai,nzi,n.

Further substituting for zi,n from (5),

x̂n,k = x̂n + δn→k , x̂n = fn(
∑
i

Ai,nzi +
∑

i Ai,nδi→n)

and δn→k = −Ak,nzk f
′
n (
∑
i

Ai,nzi ).
(8)

Substituting for δi→n = Ai,nx̂n and with the large system approximation
∑

i A
2
i,n

M→∞→ 1,

x̂n = fn(
∑
i

Ai,nzi +
∑
i

A2
i,nx̂n) = fn(

∑
i

Ai,nzi + x̂n).

In vector form: x̂ = f(AT z + x̂), which is the AMP recursion for the mean, where (f(x))n = fn(xn).
Also from (6), substituting δn→k from (8) and defining zt = [z1, · · · , zN ]T at iteration t :

zt = (y − Ax̂t) + 1
δ

zt−1 < f ′(AT zt−1)>, (9)

where δ = N
M

is a constant, < f ′(x)>= 1
M

∑M
m=1 f

′
m(xm), and 1

δ
zt−1 < f ′(AT zt−1)> is the Onsager

term.
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Original AMP Iterations and SBL-AMP

The difference in AMP vs SBL-AMP is that in AMP fm(x) = f (x): same function for every component.

The AMP iterations (for any Lipschitz-continuous component-wise shrinkage function f and i.i.d x) can
be written as zt = y − Ax̂t + 1

δ
zt−1 < f′(x̂t−1 + AT zt−1) >,

x̂t+1 = f(x̂t + AT zt).

Onsager correction decouples the input to AMP49 rt = x̂t + AT zt = x +N (nt ; 0, τt IM)

in case of N (x ; 0, 1
ξ

I),we get LMMSE x̂t+1 = f(rt) = bt rt , bt =
1
ξ

1
ξ

+τt

and State Evolution (SE) τt+1 = 1
γ

+ 1
δ

(1− bt)2 1
ξ

+ 1
δ
b2
t τt = 1

γ
+ 1
δ

(ξ + τ−1
t )−1.

SBL-AMP (for SBL x ∼ N (0,Ξ−1)) - Iterations decouple rt : rt = x +N (nt ; 0, τt I) leading to
x̂t+1 = f(rt) = Ft rt , with diagonal Ft = (IM + τtΞ)−1.
Define Am as the mth column of A and Am as the matrix excluding column m, vector δm→k contains as
entries δn→k , n 6= m :

Consider mth noise element nm,t = AT
mAmx̃m,t − AT

m∆m + AT
mv , ∆m,k = Ak,mδm−>k ,

leading to τt+1 = 1
γ

+ 1
δ

1
M

M∑
n=1

(ξn + τ−1
t )−1.

49Bayati, Montanari’11
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Factor Graph for Vector BP-SBL

Figure 7: Factor Graph for the Vector BP from which GVAMP-SBL is derived.

Treating all measurements y jointly leads to a tree structured factored graph, but no more extrinsic
information between measurements, which motivates duplicating x .

For the factor graph, we use the factorization of the posterior as follows

p(x , ξ, γ) ∝ py (y/Ax2, γ
−1I)px(x1/ξ)δ(x1 − x2)[

∏
i

pξi (ξi )]pγ(γ),

where we created two identical variables x1 = x2 = x similar to 50 .

50Rangan, Schniter, Fletcher’19
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Unitarily Invariant SBL using Vector AMP (VAMP)

Generalized AMP (GAMP) and in particular GAMP-SBL51extends AMP to a non-i.i.d. prior but
is limited to i.i.d. A, leading to the introduction of damping to increase chances of convergence.

Consider the economy SVD A = UΛVT ,UTU = Id ,V
TV = Id , d = rank(A).

The class of Right-Orthogonally Invariant (ROI) A considers a uniformly distributed random
orthogonal factor V (Haar distributed). ROI: the distribution of AW or VTW is the same as that
of A or VT for any square orthogonal W.

VAMP52exploits ROI A and its convergence is robust for a much large set of matrices A than
AMP. But VAMP does not apply directly to SBL since it is derived for i.i.d. x .

Orthogonal AMP (OAMP)53unitarily invariant AMP, using decorrelated linear estimation and
divergence free nonlinear estimator (Onsager term vanishes).

We propose Generalized VAMP-SBL (GVAMP-SBL) which combines ROI A with non i.i.d. x as
needed for SBL.

We also propose SVD-GAMP-SBL which is SBL-AMP applied to y ,A replaced by UT y ,ΛVT

(SBL-AMP is GAMP-SBL for the case of i.i.d. Gaussian measurements).

SBL using UTAMP (AMP with unitary transformation)54, derived from GAMP (using heuristics),
is quite approximate due to the scalar EP (averaging of the different variance parameters in
GAMP).

46Shoukairi, Rao’18, 47Rangan, Schniter, Fletcher’19, 48Ma, Ping’17, 49Luo, Guo, Huang, Xi’19
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Useful Results for MMSE Estimation with Non-Gaussian Distributions

We use the following two results from Lemma 250, which we restate here. For any
random variable whose posterior distribution is of the form

fx(x |r , τ) = 1
Z(r)exp(ln f (x) + τxr),

where Z (r) is the normalization constant. Then, the following relation between the
mean and variance of the posterior for x holds

∂
∂r lnZ (r) = E(x |r) = g(r , τ) , ”denoising function”
∂2

∂r2 lnZ (r) = g ′(r , τ) = τ Var(x |r , τ) .

Here, g ′(r , τ) represents the derivative w.r.t. the first argument r and Var(x |r , τ)
represents the variance of x w.r.t. the posterior distribution fx(x |r , τ).

50Rangan’11
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering

ICASSP 2020, Dirk Slock, EURECOM, FRANCE 46 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

GVAMP-SBL Derivation

We start by initializing the MP with the Gaussian approximation as, mδ→x1
(x1) = N (x1; r1,Diag(τ1)−1),

so a diagonal EP instead of the scalar EP as in VAMP 51. Diagonal EP being motivated by the diagonal
prior covariance in SBL. Using the MP rules discussed, we can write the belief at the node x1 as (we omit
the iteration index),

q(x1) ∝ px (x1)N (x1; r1,Diag(τ1)−1).

For a given estimate of the hyperparameter, we obtain the value of the mean of the belief as,
x̂1,n = g1,n(r1,n, τ

−1
1,n ), where the expectation is w.r.t the density function

p(x1,n|r1,n, τ
−1
1,n ) = exp

[
−
τ1,n

2
|r1,n − x1,n|2 + ln p(x1,n)

]
.

The corresponding posterior variance can be obtained as, η−1
1,n = τ−1

1,n g
′
1,n(r1,n, τ

−1
1,n ).

Diagonal EP: Projφ(q(x1)) = N (x1; x̂1,Diag(η1)−1), φ represents the set of multivariate Gaussian with
diagonal covariance.

According to EP rule, nx1→δ(x1)(= mδ→x2
(x2)), which is the ”extrinsic info” becomes

nx1→δ(x1) =
N (x1; x̂1,Diag(η1)−1)

N (x1; r1,Diag(τ1)−1)
= N (x1; (η1. ∗ x̂1 − τ1. ∗ r1)./(η1 − τ1),Diag(η1 − τ1)−1).

51Rangan, Schniter, Fletcher’19
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GVAMP-SBL (EP-BP, LSL justified // AMP)

Figure 8: Illustration of the GVAMP-SBL.

Further, we can obtain the belief at node x2 as q(x2) = N (x2; r2,Diag(τ2)−1)py (y/Ax2). The point
estimate (or the LMMSE mean) becomes after diagonal EP

x̂2 = g2(r2, τ2)=diag((γ̂AT A+Diag(τ2)−1)−1)︸ ︷︷ ︸
Diag(η2)

(γ̂AT y +Diag(τ2)−1r2),

and after using SVD of A, g′2(r2, τ2) = diag((γ̂VΛ2VT +Diag(τ2))−1)Diag(τ2)−1. Further, we obtain the
”extrinsic update” nx2→δ(x2)(= mδ→x1

(x1)) as follows

nx2→δ(x2) ∝ N (x2;x̂2,Diag(η2)−1)

N (x2;r2,Diag(τ2)−1)
= N (x2; (η2. ∗ x̂2 − τ2. ∗ r2)./(η2 − τ2),Diag(η2 − τ2)−1).
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Proposed GVAMP-SBL

Initialization: τ
(0)
1 ≥ 0, r(0)

1 = 0.

Denoising

x̂ (t)
1 = g1(r(t)

1 , τ
(t)
1 )

η
(t)
1 = τ

(t)
1 ./g′1(r(t)

1 , τ
(t)
1 )

τ
(t)
2 = η

(t)
1 − τ

(t)
1

r(t)
2 = (η

(t)
1 . ∗ x̂ (t)

1 − τ
(t)
1 . ∗ r(t)

1 )./τ
(t)
2

LMMSE Estimation
x̂ (t)

2 = g2(r(t)
2 , τ

(t)
2 )

η
(t)
2 = τ2k ./g′2(r(t)

2 , τ
(t)
2 )

τ
(t+1)
1 = η

(t)
2 − τ

(t)
2

r(t+1)
1 = (η

(t)
2 . ∗ x̂ (t)

2 − τ
(t)
2 . ∗ r(t)

2 )./τ
(t+1)
1

Hyperparameter Estimation (using MF [Section 3 52])

ξ̂
(t)
i = a+1/2

|x̂(t)
1,i |

2+η
(t)−1
1,i

, γ̂(t) = c+N/2

<‖y−Ax‖2>/2+d

./ or .∗ represent elementwise multiplication or division as in Matlab.
xk,i represents the i th element in any vector xk above.

52Thomas, Slock’18
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Proposed (LSL-)SVD-GAMP-SBL
Initialization: Initialize τ

(0)
x > 0 and x (0). Set s(−1) = 0, t = 0, y ′ = UT y . Below, |A|2 represents the

componentwise magnitude square of A.
Repeat Until Converged

τ
(t)
p = |ΛVT |2τ (t)

x (
M,N→∞→ 1Tτ

(t)
x

M
Λ21M : LSL-SVD-GAMP-SBL)

p = ΛVT x (t) − τp. ∗ s(t−1)

τ
(t)
s = 1./(τ

(t)
p + γ̂(t)−11)

s(t) = τ
(t)
s . ∗ (y ′ − p)

1./τ (t)
q = |VΛ|2τ (t)

s = diag(VΛTdiag(τ
(t)
s )ΛVT )1 (

M,N→∞→ (1/τ
(t)
q )1 : LSL-SVD-GAMP-SBL)

r(t) = x (t) + τ
(t)
q . ∗ VΛT s(t)

τ
(t+1)
x = τ

(t)
q . ∗ g′1(r(t), τ

(t)
q )

x (t+1) = g1(r(t), τ
(t)
q )

Hyperparameter estimation remains the same as in GVAMP-SBL.

Intuition: After the unitary transformation with UT , y ′ is the observation and ΛVT plays the role
of the measurement matrix in which V can be treated as i.i.d. (approximately in the LSL).

Further, it can be verified that |ΛVT |2τ (t)
x = diag(ΛVTdiag(τ

(t)
x )VΛT )) 1. Using Corollary 1 in

53 VTdiag(τ
(t)
x )V converges a.s. to

1TMτ
(t)
x

M
IM for Haar V.

53Takeuchi’20
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Complexity Issues with GVAMP-SBL

In original VAMP, performing economy SVD of A = UΛVT and applying matrix inversion
lemma, (γATA + τ−1

2 I)−1γAT y reduces to γV(γΛ2 + τ−1
2 I)−1ΛUT y . Hence this does not

require any big matrix inversion. All the substantial computations reduce to matrix-vector
multiplications. Note that all the precision matrices are multiples of identity in VAMP, so τ1I, τ2I
(due to scalar EP whereas it is diagonal EP in GVAMP-SBL).

Matrix inverse operation in the computation of g2(., .) or g′2(., .) does not simplify w.r.t. LMMSE.

We can use deterministic equivalents for ((γ̂VTΛ2V+Diag(τ
(t)
2 ))−1)i,i resulting from the large

system analysis for Haar (random unitary) matrices as in 54 (see next slide).

Based on some different but related work in 55 that exploits the asymptotic freeness concept from

free probability, to justify the approximation ((γ̂VTΛ2V+Diag(τ
(t)
2 ))−1)i,i = (δ + τ

(t)
2,i )−1, for

some scalar δ, we can guess the expression for the desired deterministic equivalents.

The same work appears to consider that the whole matrix (γ̂VTΛ2V+Diag(τ
(t)
2 ))−1 can be

considered as diagonal, which may be OK for the resulting error covariance but not for the
LMMSE estimation operation.

54Couillet, Hoydis, Debbah’12
55Çakmak, Opper’18
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Large System Simplifications

Lemma 6

Let P be any Hermitian matrix with bounded spectral norm and let V ∈ CM×N be N < M columns of
a Haar distributed (unitary) random matrix. Let A be a nonnegative definite matrix with ‖A‖ <∞
(‖A‖ represents the spectral norm) and D be any diagonal matrix with positive entries. Then the
following convergence result holds almost surely,

1
M

tr{A(VPVT + D)−1} − 1
M

tr{A(eI + D)−1} a.s.−−→ 0 .

The scalar e can be obtained as the unique solution (fixed point) of the following system of equations,

e = 1
M

tr{P(eP + (1− ee)IN)−1},
e = 1

M
tr{A(eIM + D)−1}.
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Simulations Setup

To motivate further the posterior variance prediction analysis detailed in Theorem 5, we compare
the posterior variances of each xi for different approximate inference methods based on BP or MF
in Figure 9.

We compare SAVE and various AMP based algorithms which are robust to measurement
matrices which are beyond i.i.d. UTAMP-SBL is the algorithm derived in 56 based on the SVD
transformation of A from GAMP.

Legend “GAMP-SBL” corresponds to the algorithm in 57.

Dimensions of A,M = 1000,N = 500. The power delay profile (variances of xi ) for the SBL
model is chosen as d i−1, with d = 0.995 and starting with index i = 1.

56Luo, Guo, Huang, Xi’19
57Shoukairi,Schniter,Rao’18
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Per Component MSE under i.i.d. A case
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Figure 9: Per component MSE (posterior variance), i.i.d A.

Key Points
SAVE has such ridiculously low posterior variance, which clearly exhibits the MF suboptimality.
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Convergence Behaviour
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Figure 10: No of iterations to converge as a function of N.

Key Points:
The complexity of GVAMP-SBL is O(4MN)× Tit1 and that of Algo 2 being O(MN)× Tit2,
where Tit1,Tit2 represents the number of iterations.
It is clearly evident from Figure that GVAMP-SBL converges in very few iterations (less than 10)
compared to Algo 2 which takes more than 100 iterations to converge.
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Partial Fourier Matrix Case
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Figure 11: Per component MSE (posterior variance), Partial Fourier A.
Key Points:

In the case of partial Fourier measurements, we select A = SU , where U represents the M ×M
discrete Fourier transform matrix (DFT) and S ∈ 0, 1N×M is a subsampling matrix.
In this case, we observe that the posterior variance of the proposed GVAMP-SBL converges
exactly to the LMMSE estimator values. However, the SVD based GAMP-SBL versions are
having convergence issues which lead to suboptimal performance.
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Open Issues?

Robustness of GVAMP-SBL to nonlinear measurement case, with applications:

Quantized compressed sensing (Finite Resolution ADCs in MaMIMO)
Binary linear classification
Phase retrieval
Robust regression (Case of outliers or non-AWGN noise)

State evolution analysis for GVAMP-SBL
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Why Mismatched CRB (mCRB)?
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VB allows to attain lower MSE than the (deterministic) CRB. So, consider the Bayesian CRB?

A Bayesian CRB is valid only if the (Gaussian) prior for x is the correct prior. VB converge to the
most appropriate priors even if in fact the parameter x are deterministic! This requires mCRBs.

mCRB corresponds to Laplace approximation58 of MAP or VB.
Evaluation of marginal likelihood or free energy using Laplace’s method - a Gaussian
approximation of the posterior q around a maximum a posteriori (MAP) estimate, motivated by
the fact that in the asymptotic regime (large amount of data or high SNR), the posterior
approaches a Gaussian around the MAP point59.

58Šḿıdl, Quinn’05
59Fortunati, Gini, Greco, Richmond’17
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Convergence Point for mCRB (for Laplace Approximation)

Main message: with approximate posteriors in all variants of MP, the CRB needs to be replaced
by mCRB. Bayesian mCRB in principle, for which the SotA is not yet fully developed.

Mismatches: fictitious prior (for empirical Bayes, e.g. James-Stein) + replace the actual posterior
p() by q().

Under a mismatched distribution model, the convergence point θ (also called as pseudo true
parameter) is used to evaluate the effectiveness of the estimator, since no true parameter vector
may exists under the assumed distribution q.

The VB convergence point (of complete θ) is the MAP of Ep(
∑

i ln(qθi (θi ))) (assuming large
amount of data), so ln of product of q’s = sum of ln of q’s and converges to it’s expected value
according to actual pdf p (LLN).

θi = arg max
θi

Ep(y,θ0) ln q(θi )

= arg max
θi

Ep(y|θ0) ln < p(y ,θ) >i .

The expectation over p(θ) (being deterministic) disappears above.
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Outline of the mCRB Derivation

We define ζ = θ̂ − θ, θ̃ = θ − θ0, θ̃ = θ̂ − θ0 = ζ + θ̃. For any choice of score
function η using a matrix generalization of the Cauchy Schwartz inequality
[RichmondTSP2015, Kantor:15], the error correlation matrix can be written as,

mCRB = R
θ̃θ̃

= Epθ̃ θ̃H ≥ RζηR−1
ηηRηζ + θ̃ θ̃

H
,

where Rζη = E(ζηH) and Rζζ = E(ζζH).

The choice of the score function: it should be zero mean and depends on the
sufficient statistic for estimating θ.

We chose the score function: η = ∂
∂θ∗ ln q(θ) |θ.

The Taylor series expansion of the data likelihood around θ is given by,

log q(y ,θ + ∆θ) = log q(y ,θ) + ∆θH ∂ log q(y ,θ)
∂θ∗ |θ +

∆θH ∂2 log q(y ,θ)
∂θ∗θT |θ ∆θ + o(‖∆θ‖2).
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Approximations in the Asymptotic Limit

Equating the derivative w.r.t ∆θ∗ to be zero yields an approximation of the error term ζ
as,

ζ = −(
∂2 log q(y ,θ)

∂θ∗θT
|θ)−1 ∂ log q(y ,θ)

∂θ∗
|θ .

We can replace the Hessian and ∂ log q(y ,θ)
∂θ∗ above by Ep(y |θ)(

∂2 log q(y ,θ)
∂θ∗θT ) and

Ep(y |θ)(
∂ log q(y ,θ)

∂θ∗ ), respectively in the asymptotic limit.

We arrive at,

Ep(y |θ)
∂2 log q(y,θ)
∂θ∗θT = −VHQV,

Q = 1
σ2 blkdiag(0,VH

f <HHH > Vf + < α > I, < FHF > + < β > I),

Ep(y |θ)
∂2 log q(y,θ)
∂θ∗θT | θ = −VHQV.
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Optimal Partitioning of BP/MF nodes

mCRB refers to mismatched CRB (CRB under model misspecification)60.

In the combined BP/VB framework, applied to joint detection and parameter estimation,
traditionally BP is applied to the detection part, whereas the simpler VB is applied to the
parameter estimation part.

Theorem: If the parameter partitioning in VB is such that the different parameter blocks are
decoupled at the level of Fisher Information Matrix (FIM), then VB is not suboptimal in terms
of (mismatched) Cramer-Rao Bound. If a finer partitioning granularity is used (such as up to
scalar level as in MF), then VB becomes quite suboptimal, which can be alleviated by using BP
instead. mCRBBP = blkdiag(CRB) = blkdiag(FIM−1),

mCRBVB = (blkdiag(FIM))−1,

So,

mCRBBP = mCRBVB if FIM = blkdiag(FIM).

Hence: BP may also improve parameter estimation.
But loopy BP may not reach it’s mCRB.

60Richmond,Horowitz’15
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Tensor Representation (Channel Tracking in MaMIMO OFDM)

Sampling across Doppler space and stacking all the subcarrier and sampled (in Doppler) elements
as a vector

vec(H(t)) =
L∑

i=1

xi,t ht(φi )⊗ hr (θi )⊗ vf (τi )⊗ vt(fi ) = A(t)xt

4-D Tensor model, Delay, Doppler and Tx/Rx spatial dimensions.

Array response itself: Kronecker structure in the case of polarization or in the case of 2D antenna
arrays with separable structure [Sidiropoulos:icassp18].

User mobility changes the scattering geometry and path coefficients.

Tensor based KF proposed here avoids the off-grid basis mismatch issues.
Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering
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Time Varying Sparse State Tracking
Sparse signal xt is modeled using an AR(1) process with diagonal correlation coefficient matrix F .

Define: Ξ = diag(ξ), F = diag(f).
fi : correlation coefficient and xi,t ∼ CN (xi,t ; 0, 1

ξi
). Further, wt ∼ CN (wt ; 0,Γ−1 = Ξ−1(I− FFH))

and vt ∼ CN (vt ; 0, γ−1I). VB leads to Gaussian SAVE-Kalman Filtering (GS-KF).
Joint Dictionary Learning and Sparse Excitation Tracking.
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Gaussian BP-MF-EP KF

Proposed Method: Alternating optimization between non linear KF for the sparse states (plus the
hyperparameters) and BP for dictionary learning (DL).

Diagonal AR(1) ( DAR(1) ) Prediction Stage: Since there is no coupling between the scalars
in the state update , it is enough to update the prediction stage using MF. However, the
interaction between xl,t and fl requires Gaussian projection, using expectation propagation (EP).
More details in 61.

yn− factor node, xl− variable node. (l , n) or (n, l) to represent the messages passed from l to n

or viceversa. Gaussian messages from yn to xl parameterized by mean x̂
(t)
n,l and variance ν

(t)
n,l .

The prediction about xt can be computed from the time update equation of the standard Kalman

filter, Here we denote f̂k|t−1 as the estimate of fk given the observations till t − 1 and f̃k|t−1

represents the error in the estimation. Similary we can represent xk,t−1 = x̂k,t−1|t−1 + x̃k,t−1|t−1,
x̃k,t−1|t−1 being the estimation error.

x̂k,t|t−1 = f̂k|t−1x̂k,t−1|t−1, x̃k,t|t−1 = f̂k|t−1x̃k,t−1|t−1 + f̃k|t−1xk,t−1 + wk,t ,

=⇒ σ2
k,t|t−1

(a)
= |f̂k|t−1|2σ2

k,t−1|t−1 + σ2
fk

(|x̂k,t−1|t−1|2 + σ2
k,t−1|t−1) + 1

γ̂k |t−1
,

61Thomas,Slock’asilo19DynamicSBL
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Filtering Stage

Measurement Update (Filtering) Stage: For the measurement update stage, the posterior for
xt is inferred using BP. In the measurement stage, the prior for xl,t gets replaced by the belief

from the prediction stage. We define dl,t=(
N∑

n=1

ν
(t)−1
n,l )−1 , rl,t=dl,t(

N∑
n=1

x̂
(t)
n,l

ν
(t)
n,l

+
x̂l,t|t−1

σ2
l,t|t−1

).

σ−2
l,t|t = ξl,t + d−1

l,t , x̂l,t|t =
rl,t

1+dl,tσ
−2
l,t|t

.

With the hard constraints, the equivalent observation model can be written as,

yn −
∑M

l′ 6=lAn,l′ x̂l′,n = An,lxl +
∑M

l′ 6=lAn,l′ x̃l′,n + vn, where,
x̃l′,n ∼ CN (x̃l ; 0, νl′,n), andmfδn→xl

∝ CN (xl ; x̂n,l , νn,l),
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Lag-1 Smoothing Stage for Correlation Coefficients f

yt = A(t)Fxt−1 + ṽt , where ṽt = A(t)wt + vt , ṽt ∼ CN (vt ; 0, R̃t)

We show in Lemma 162that KF is not enough to adapt the hyperparameters, instead we need at
least a lag 1 smoothing (i.e. the computation of x̂k,t−1|t , σ

2
k,t−1|t through BP). For the smoothing

stage, we use BP.

Gaussian Posterior for xt :

σ
−2 ,(i)
k,t−1|t = (f̂ 2

k|t + σ2
fk |t)AH

k (t)R̃−1
t Ak(t) + σ−2

k,t−1|t−1,

< x
(i)
k,t−1|t >= σ

2 ,(i)
k,t−1|t(f̂

H
k|tA

H
k (t)R̃−1

t (yt − Ak(t)Fk|t < x (i−1)

k,t−1|t >) +
x̂k,t−1|t−1

σ2
k,t−1|t−1

).

Applying the MF rule, the resulting Gaussian distribution for f has mean, σ−2
fi |t

and variance, f̂i|t .

σ−2
fi |t

= (|x̂i,t−1|t |2 + σ2
i,t−1|t)AT

i (t)R̃−1
t A(t)i ,

f̂i|t = σ2
fi |t x̂

H
i,t−1|tA

H
i (t)R̃−1

t (yt − Ai (t)F̂i|t x̂i,t−1|t).

R̃t = A(t)Γ−1A(t)H + 1
γ

I.

62Thomas,Slock’asilo19DynamicSBL
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Combined BP-MF-EP DAR SBL
Initialization f̂l|0, γ̂l|0 = a

b , γ̂0 = c
d , x̂l,0|0 = 0, σ2

l,0|0 = 0, ∀l . Define Σt−1|t−1 = diag(σ2
l,t|t−1).

for t = 1 : T do

Prediction Stage (Estimation of xt from Yt−1):
Compute x̂l,t|t−1, σ

2
l,t|t−1 using EP.

Filtering Stage (BP for x̂l,t|t , σ
−2
l,t|t): Repeat until convergence

Compute x̂
(t)
n,l , ν

(t)
n,l . and update x̂l,t|t , σ

−2
l,t|t . • Compute ν

(t)
l,n, x̂

(t)
l,n .

Smoothing Stage (Estimation of xt from Yt+1):

Initialization: Σ
(0)

t−1|t = Σt−1|t−1, x̂
(0)

t−1|t = x̂t−1|t−1. Define

B(t) = FT A(t) T R̃−1
t A(t)F + Σt−1|t−1, ht = FT A(t) T R̃−1

t yt , R̃t = A(t)Γ−1A(t) H + 1
γ I.

Pi,j =
−B

(t) 2
i,j

B
(t)
i,i +

∑
k∈N (i)\j

Pk,i

, µi,j =(hi,t +
∑

k∈N (i)\j
Pk,iµk,i ),∀i , j .

σ−2
i,t−1|t =B

(t)
i,i +

∑
k∈N (i)

Pk,i , x̂i,t−1|t =σ2
i,t−1|t(hi,t +

∑
k∈N (i)

Pk,iµk,i )

Σ
−(i)
t−1|t = (F̂H

|t A(t) H R̃−1
t A(t)F̂|t + diag(A(t) H R̃−1

t A(t))ΣF |t + Σ
−(i−1)
t−1|t ).

x̂ (i)
t−1|t = Σ̂

(i)
t−1|t(Σ̂

−1
t−1|t−1

x̂ (i−1)
t−1|t + F̂HA(t) H R̃−1

t yt).

Estimation of hyperparameters (Define: x′k,t = xk,t − fkxk,t−1, ζt = βζt−1 + (1− β) <
∥∥∥yt − A(t)xt

∥∥∥2
>):

Compute f̂l|t , σ
2
fl|t

using MF rule, γ̂t = c+N
(ζt+d) and γl|t = (a+1)

(<
∣∣∣x′k,t ∣∣∣2>|t+b)

.
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Identifiability

Non-singularity of FIM =⇒ local identifiability.

Lemma: The AR(1) model parameters require (at least lag 1) smoothing for
identifiability.
For the AR(1) parameters, we obtain the FIM submatrix

Jx,t = Γ + γA(t) HA(t) + ΓF (FΓFH + Jx,t−1)−1ΓFH ,
JF ,t = JF ,t + D− JFx,t(FΓFH + JF ,t−1)−1JT

xF ,t
with D = (I− FFH)−1, JxF ,t = FΓ[Jx,t + FΓF ]−1JxF ,
JΓ,t = D−D(D + JΓ,t−1)−1D with D = Γ−2, Jγ,t = N/γ2.

FIM recursions show that filtering may be enough for the estimation of AR(1)

parameters. However, estimation of f by MF shows that we need the true value f to get f̂.

p(f/xt , yt) = p(f/xt). This suggests that posterior of f given xt does not depend on yt or
in other words the observations doesn’t provide any extra information about f other than
the prior p(f/xt) and hence f is globally not identifiable 63.

63Gelfand,Sahu’99
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Numerical Result-DAR SBL
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Figure 12: DAR-SBL: NMSE as a function of time.
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Mysteries Remaining

The mCRB analysis indicates that the x part needs to be treated jointly, motivating joint VB or
BP. We conjecture that whatever local identifiability analysis indicates as necessitating joint
treatment for optimality requires indeed joint treatment.

But local analysis may not capture all dependencies? The local analysis (recursive CRB) shows
that filtering would be sufficient for local identifiability of f and that the fi and the xi are
decoupled. However, global identifiability analysis reveals that filtering is not enough for
identifiability of f and that the estimation of xi and fi is coupled.

The gap between local and global analysis may be reflected in the observation that the
hyperparameters could be estimated (in what corresponds to filtering) by Type-II Maximum
Likelihood (ML) 64 (ie ML for hyperparameters, with the random parameters x integrated out).

Characterization of local and global identifiability for a mix of Bayesian and Deterministic
parameters.

Fast version of type-II ML for dynamic AR-SBL.

64Giri, Rao’16
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Kronecker Structured Tensor Models
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Tensor signals appear in many applications: massive multi-input multi-output (MIMO) radar,
massive MIMO (MaMIMO) channel estimation, speech processing, image and video processing.
Exploiting tensorial structure beneficial compared to estimating unstructured dictionary.
From Caononical Polyadic Decompositions (CPD) to Tucker Decompositions (TD).
The signal model for the recovery of a time varying sparse signal under Kronecker structured
(KS) dictionary matrix can be formulated as

Observation: yt = (A1(t)⊗ A2(t)....⊗ AN(t))︸ ︷︷ ︸
A(t)

xt + vt , yt = vec(Yt)

State Update: xt = Fxt−1 + wt ,

Yt ∈ CI1×I2...×IN is the observations or data at time t, Aj,i (t) ∈ CIj , the factor matrix
Aj(t) = [Aj,1(t), ...,Aj,Pj (t)] and the overall unknown parameters are [[A1(t), ...,AN(t); xt ]], xt is

M(=
N∏
j=1

Pj)-dimensional sparse center tensor and wt , vt are the state or measurement noise.
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Dictionary Learning using Tensor Signal Processing

≈

��,1

�1,1

��,1

�1 +    .................   +Y
.

.

��

��

��,��

�1,�1

��,��

=

�1

��

�

Let Yi1,...,iN represents the i1i2...i
th
N element of the tensor and

y = [y1,1,...,1, y1,1,...,2...., yI1,I2,...,IN ]T , then it can be verified that [Sidiropoulos:TSP17],
yt = (A1(t)⊗ A2(t)...⊗ AN(t))xt + wt ,w ∼ N (w ; 0, γ−1I),
Matrix Unfolding:Y(n) = An(t)X(n)(AN(t)⊗ ...An+1(t)⊗ An−1(t)...⊗ A1(t))T .

Aj(t) is of dimension, Ij × Pj and the resulting Tensor is CI1×....×IN .
Retaining the Tensor structure in the dictionary matrix leads to better estimates than using the
matricized version for A and learning it.

Less free variables to be estimated in the Tensor structured case.
Variational Bayesian Inference using the following approximate posterior

q(x ,α, γ,A) = qγ(γ)
M∏
i=1

qxi (xi )
M∏
i=1

qξi (ξi )
N∏
j=1

Pj∏
i=1

qAj,i (Aj,i ), =⇒ SAVED-KS DL Or

q(x ,α, γ,A) = qγ(γ)
M∏
i=1

qxi (xi )
M∏
i=1

qξi (ξi )
N∏
j=1

qAj (Aj) =⇒ Joint VB for DL
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Suboptimality of SAVED-KS DL and Joint VB

From the expression for the error covariance in the estimation of the factor Aj,i (SAVED-KS DL

in 65) (tr{(
1⊗

k=N,k 6=j

< AT
k (t)A∗k (t) >) < X(j) TX(j) >}I), =⇒ it does not take into account the

estimation error in the other columns of Aj(t). The columns of Aj(t) can be correlated, for e.g.
if we consider two paths (say i , j) with same DoA but with different delays, the delay responses
vf (τi (t)) and vf (τi (t)) may be correlated.
The joint VB estimates (mean and covariance) can be obtained as

MT
j = ÂT

1,j
(t) =< γ > Ψ−1

j BT
j ,

Ψj = (< γ >< X(j)(
1⊗

k=N,k 6=j

< AT
k (t)A∗k (t) >)X(j) T >),

(10)

where Vj =< X(j) >< (
1⊗

k=N,k 6=j

Ak(t))T > and Bj is defined as with the first row of (Y(j)VT
j )

removed. However, the joint VB involves a matrix inversion and is not recommended for large
system dimensions. Nevertheless, it is possible to estimate each columns of Aj(t) by BP, since
each column estimate can be expressed as the solution of a linear system of equation from (10),

ÂT
j,i (t) = Ψ−1

j bj,i . bj,i represents the i th column of BT
j .
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Optimal Partitioning of the Measurement Stage and KS DL
Lemma 7

For the measurement stage, an optimal partitioning is to apply BP for the sparse vector xt and VB
(SAVED-KS) for the columns of the factor matrices Aj,i (t) assuming the vectors Aj,i (t) are
independent and have zero mean. However, if the columns of Aj(t) are correlated, then a joint VB,
with the posteriors of the factor matrices assumed independent, should be done for an optimal
performance.

Proof: Follows from Lemma 166, where the main message was that if the parameter partitioning
in VB is such that the different parameter blocks are decoupled at the level of FIM, then VB is
not suboptimal in terms of (mismatched) Cramer-Rao Bound (mCRB).

yt = (
M∑
r=1

xr,tFr )︸ ︷︷ ︸
F (xt )

(
N⊗
j=1

Φj,t)︸ ︷︷ ︸
f(Φt )

+wt . J(Φt) = [J(Φ1,t) ..... J(ΦN,t)]

where, J(Φj,t) = F (xt)(Φ1,t ⊗ ...IIjPj ....⊗ΦN,t),
FIM =
E(γ)J(Φt )T J(Φt ) 0 0 0

0 E(γ)J(xt )T J(xt ) + E(Ξ) 0 0
0 0 aE(Ξ) 0

0 0 0 (N + c − 1)E(γ−2)
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BP-MF-EP Outperforms SAVED-KS DL
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SE

BP-MF-EP with ALS for DL

SAVED-KS with DL

BP-MF-EP with BP for DL

BP-MF-EP with Joint VB for DL

BP-MF-EP with Known Dictionary Matrix

Figure 13: Static SBL: NMSE as a function of N.

ALS- Alternating Least Squares.
Exponential power delay profile for xt .
30 non zero elements in xt , same support across all time.
Dimensions: 3-D Tensor (4, 8, 8), with M = 200.

Nonlinear MMSE using Linear MMSE Bricks and Application to Compressed Sensing and Adaptive Kalman Filtering
ICASSP 2020, Dirk Slock, EURECOM, FRANCE 76 / 81



Introduction Static SBL Combined BP-MF-EP Framework Posterior Variance Prediction: Bayes Optimality Performance Analysis of Approximate Inference Techniques (mCRB) Dynamic SBL Kronecker Structured Dictionary Learning using BP/VB Numerical Results and Conclusion

Conclusions and Thank You!

Further advancements from 67: VB with a too fine variable partitioning is quite suboptimal.

Better approximation is message passing based methods such as belief propagation (BP) and
expectation propagation (EP)

BP or EP message passing can be implemented using low complexity methods such as
AMP/GAMP/VAMP, which are proven to be Bayes optimal under certain conditions on A.

AMP - Approximate message passing. We also derived an Generalized Vector AMP
(GVAMP-SBL) SBL version to take care of diagonal power delay profile.

Further work to be done on learning a combination of structured and unstructured Kronecker
factor matrices.
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