
Scrutinizer: Fact Checking Statistical Claims

Georgios Karagiannis†∗ Mohammed Saeed‡∗ Paolo Papotti‡ Immanuel Trummer†
†Cornell University, USA ‡Eurecom, France

{ gk446,lt224 }@cornell.edu, { papotti,mohammed.saeed }@eurecom.fr

ABSTRACT
We demonstrate Scrutinizer, a system that supports human
fact checkers in translating text claims into SQL queries on
an associated database. Scrutinizer coordinates teams of
human fact checkers and reduces their verification time by
proposing queries or query fragments over relevant data.
Those proposals are based on claim text classifiers, that
gradually improve during the verification of multiple claims.
In addition, Scrutinizer uses tentative execution of query
candidates to narrow down the set of alternatives. The ver-
ification process is controlled by a cost-based optimizer that
plans effective question sequences to verify specific claims,
and prioritizes claims for verification. In this demonstration,
we first show how our system can assist users in verifying
statistical claims. We then let users come up with new, un-
seen claims and show how the system effectively learns new
queries with little user feedback.

PVLDB Reference Format:
Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, Immanuel
Trummer. Scrutinizer: Fact Checking Statistical Claims. PVLDB,
13(12): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Data is often disseminated in the form of textual claims

and reports, summarizing important statistics. For authors
of such documents, it is time-consuming and tedious to en-
sure the correctness of each single claim. Nevertheless, er-
roneous claims about data are not acceptable in many sce-
narios as each mistake can have dire consequences. Those
consequences reach from embarrassing retractions (in case of
scientific papers [3]) to legal or financial implications (in case
of business or health reports [1]). We demonstrate Scruti-
nizer, a system that helps teams of fact checkers to verify
consistency of text w.r.t. data faster.

The Scrutinizer system has been developed in collabora-
tion with the International Energy Agency (IEA). This NGO

∗The first two authors contributed equally.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

Figure 1: A Tweet with an incorrect claim about
the death rate of the coronavirus disease.

regularly publishes scientific reports encompassing hundreds
of pages, requiring months of verification efforts by inter-
nal teams of experts. Using real reports and data, we will
demonstrate to visitors how Scrutinizer reduces verifica-
tion overheads in this scenario. More recently, we have pub-
lished an online version of our system that verifies single
statistical claims about the spread and effects of the coron-
avirus1. This version has attracted thousands of users and
has been covered in national newspapers2 – we will use it
for our demonstration as well.

Example 1. Consider the claim in the Tweet in Figure 1.
There are multiple online sources of official data for the virus
outbreak that can be used to demonstrate that it is incorrect.
However, a content moderator would have to find the rele-
vant dataset and manually write a query over such data to
collect the relevant information. In the example:

SELECT b.March/a.March
FROM totalCases a, totalDeaths b
WHERE a.Country = ‘USA’, b.Country = ’USA’

Finally, the expert compares the output of the query with
the claim and can eventually flag the content as incorrect.

Gathering data for the claim at hand and composing the
right query for the validation takes expertise over the do-
main and data skills, typically taking several minutes for a
single claim. To reduce this time, given a document with sta-
tistical claims and related datasets, our system helps users
to translate claims into corresponding SQL queries, to verify
and to potentially correct them. Doing so entails the follow-
ing challenges. Text analysis: Converting a textual claim
1https://coronacheck.eurecom.fr
2https://bit.ly/39BTJCE

1

https://coronacheck.eurecom.fr
https://bit.ly/39BTJCE

to a query is difficult because claims are expressed in natural
language, do not use a fixed vocabulary, and come from mul-
tiple authors with different wording and style. Query com-
plexity: Our analysis of thousands of claims with their cor-
responding queries reveals that the queries associated with
claims are diverse, going from simple selections to math-
ematical operations involving grouping of values, aggrega-
tions, and functions. Large corpus of datasets: Given
a corpus of datasets, it is not clear which one(s) should be
used to verify a new statistical claim. For instance, when
verifying IEA reports, the correct data set must be selected
from hundreds of alternatives.

We tackle the above challenges with a novel system, Scru-
tinizer [5], that analyzes claims via three primary meth-
ods: machine learning (ML) and natural language process-
ing (NLP) for analyzing claim text, feedback from human
domain experts for validating candidate queries, and query
generation and tentative execution based on a large library
of functions. The interpretable SQL queries are finally ex-
posed to users so that they can either validate or flag as false
the claim at hand.

Prior verification systems [4] assume that a single user
verifies a short document based on a single data source.
Scrutinizer is targeted at the verification of many, com-
plex claims by teams of fact checkers. For instance, Scruti-
nizer learns to recognize new types of claims and queries as
more claims from a given domain are verified. It supports
claim queries connecting multiple data sources or containing
complex, arithmetic expressions. Also, it uses a cost-based
optimizer to plan the verification of large documents in order
to minimize manual overheads. As outlined in more detail
in our full paper [5], those features turn out to be crucial in
the scenarios we are aiming for.

The demonstration will convey the following four primary
insights about the Scrutinizer system.

1. We introduce ML models that extract the fragments
of the final SQL query from the textual claim. We will
show how classifiers identify datasets, attributes, rows
and mathematical operations that verify the claim,
even for claim expressed in very different wordings

2. For any claim verification, we will explain how the
decision has been taken by the system. Such expla-
nations are expressed as declarative queries over re-
lational data. The explanations are produced by a
query generation algorithm combining the information
extracted from the text.

3. For large documents with many claims, we show how
a scheduling algorithm for planning both the sequence
of claims to verify and the questions to ask to domain
experts can minimize the verification cost.

4. We will verify statistical claims from energy reports
and from coronavirus tweets to demonstrate that ef-
fective claim verification can be done in few seconds
with pre-trained models.

2. SYSTEM OVERVIEW
Figure 2 shows an overview of Scrutinizer. The input

consists of a text document, containing one or more claims,
and a set of relations. If a database of previously checked

Figure 2: Architecture of Scrutinizer.

claims is available, our system uses it for bootstrapping.
If no such database is available, we use an active learning
algorithm to steer the users in its creation. The output of
the system is a verification report, mapping verified claims
to queries while pointing out mistakes and potential updates
to the text.

The system encompasses two primary components. The
automated translation component leverages machine learn-
ing to identify the elements that define every claim, i.e., can-
didates for datasets, attributes, rows, and comparison oper-
ations. The question planning component interacts with hu-
man domain experts to verify such elements and the check-
ing results, optimizing verification tasks for maximal benefit.

Algorithm 1 Main verification algorithm.

1: // Verify claims C in text T using models M
2: // and return verification results.
3: function Verify(T,C,M)
4: // Initialize verification result
5: A← ∅
6: // While unverified claims left
7: while C 6= ∅ do
8: // Select next claims to verify
9: N ←OptBatch(T,C,M)

10: // Select optimal question sequence
11: S ←OptQuestions(N,M)
12: // Get answers from fact checkers
13: W ←GetAnswers(N,M,S)
14: // Generate queries and validate claims
15: R←Validate(W)
16: A←W ∪R
17: // Remove answered claims
18: C ← C\Unanimous(N,A)
19: // Retrain text classifiers
20: M ←Retrain(N,A)
21: end while
22: // Return verification results
23: return A
24: end function

Algorithm 1 describes the main steps in our workflow.
Given claims C in a text document T and ML models M ,
claims are verified in batches by a team of human fact check-
ers. In each step, the algorithm selects an optimal batch N
of claims for verification. Claim batches are selected based
on multiple criteria, including expected verification over-
heads as well as their estimated utility for improving accu-

2

Figure 3: Screenshots of the demo for the check of a single claim (left) and its explanation (center). On the
right, example of the feedback questions the system asks when model predictions have low confidence.

racy of the classifiers. For each selected claim in the current
batch, we determine an optimal sequence of questions for
the human checkers, minimizing expected verification time.
Claims are validated or marked as erroneous, based on query
evaluations. We remove the claims for which a verification
result (i.e., either a verifying query or a decision that the
claim is erroneous) can be calculated with sufficiently high
confidence. Finally, the classifiers are retrained, based on
the newly obtained classification results.

We detail the two main components in the following.

2.1 Text to Query Translation
For a given textual claim, the system starts by executing

four classifiers over it. In the case of documents as input, we
identify the text relevant for the statistical claim with ex-
isting tools for this task [4]. Given the claim, the classifiers
identify four elements that are key for the query genera-
tion process and claim verification. The first three are basic
elements of every query: relevant relations, primary keys
values (rows), and attributes names. The fourth classifier
is in charge of identifying a generic formula with variables
in the place of keys and attribute values. This formula gets
instantiated on the dataset at hand and becomes the com-
bination of functions in the SELECT clause. If an element
cannot be predicted with high confidence, the system asks
for user input to build the query.

Example 2. Consider again the (false) claim “U.S. death
rate is 1.3% in March 18”. The first classifier identifies that
Deaths and ReportedCases relations can be used to verify it;
the second classifier recognizes that rows reporting values for
U.S.A. should be used; the third classifier returns March 18
as the attribute of interest, and, finally, the fourth classi-
fier returns the formula a

b
. The output of the query is then

compared to value 0.013 (1.3%) to assess the claim.

To get good accuracy results in the prediction, we resort to
active learning. This is useful for cases in which previously
checked claims are immediately used to derive training data
for the classifiers, but also enables the use of our system
for cases where previous checks are not available. Previous
claim checks are also important for generalizing the specific
functions used in the past verification into generic formulas
with variables. This step enables us to (i) reuse formulas

on unseen claims and (ii) have a number of classes (for the
prediction) as small as possible.

As we cannot assume that the first prediction is always
the correct one in practice, in cases with low confidence we
resort to users validating the relations, rows, and attributes
predictions. Once we have this “context” information, we
predict the top formulas with the last classifier and generate
all the possible queries that combine context and formulas.
The complexity raised by this combination is in the assign-
ment of the elements of the query to the variables in the
formula. Consider two attributes A1 and A2 identified for a
certain row and a formula of the form “a − b”, the system
does not know if A1 is assigned to variable a or b.

Example 3. Consider the claim “The death rate is higher
in Italy than France.”, as reported in the left hand side of
Figure 3 with a screenshot of the GUI. Given the predictions
for relations (totalDeaths, totalCases), rows (Italy,France),
attributes (March) and formula a/b > c/d, the query gener-
ator produces all the possible bindings for variables a−d over
the relation, for Italy and France rows, and with attribute for
the current month. In one assignment, a is correctly bound
to a row in relation totalDeaths, with key value Italy and
attribute March, while in a different assignment a is bound
to the same row and attribute but on relation totalCases,
and so on. One of these queries is not empty, thus validat-
ing the claim. The query can be visualized as an explanation
to the user, as reported in the middle screenshot in Figure 3.

The assignment operation is done in a brute force fashion,
but, thanks to the pruning power of the context, it is usually
achieved in milliseconds.

2.2 Question Planning
Our system relies on human fact checkers to verify au-

tomatically generated translations of claims to queries. As
soliciting feedback from human workers is expensive, the
question planning component uses cost-based optimization
to determine effective question sequences. Question plan-
ning consists of two sub-tasks. First, for a fixed claim with
low confidence in the models’ predictions, we choose a se-
quence of questions allowing us to verify that claim with
minimal expected overhead. Each question either solicits
users to verify generated query fragments, or to propose

3

suitable query fragments themselves. Second, we need to
decide the order in which claims are verified. When select-
ing claims to verify next, we take into account expected ver-
ification overheads as well as their value as training samples
for our classifiers (used for automated claim verification).

Our search space for the first sub-task (determining op-
timal questions for single claims) are sequences of screens
containing questions for the fact checkers. Each screen fo-
cuses on one property of the query representing the claim.
For instance, a screen may focus on the data source that a
claim refers to. Or it may focus on arithmetic expressions in
the query’s select clause. Each screen shows ranked answer
options, generated by the classifiers, and enables workers to
enter their own answers if the correct option is not recog-
nized. The planning component decides how many options
to show per screen, which screens to show, and in which or-
der to show them. Its decisions are based on a cost model,
taking into account dependencies between different query
properties (e.g., having verified the data source excludes
options with regards to query attributes) and estimating
overheads for fact checkers when verifying given options or
suggesting new ones.

Example 4. Figure 3 (right) shows an example of a screen
generated for a claim that could not be verified automatically
with high confidence. Here, human workers are asked to se-
lect one out of multiple possible query aggregates. Depending
on the amount of prior training data available, claims are
typically verified by a sequence of such screens, focusing on
different topics. Note that the screen shown in Figure 3 does
not offer the option of entering new suggestions. This is only
possible if properties of the data source and domain exclude
alternative options.

The second sub-task (prioritizing claims) is important for
large documents containing multiple claims. For instance,
reports by the IEA typically contain hundreds of claims that
take weeks to verify. Each verified claim serves as train-
ing samples for our classifiers. Prioritizing claims with low
classification confidence tends to improve classifier accuracy
faster. On the other side, verifying such claims is often
more expensive as human checkers cannot benefit from high-
quality suggestions. Also, checkers prefer working through
claims in document order as that avoids context switching
overheads. We use cost-based optimization to strike a bal-
ance between those extremes. In selecting the next claims
to verify, we consider expected verification cost (including
cost for switching between different document parts) as well
as expected utility for the classifiers. The resulting opti-
mization task is formalized as an integer linear programming
problem and answered by a corresponding solver.

3. DEMONSTRATION
We consider two scenarios for our demonstration. Those

scenarios are motivated by real-world use cases in which our
system has been applied. First, we consider the “2018 World
Energy Outlook Report” by the IEA3 with associated data.
This report summarizes results of sophisticated models pre-
dicting future energy consumption on hundreds of pages. We
are collaborating with the IEA to reduce fact checking over-
heads when verifying such reports via our system. Second,

3https://iea.org/reports/world-energy-outlook-2018

we demonstrate verification of claims related to the Coro-
navirus, using data sets published by organizations such as
CDC (Center of Disease Control) and WHO (World Health
Organization) as data sources [2]. This scenario is motivated
by the spread of misinformation concerning the pandemic.
An online version of our system, targeting such claims and
available since March 2020, has already attracted more than
twelve thousands of users.

We will prepare different demonstrations, targeted at vis-
itors with different time budgets. First, visitors can get a
quick impression of our system, without spending too much
time, by applying it to single claims. Here, we will use the
online version of our system for verifying claims about the
coronavirus disease (COVID-19) outbreak. This version has
already been trained for this domain, leveraging input by a
large number of users as training data. Visitors can enter
claims concerning the spread of the virus (e.g., “The death
rate in Italy is much higher than in France.” or “The to-
tal number of confirmed cases in USA remained constant
from February to March”), and obtain a verification result
as answer. Beyond the standard verification interface, we
will show to interested visitors the queries into which claims
are translated and will explain the translation process.

Second, for visitors with more time, we will prepare a
demonstration putting them into the roles of professional
fact checkers at IEA. We will prepare several extracts (one
to two paragraphs per extract) from the 2018 World Energy
Outlook report. Initially, we will give visitors the chance to
experience the current default fact checking process. This
process involves manually identifying suitable data sources
(choosing from hundreds of alternatives) as well as trans-
lating claims into queries (involving complex arithmetic ex-
pressions) on these data. Afterwards, we will give visitors
the opportunity to verify the same extracts using our sys-
tem. Here, visitors benefit from suggestions for data sets
and query properties that are in most cases correct. If de-
sired, we will exploit a functionality of our system that times
users during verification (used in our prior experiments) to
give them a better impression of the efficiency gains.

Acknowledgements. We thank Davide Rossi D’Ambrosio
and the IEA staff for the valuable feedback on the fact check-
ing process and Youssef Doubli for his work on the Coro-
naCheck Web site.

4. REFERENCES
[1] J. S. Ash, M. Berg, and E. Coiera. Some unintended

consequences of information technology in health care:
the nature of patient care information system-related
errors. JAMIA, 11(2):104–112, 2004.

[2] E. Dong, H. Du, and L. Gardner. An interactive
web-based dashboard to track COVID-19 in real time.
Lancet Infect Dis, 2020.

[3] M. Hosseini, M. Hilhorst, I. de Beaufort, and
D. Fanelli. Doing the right thing: A qualitative
investigation of retractions due to unintentional error.
Science and engineering ethics, 24(1):189–206, 2018.

[4] S. Jo, I. Trummer, W. Yu, X. Wang, C. Yu, D. Liu,
and N. Mehta. Verifying text summaries of relational
data sets. In SIGMOD, pages 299–316, 2019.

[5] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer.
Scrutinizer: A mixed-initiative approach to large-scale,
data-driven claim verification. PVLDB, 13(12), 2020.

4

https://iea.org/reports/world-energy-outlook-2018

	Introduction
	System Overview
	Text to Query Translation
	Question Planning

	Demonstration
	References

