A Definition and Framework for Vehicular
Knowledge Networking

Duncan Deveaux', Takamasa Higuchi?, Seyhan Ucar?, Jérome Hirrif, Onur Altintast

fTEURECOM, Campus SophiaTech, 450 route des Chappes, 06904 Sophia-Antipolis, France
E-mail: {deveaux, haerri}Qeurecom.fr
HnfoTech Labs, Toyota Motor North America R&D, Mountain View CA, USA
E-mail: {takamasa.higuchi, seyhan.ucar,onur.altintas}@toyota.com

Abstract—To operate intelligent vehicular applications such as
automated driving, machine learning, artificial intelligence and
other mechanisms are used to abstract from information what is
commonly referred to as knowledge. Defined as a state of under-
standing obtained through experience and analysis of collected
information, knowledge is promising for vehicular applications.
However, it lacks a unified framework to be cooperatively created
and shared to achieve its full potential. This paper investigates
on the meaning and scope of knowledge applied to vehicular
networks and defines a structure for vehicular knowledge descrip-
tion, storage, and sharing. Through the example of passenger
comfort-based automated driving, it exposes the potential benefits
for network load and delay of such knowledge structuring.

Index Terms—Framework, knowledge, networking, vehicular.

I. INTRODUCTION

VER the last decade, we have witnessed the evolution

of vehicular networking from ’Vehicular Ad-Hoc Net-
works’ (VANETS), enabling spontaneous direct communica-
tions between vehicles, to ’Connected Vehicles’ generaliz-
ing information exchange among vehicles and infrastructure.
Vehicular networking has been developed as an enabler of
innovative applications intended to improve traffic safety,
reduce congestion, and even provide infotainment on-board.
Early applications were designed to only provide information
to drivers, delegating any decision making to them. However,
in recent ambitious applications, such as automated driving
or platooning, simple information treatment and forwarding
mechanisms are not sufficient anymore. Instead, decision-
making is based on models of the environment built from
much more sizable sets of input information. Models are
designed to learn from experience rather than react to static
input signals. In this context, models have the potential to
reduce the load and delay in vehicular networks, as key
content is extracted from larger sets of input information. What
is more, by favoring the distribution of models over static
content, information privacy is improved. However, unlike
with static content sharing, mechanisms to name, localize, and
network/offload knowledge creation capacities of models in
vehicular networks are lacking.

The existing literature in the information science domain
covers conceptual definitions of data, information, and knowl-
edge [1]. In this paper, for the sake of clarity, we make similar
distinctions among these categories. As shown in Figure 1,

Knowledge

Processing
| Data || Data | | Data |
Fig. 1: The Relationship between Data, Information and
Knowledge

the most fundamental element is data, that we define as an
atomic value with a unit, e.g., (30kph). Next, information is
built by aggregating pieces of data that describe a situation,
e.g., (17:00, 30kph) a vehicle’s speed at a given time. On
top of information lies knowledge, which describes general
patterns and relationships obtained through the analysis of
sets of information. For example, clustering or classification
algorithms can be used to extract hidden relationships within a
set. As an example, (17:00, 30kph) = SCHOOL_RUSH_HOUR
is knowledge associating a time and speed information with a
context, i.e., the end of the school day.

Various techniques, such as Artificial Intelligence (Al),
Machine Learning (ML), or Formal Language (FL) have
been used to extract knowledge in vehicular contexts through
the analysis of various sources of information. For example,
Ruta et al. [2] composed knowledge to recognize a high level
context of driving by using sensor information from multiple
cars in a common geographical area. Qi, Wang et al. [3]
applied both learning algorithms and edge computing units
offloading to provide optimal caching of high level connected
driving services to vehicles, including image auto annotation
or locally relevant recommendations yielding. Khan et al. [4]
applied deep learning to learn the transmission patterns of
neighboring vehicles and paved the way for fewer packet
collisions.

Regardless of the technique, extracting knowledge from
information is a complex and expensive process, and the
generated knowledge may be beneficial to other vehicles.

So far each vehicle remains autonomous for its knowledge
building, which requires highly specialized algorithms and a
large amount of input information, potentially sourced from
multiple different vehicles. This can be seen as a significant
overhead considering that knowledge can be shared and not
individually recreated. As a reaction, research has recently
been focused on defining a knowledge-centric approach to
networking, where information would not be the main focus
anymore. Instead, knowledge would be created by nodes in
the network, and directly stored and shared among them.
Wu et al. [5] described the concept of a knowledge-centric
networking framework, separated into three building blocks:
knowledge creation, composition and distribution. A literature
survey on means of creating and distributing knowledge is per-
formed. However, the concept of knowledge remains abstract
and its implementation or format is left for future work.

The contributions of this paper are as follows: Vehicular
Knowledge Networking (VKN), a knowledge-centric network-
ing framework applied to vehicular networks, is presented.
It defines a common architecture for knowledge description,
needed for subsequent storage, composition, and exchange
with other connected vehicles. As such, VKN is a framework
that makes performance improvements in other applications
possible. In a passenger comfort-based rerouting application,
we evaluate the load impact of VKN knowledge distribution
in vehicular networks compared with ICN-based approaches,
and show an overhead reduction of 14 to 40% depending on
the network topology, through cooperative knowledge building
and sharing.

The rest of this article is organized as follows: Section II
introduces information treatment standards and defines the
scope of knowledge in vehicular networks. Based on this
understanding, Section III describes a structure for knowl-
edge description, storage and distribution. In Section IV, an
application of the concept shows potential load and delay
improvement for the network. Section V finally points out the
potential research applicability behind VKN, while Section VI
summarizes the article.

II. VEHICULAR INFORMATION AND VEHICULAR
KNOWLEDGE

In this section, we first describe the current forms of
information in vehicular networks, as well as various standards
for information storing and sharing. Then, we build on this
understanding to define a format for vehicular knowledge
representation.

A. Information in Vehicular Networks

Nodes of the vehicular network may exchange diverse types
of information, including but not limited to:

« Safety notifications, e.g., accidents or road condition.

« Vehicle state information and sensor measurements.

« Navigation information, e.g., maps, road or parking data.
« Information on topics such as weather or traffic flow.

« Road-related information, e.g., gas station opening times.
e Multimedia contents for user infotainment.

In ETSI standards, the storage of information in connected
vehicles is performed inside the Local Dynamic Map (LDM)
information base, which is divided into four layers:

1. Permanent static data, i.e., map data.

2. Temporary static data, i.e., roadside infrastructure.

3. Temporary dynamic data, e.g., roadblock, signal phase.
4. Highly Dynamic data, e.g., vehicles, pedestrians.

The LDM provides a standard approach for storing infor-
mation, but not for naming it. Generally, any information may
be stored in the LDM as long as it is labeled with a space-time
area of relevance. This can lead to a lack of interoperability
between the contents generated by different providers. To
tackle this issue, semantic standards have been developed to
provide nodes with a "common language" and avoid redun-
dancy. For example, the Vehicle Signal Specification (VSS)
and ontology [6], provides a standard way to address the
state of vehicle components, e.g., steering wheels or window
opening. Moreover, standard safety messages such as the
Cooperative Awareness Message (CAM) and the Decentralized
Environmental Notification Message (DENM) in Europe or the
Basic Safety Message (BSM) in the US have been defined to
describe various types of information and events.

Finally, after it has been sensed and stored, information
is spread within the vehicular network. In most vehicular
applications, as it describes road events, the information itself
is more valuable than its source. Routing algorithms have thus
been developed that focus on the information being shared
rather than its host. Information-Centric Networking (ICN) is a
networking paradigm that may be suitable for some vehicular
applications [7]. Rather than sending a request to a specific
host, a request is disseminated to fetch a specific information
identified by a unique content name.

B. Knowledge Networking in Vehicular Networks

Compared with information, knowledge is condensed while
maintaining reusability across different contexts. As such, we
envision a shift away from the information-based architecture
to the benefit of knowledge in future vehicular networks.

We summarize related works on vehicular knowledge
networking. The concept of Knowledge-Centric Networking
(KCN) was introduced in [5]. As with information, mech-
anisms must be developed to create, compose, store and
distribute knowledge. Applications have been studied which
use the concepts of KCN. In [8], knowledge is created as a
ML model predicting the video playback pattern of users. The
knowledge is sent to edge servers to optimize video caching.
In [9], statistical knowledge about network topology is used
to optimize routing in unmanned aerial vehicle fleets.

While the concepts of KCN have been described in [5] and
applied for specific applications in works such as [8, 9], no
formal structures for knowledge representation or protocols
for knowledge distribution have been described. The lack of
a generic framework to describe, store, and share knowledge
prevents interoperable applications of KCN and hinders the
potential of vehicular knowledge networking.

In [10], knowledge is expressed and composed as deep
learning models. In this paper, we formalize a KCN framework

and present structures to define and describe a generic form
of knowledge, not specialized in deep learning models. Based
on knowledge description, we introduce protocols to coopera-
tively create, exchange and localize knowledge following the
dynamically evolving needs of vehicles.

C. Vehicular Knowledge Representation

We understand knowledge as an abstract content obtained
from the analysis of larger sets of information [1]. Knowledge
can be extracted from information using ML algorithms,
divided into three classes. Supervised learning applies to
classification or regression. A model is trained based on a
number of samples of the form: (information, class) for clas-
sification — or (information, value) for regression. Knowledge
is extracted as the relationship between the information and
its associated class, i.e., the function that takes information
as an input and returns its estimated class. Unsupervised
learning extracts clusters of similar items in a set of informa-
tion. It creates knowledge by exposing relationships among
information items and sorting them into different clusters.
Reinforcement learning, finally, can be used by an agent to
learn the optimal behavior to adopt in a context of interaction
with an environment to maximize a user-defined reward.

A trained ML model is a piece of knowledge, able to return
synthetic knowledge from input information. The knowledge
that is extracted through learning techniques can be further
leveraged through knowledge composition methods where
existing knowledge is further analyzed/collated to produce
new knowledge. For instance, if a user wants to avoid traffic
congestion, the system needs to first detect the congested
zones and decompose the necessary factors including current
location, destination, and estimated route/arrival time based
on the current traffic. In this case, in addition to knowledge
creation, the knowledge composition also collates some infor-
mation and/or other knowledge, such as closed roads and/or
construction zones, so as not to exacerbate the congestion.

Thus, the word knowledge can refer to both: (i) algorithms
able to synthesize sets of information into pieces of knowl-
edge, that we refer to as knowledge models, and (ii) abstracted
information obtained by applying models, that we refer to as
knowledge samples. Both aspects should be considered as we
describe a formalization of knowledge definition, storage and
distribution in vehicular networks.

@Knowledge Model

a-g G Bytecode

Knowledge Model #2
Other Knowledge
Model as an output

Information

- Semantic Name & *Dpwmg

Data Format —
- Time of validity Semantic B Acstiujglor
- Location of relevance description 9

- Name & Version

- Input, Output

- Preconditions

e.g. OWL-S
Description Language

Information

‘_ Knowledge (as a model)

‘_ Knowledge (as a model output) E
. LDM-compatible i

Knowledge Sample

- Semantic Name &
Data Format

- Time of validity

- Location of relevance

Fig. 2: The Vehicular Knowledge Ecosystem

Figure 2 illustrates when and how knowledge is handled in
vehicular networks for safety and driving-related applications.
On the left of the figure, information is meant to be stored

in the LDM and has a time and area of validity. For the sake
of interoperability with other vehicles, we consider it to be
named and structured following well-known constraints, e.g.,
following the VSS specification.

A knowledge model, typically implemented as a trained ML
algorithm, takes information as input and produces output
knowledge. In Figure 2, we distinguish two aspects of a
knowledge model: semantic description and bytecode. The
semantic description is used to describe the unique name,
version, necessary input, produced output and the potential
preconditions necessary to apply the model. We define the
bytecode of a model as the executable file that produces
an output from a well-formed set of input information. We
identify three possible outputs to a model. The model may
output another knowledge model, parameterized by the inputs
of the original model. Alternatively, a knowledge model may
output an actuation signal, or a knowledge sample that, like
the information used to produce it, has a time and area of
validity.

While it is abstract and obtained through analysis, a knowl-
edge sample is structured similarly to information. As a
consequence, it can be fed as input to another knowledge
model, generating new composed knowledge.

Figure 3 shows an application of this definition of knowl-
edge related to the estimation of passenger comfort on-
board a Highly-Automated Vehicle (HAV). The top of the
figure describes a knowledge model model.env_comfort
able to infer a value of passenger comfort from three
road-related inputs: traffic conditions, visibility and two-
wheelers concentration. Then, in the bottom of the Figure,
model.fetch_driving_behavior takes generic con-
textual information as input, namely the obtained comfort level
and the given town of application of the model. Based on
this input, it tailors the parameters of a personalized output
knowledge model to provide real-time driving assistance to
the ego vehicle, optimized depending on the requested comfort
level and town. We will come back to the illustrated models
in Section IV, as we describe an application of VKN.

ITI. ASPECTS OF VEHICULAR KNOWLEDGE NETWORKING

Technologies such as vehicular clouds, fog or edge com-
puting provide support for knowledge storage and distribution
within vehicular networks [11]. Nevertheless, a challenge to
achieve knowledge networking is related to identification,
naming and localization of knowledge. For example, upon
reaching a new city, e.g., in a foreign country where human
drivers behave differently, a HAV might need knowledge about
how to drive there. It is a complex task as:

o The requested knowledge should be identified and named.
For example, should the requested knowledge involve
urban driving, intersections only, handling two-wheelers?

o Then, it should be located: It is not straightforward to
determine who owns the knowledge. It could be located
within a vehicular cloud or edge unit. Due to the dynamic
aspect of vehicular networks as well as optimizations
in knowledge caching [12], a knowledge discovery or
subscription mechanism is required.

Road.Traffic
Relevance: Local area

Information

Timeout: 1Imin

KnowledgeModel

Road.Visibility
».|Model.env_comfort
Relevance: Local area L -
Timeout: 1Imin Comfort linked to the
driving environment

TwoWheelers.
Concentration

Location: Local area
Timeout: 1min

Road.ComfortLevel

Relevance: Local area
imi : 1min

KnowledgeModel
model. fetch_

Road.ComfortLevel

Relevance: Local area
Timeout: 1min

_ Knowledge (as a model)
h Knowledge (as a model output)

Discrete value €
[GOOD, POOR, FAIR]

Output KnowledgeModel

Discrete value €

[GOOD, POOR, FAIR] driving_behavior

)

Location.Town

®' Tailored model describing how to drive
in the given town and comfort level

>

Relevance: Town-level
Timeout: 5Smin

Actuator
CHANGE LANE

Actuator
SET SPEED

Actuator
REROUTE

Fig. 3: Knowledge Models for Passenger Comfort Handling

Vehicular clouds and edge computing units are supporting
technologies that enable efficient knowledge sharing and stor-
age. VKN as a framework supports knowledge identification,
cooperative creation and localization mechanisms. As such, it
can be implemented on top of such architectures to enable
efficient knowledge networking in vehicular networks.

A. Knowledge Description & Storage

The creation of knowledge in vehicular networks takes place
at two levels:

o Using ML algorithms, automakers and organizations train
and provide models capable of generating knowledge
from a set of input (information or knowledge samples).

o The models are applied to real input, returning new
knowledge samples or models.

In some cases, keeping models proprietary can be inten-
tional by automakers to protect their competitiveness in the
market. However, in other cases, as considered in [10], a
lack of cooperation in knowledge model building may lead
to an inefficient use of resources. Similar knowledge models
are likely to be independently trained by competing entities,
leading to redundant computations. Nevertheless, no common
format to describe the input, output, and preconditions of
a model are provided by training entities, preventing the
cooperative use of knowledge models by a larger number of
nodes.

To tackle these issues, we separate the semantic description
of a model from its actual execution place, as shown in
Figure 2. A knowledge model description formally states (i)
a unique name and version code for the model, and (ii)
the input, output and preconditions to its application. It is
a lightweight content, shareable with multiple nodes. The
knowledge model’s bytecode is the executable file performing
the knowledge samples creation. Even if a vehicle is not in
possession of a model’s bytecode, it may request knowledge
creation from another node following the constraints detailed
in the model description. In addition to using unique names
and version codes for each model, knowledge synchronization

<AtomicProcess ID="model.env_comfort:1.1">
2 <hasInput resource="#traffic" />
<hasInput resource="#visibility" />
<hasInput resource="#twoWheelers" />

5 </AtomicProcess>

7 <Input ID="traffic">
8 <parameterType resource="#Road.Traffic" />
9 </Input>
<Input ID="visibility">
<parameterType resource="#Road.Visibility" />
> </Input>
13 <Input ID="twoWheelers">
<parameterType resource="#TwoWheelers.
Concentration" />
</Input>
<Output ID="comfort">
<parameterType resource="#Road.ComfortLevel" />
</Output>

Fig. 4: Comfort Model Description Structure in OWL-S

mechanisms should be defined to ensure that two remote nodes
have the same understanding of a piece of knowledge. This
aspect is further detailed in Section III-B3.

As a requirement for model description, the inputs and
outputs of a model should be named according to standard
semantics specifications such as VSS [6]. By consulting the
specification for the name associated with each input or output,
nodes are able to deduce the format of information and
knowledge samples required to apply the model. Moreover,
preconditions to the model application may be set, e.g., limited
to a given town.

A candidate model description language matching these
requirements is OWL-S [13]. It was originally developed for
automatic Web Services discovery, composition and invoca-
tion. The process model standard of OWL-S provides a means
of description for the set of input, output and preconditions of a
model. Figure 4 provides an example of a OWL-S description
of the model .env_comfort model introduced in Figure 3.

As part of VKN, we separate the storage of models’ descrip-
tions and bytecodes. Figure 5 illustrates the on-board unit of a
connected vehicle. The facilities layer contains the LDM, able

é"; On-board unit of a vehicle = "Information / Knowledge Node”

ey A Application(s)

Knowledge Layer
Knowledge

Qézfjgi
Knowledge Base \Sreation avery —
Local Storage < Knowiedge creaion/ ——» Remote nodes
Model Bytecodes 5 ~'ragieval <« Knowledge Base
- Model Descriptions

/]

‘ Knowledge Sample

Facilities Layer
LDM

4+ Information

Fig. 5: On-Board Storage of Knowledge and Information

to store information as well as knowledge samples obtained
from abstraction. As part of VKN, we add a knowledge layer
as an interface between applications and information storage:

« In a Knowledge Base (KB), a list of known knowledge
model descriptions is stored.

« A local storage in the knowledge layer may store knowl-
edge model bytecodes. The stored bytecodes are indepen-
dent from the model descriptions stored in the KB.

As illustrated by Figure 5, the KB is connected both with
the ego vehicle’s on-board local model storage and remotely
with the KBs of other vehicles. As such, it is responsible for
the orchestration of knowledge creation in vehicular networks.
To create knowledge, access to both a model’s bytecode and
input is needed. If relevant input is stored locally in the LDM,
the KB can obtain the model’s bytecode with the right version
code through local storage if available, or by requesting a
remote KB. Another option to perform knowledge creation,
especially if no relevant input is locally available, is to forward
a request of remote knowledge creation to another vehicle
which possesses relevant input. The remote vehicle can then
in turn issue a request for the required model, if not locally
stored. The modalities of such knowledge sharing requests
are described in Section III-B. This allows for a flexible
framework, able to expand or limit the creation and distribution
of knowledge within a certain group of vehicles as needed.
It is also responsible for knowledge synchronization between
nodes.

B. Knowledge Distribution

As we separate knowledge models’ bytecodes and their
description, a structural need appears for the distribution
of knowledge. Nodes of the vehicular network are inter-
connected and knowledge creation may be the product of a
cooperation between multiple nodes.

We consider two contexts for knowledge distribution within
vehicular networks:

1. The distribution of knowledge models, able to produce
new knowledge samples.

2. The distribution of knowledge creation capacities, as
a means of outsourcing knowledge sample creation to
remote vehicles.

As an example, we consider a vehicle v about to drive in an
unknown environment, e.g., to cross a new city. VKN should

allow respectively two types of knowledge sharing for v. It
may: (i) request knowledge directly as a model advising a
driving behavior based on the local context, or (ii) request the
generation of a knowledge sample by a remote vehicle, e.g.,
the generation of the estimated driving comfort based on the
local context.

1) Knowledge Models Request: We define protocols to
request and retrieve knowledge models in vehicular networks.
Models may be requested based on: (i) their names, if known
by the requester, or (ii) their input and output parameters, to
discover unknown knowledge.

The issued request takes the following pseudocode form:

1. REQUEST MODEL name: [model_name]
CONTEXT version >= 1.0,
last_update: [time]

2. REQUEST MODEL output: Road.ComfortLevel
CONTEXT last_update: [time],
spatial_relevance: [location]

The request is distributed in the vehicular network following
a process that we describe next. A response to the issued
request by a remote vehicle could take the form:

1. REQUESTED MODEL name: [model name]
CONTEXT version >= 1.0,
last_update: [time]
RESPONSE bytecode:

2. REQUESTED MODEL
output: Road.ComfortLevel
CONTEXT last_update: [time],
spatial_relevance: [location]

RESPONSE name: [model.env_comfort:1.17,
model_description: [input, outputs...],
bytecode: [bytecode]

[bytecode]

2) Knowledge Application Request: Then, vehicles may
request the remote application of a knowledge model within
a given context to retrieve knowledge samples without per-
forming local input data collection and computation. We give
an example request and response for the remote creation of
knowledge about the driving comfort level in a distant area:
e APPLY model.env_comfort:1.1
IN [location]

e COMPUTED model.end_comfort:1.1
IN [location] BY [node_address]
RESULT Road.ComfortLevel: FAIR

3) Knowledge Routing and Synchronization: To route
knowledge requests in vehicular networks, we extend existing
Content Centric Networking (CCN) interests-based routing
mechanisms. CCN is an implementation of the ICN paradigm.

When a vehicle v issues a knowledge creation request:

1. The request is transmitted to an initial selection of remote
nodes.

2. When receiving a knowledge creation request, a remote
node checks (i) whether it owns a model matching the
request and (ii) whether the context faced by the remote
node matches the request.

3. If the conditions are matched, the remote node computes
and returns the requested knowledge to v. Otherwise, the
request is further transmitted to another neighboring node.

Finally, content synchronization mechanisms implemented
as part of ICN, as surveyed in [14] can be adapted for
knowledge. Models could be divided between (i) ready-trained

models, whose synchronization should follow described mech-
anisms, and (ii) models being trained, where no fixed version
of the model is distributed. In that case, synchronization could
take the age of the last contribution to the model into account.
Similarly, transmission delay constraints are challenging and
should be addressed through caching mechanisms, e.g., using
vehicular clouds [11].

IV. APPLICATION: PASSENGER COMFORT-BASED DRIVING

As an application of VKN and to show potential benefits
for vehicular networks, we investigate on the use case of
passenger comfort-based automated driving. We describe a
simple model using rule-based semantics as an example.
However, the VKN framework supports a greater complexity
on knowledge definition and its composition as, e.g., ML
algorithms. Then, we evaluate the overhead associated with
comfort knowledge distribution for both ICN-based and VKN
approaches.

A. Comfort Knowledge Models

As an example, we define a simplified knowledge model
model .env_comfort to determine the level of passenger
comfort in a given area, as introduced in the top of Figure 3.
The model reads a set of area-related input with semantically
defined names:

1. The current traffic conditions,
tr € Road.Traffic = [FLUID, CONGESTED].

2. The visibility in the area, v € Road.Visibility =
[CLEAR, OBSTRUCTED].

3. The concentration of two-wheelers in the surroundings,
Ctw € TwoWheelers.Concentration = [HIGH,
MEDIUM, LOW].

The model outputs a discrete qualification of the level
of comfort associated with driving in the area, as cft &
Road.ComfortLevel = [GOOD, FAIR, POOR]. While
Algorithm 1 provides a simple pseudocode implementation of
the model as an example, the framework also supports complex
models, e.g., ML for realistic applications.

Algorithm 1 Simplified algorithm to compute comfort from
environmental parameters

Input
Ctw € [HIGH, MEDIUM, LOW]
v € [CLEAR, OBSTRUCTED]
tr € [FLUID, CONGESTED]
Output
cft € [GOOD, FAIR, POOR]
: if ¢ty = LOW and v = CLEAR and ¢r = FLUID then
cft < GOOD
: else if ¢ty = HIGH then
cft + POOR
else
cft + FAIR
. end if

A A Al Sl

Moreover, as detailed in the bottom of Figure 3, the
model.fetch_driving_behavior model returns a ML
trained model on how to adapt driving behavior in the input
town and comfort level.

0,0 0,1 0,2 0,3

l Random Waypoint Mobility --» %
&

2. VKN Approach:
Remote Knowledge

% = % %»% & Application
1. ICN Approach:
Model &
% Input retrieval
1,0 & 1,1 1,2 1,

Remote comfort-aware

driving knowledge? Remote comfort-aware

driving knowledge?

<&
X

[T=0 [T=0

I 1l

One knowledge requests timeline, two compared approaches

Fig. 6: Knowledge Distribution Overhead Evaluation Setup

B. Evaluation: Comfort Knowledge Distribution

To describe and evaluate the potential performance gains of
VKN over traditional information-centric schemes, we study
the bandwidth impact of knowledge distribution in vehicular
networks. While we use comfort knowledge as a case study,
the evaluation scheme is independent from the considered
models, and shows an initial comparison of the knowledge
distribution performances of VKN and ICN.

We investigate on the following scenario: A set of vehicles
wish to obtain comfort knowledge about various areas, as the
result of amodel.env_comfort application, to personalize
their driving behavior. As illustrated by Figure 6:

a) A set of vehicles is simulated in a 1km? area divided into

a square grid, each cell represents a distinct area where
input information can be sensed.

b) Vehicles’ movements are simulated following the Ran-
dom Waypoint mobility model.

c) A timeline of R=10000 knowledge requests is generated.
Following a Poisson process, each vehicle periodically
requests comfort knowledge from an area, i.e., a grid cell.

We implement both a VKN and ICN-based approach to
compare their overhead impact on comfort knowledge distri-
bution. Figure 7 describes the process of knowledge creation
performed when a vehicle v requests comfort knowledge im-
plemented for both VKN, and ICN with dashed lines. Through
VKN, vehicles use knowledge application requests to obtain
remotely-created knowledge, instead of direct model and input
information requests in the ICN-based approach. Figure 8 sum-
marizes VKN remote application of model .env_comfort.
A vehicle ego_node on the left directly transmits a knowl-
edge creation request to remote_node in the target area in
possession of the required model’s version /. bytecode. In
turn, remote_node computes the comfort knowledge using
locally sensed input.

We run 100 simulations for two distinct scenarios, whose
results are summarized in Table I. The first scenario involves
a density of 1000 vehicles/km? in a grid divided into 50m2
cells, to imitate urban conditions. There, the amount of model
transfers was reduced by 15 £ 0.2% using VKN over the
ICN approach. The second scenario simulates rural conditions,

r_The remote input_]

| content is fetched |
| through a ICN
named request

v
/holds a
~ local copy of ~ ~

< the model to be applied),.J

(model. env_comfort or
N nodel.fetch.

|

|

|

| No
'

! r_The missing
Yes | models are |
fetched from
| aremote |

source
L _ — J
Al'he model is apphed\
- locally with local input)

|
|
|
|
|
L

VKN Knowledge
Creation Process

E ICN-based Knowledge
Creation Process

< —No-

vis
currently
driving in
target cell

Send a remote
knowledge application
request to a random
vehicle vin ¢

holds a
local copy of
the model to be applied
(model. env_comfort or
model. fetch

driving
behavior,

|
No
Y

A knowledge model request
is forwarded to vehicles in
areac

A vehicle v¢
in ¢ holds a copy
of the target
model

No

The target model is
downloaded to v
from a centralized
data center

The model is
applied
locally with
local input

The knowledge
application
request is

forwarded to v,

.

The model is applied
locally with local input, and
returned to the original

knowledge requesting

vehicle if any.

Fig. 7: Comparison of the VKN and ICN-based Knowledge
Creation Processes

D = 5km
Area A

model.env_comfort:1.1 description I
INPUT

Road. Traffic enun [FLUID, CONGESTED]
Road.Visibility ~enum [CLEAR, OBSTRUCTED]

enum [HIGH, MEDIUM, LOW]

Ego Car Current Position

Vehicular Knowledge Query:
APPLY model.env_comfort:1.1 IN AreaA | ...

RETURN TO @ego_car
—
=

Lxemmwmmmsm

COMPUTED model.env_comfort:1.1
IN AreaA BY @remote_car
RETURN TO @ego_car
RESULT Road . ConfortLevel: FAIR

Model bytecodes

L (model mode/.env,mmran:1.1
e application

TwoWnheelers.

sensors
= Concentration

Fig. 8: Comfort Level Retrieval in a Remote Area using VKN

involving a density of 200 vehicles/km? in a grid of 200m?
cells. There, the amount of model transfers was reduced by
44 4+ 0.4%.

The bytecode size of ML models depends on their nature
and complexity. It ranges from megabytes to hundreds of
megabytes for deep neural networks. Depending on the model,
VKN thus allows a moderate to strong reduction of overhead.
While an extra 0.3 to 0.6 model discovery messages per
request were transmitted using the VKN approach for respec-
tively the urban and rural scenarios, their size is negligible in
front of the bandwidth saved through reduced model transfers.
Considering an equivalent size of model input and output, the
VKN approach becomes beneficial in terms of overhead from
a model size of 100 kilobytes. It reaches, from 1 megabyte,
a stable 14 or 40% overhead reduction in terms of model
transfers for respectively the urban and rural scenarios.

Using VKN, model input transfers were traded with an
equivalent amount of knowledge samples transfers for the

TABLE I: Amount of Communications Per 10000 Requests in
the Urban and Rural Scenarios

Rural scenario
(200 vehicles)

Urban scenario

Transmissions per (1000 vehicles)

10000 requests: VKN ICN VKN ICN
Model Bytecode 851 +2 1000 111 £ 2 200
Model Output 9013 £ 11 0 9822 £ 3 0
Model Input 0 9006 £ 11 0 9592 + 4
Model Discovery 2864 + 12 0 5703 £ 30 0

Rural scenario
(200 vehicles)

Urban scenario

VKN Overhead (1000 vehicles)

Reduction: VKN ICN VKN ICN
IMB / Bytecode 0.85GB 1GB 0.11GB 0.2GB
1KB / Discovery 2.9MB 0 5.7MB 0
Total overhead 0.86GB 1GB 0.12GB 0.2GB

Difference 14% 40%

urban scenario, and a slight increase of 2% for the rural
scenario. Depending on the model, as knowledge is typically
lighter than the input it was extracted from, overhead can be
further reduced.

V. RESEARCH APPLICABILITY

We described an application of cooperative knowledge
creation. By remotely applying models in the area where
their input is sourced, unnecessary transfers of information
are avoided to the benefit of knowledge. Similarly, mecha-
nisms have been defined in the literature to train knowledge
models themselves while avoiding the transmission of training
information for privacy and efficiency concerns. Federated
Learning (FL) is an open research topic in which multiple
nodes cooperatively train a shared model without directly
exchanging training information. Rather, model updates are
separately trained by each node with local input and sub-
sequently aggregated. However, it is not trivial to ensure
that all local nodes are interested in training and using the
same model. Before being able to start the training, nodes
should be able to determine who among their neighbors is
in possession of what type of model and has access to what
type of information. VKN can be used to orchestrate the client
selection process of FL algorithms, delegating model training
to remote vehicular nodes, to select the most pertinent training
nodes depending on their available input and knowledge [15].

VI. CONCLUSION

Vehicular networks have been extensively studied in the past
years. Several standards have been developed to store and
share information. However, challenges remain to transition
from an information-centric networking model to a model
where common standards for knowledge characterization,
description, storage, and sharing allow nodes in vehicular
networks to take full advantage of data-driven Al techniques.
In this paper, using a common definition of knowledge, we
determined under what forms it exists in vehicular networks,
allowing us to concretely propose a structure for knowl-
edge description, storage, and sharing. Through a passenger
comfort-based rerouting application, we exemplified the con-
cept and showed significant overhead reduction. Finally, we

note the potential benefits of Vehicular Knowledge Networking
for the open topic of Federated Learning. Future work will
focus on implementing, simulating and measuring the benefits
of using VKN through packet-level simulations.

(1]

(2]

(3]

(4]

(5]

(6]

(71

REFERENCES

Chaim Zins. “Conceptual Approaches for Defining
Data, Information, and Knowledge”. In: Journal of the
American Society for Information Science and Technol-
ogy 58 (Feb. 2007), pp. 479-493.

M. Ruta et al. “A Knowledge Fusion Approach for
Context Awareness in Vehicular Networks”. In: IEEE
Internet of Things Journal 5.4 (Aug. 2018), pp. 2407—
2419.

Q. Qi et al. “Knowledge-Driven Service offloading
Decision for Vehicular Edge Computing: A Deep Rein-
forcement Learning Approach”. In: IEEE Transactions
on Vehicular Technology (2019), pp. 1-1.

Mohammad Irfan Khan et al. “Deep learning-aided
resource orchestration for vehicular safety communica-
tion”. In: Wireless Days 2019, IEEE/IFIP Days 2019,
11th edition, Manchester, UK. Apr. 2019.

D. Wu et al. “Vision and Challenges for Knowledge
Centric Networking”. In: IEEE Wireless Communica-
tions 26.4 (Aug. 2019), pp. 117-123.

Benjamin Klotz et al. “VSSo - A vehicle signal and
attribute ontology”. In: SSN 2018, 9th International
Semantic Sensor Networks Workshop. Monterey, USA,
Oct. 2018.

H. Yao et al. “Artificial Intelligence for Information-
Centric Networks”. In: IEEE Communications Maga-
zine 57.6 (June 2019), pp. 47-53.

(8]

(9]

[15]

H. Hao et al. “Knowledge-centric proactive edge
caching over mobile content distribution network”. In:
IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS).
2018, pp. 450-455.

X. Zhang, H. Wang, and H. Zhao. “An SDN frame-
work for UAV backbone network towards knowledge
centric networking”. In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS). 2018, pp. 456-461.

D. Sapra and A. D. Pimentel. “Deep Learning Model
Reuse and Composition in Knowledge Centric Net-
working”. In: 2020 29th International Conference on
Computer Communications and Networks (ICCCN).
2020, pp. 1-11.

T. Higuchi et al. “On the feasibility of vehicular micro
clouds”. In: IEEE Vehicular Networking Conference
(VNC). Nov. 2017.

P. Mach and Z. Becvar. “Mobile Edge Computing:
A Survey on Architecture and Computation Offload-
ing”. In: IEEE Communications Surveys Tutorials 19.3
(2017), pp. 1628-1656.

David Martin et al. “Bringing Semantics to Web Ser-
vices: The OWL-S Approach”. In: Semantic Web Ser-
vices and Web Process Composition. Ed. by Jorge

Cardoso and Amit Sheth. 2005, pp. 26-42.
N. Lal, S. Kumar, and V. K. Chaurasiya. “An efficient

update strategy for content synchronization in Content-
Centric Networking (CCN)”. In: China Communica-
tions 16.1 (2019), pp. 108-118.

D. Deveaux et al. “On the Orchestration of Feder-
ated Learning through Vehicular Knowledge Network-
ing”. In: 2020 IEEE Vehicular Networking Conference
(VNC). 2020, pp. 1-8.

