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Abstract

Counterfactual inference has become a ubiquitous tool in online advertisement, recommen-
dation systems, medical diagnosis, and econometrics. Accurate modelling of outcome distri-
butions associated with different interventions—known as counterfactual distributions—is
crucial for the success of these applications. In this work, we propose to model counter-
factual distributions using a novel Hilbert space representation called counterfactual mean
embedding (CME). The CME embeds the associated counterfactual distribution into a
reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which
allows us to perform causal inference over the entire landscape of the counterfactual distri-
bution. Based on this representation, we propose a distributional treatment effect (DTE)
which can quantify the causal effect over entire outcome distributions. Our approach is
nonparametric as the CME can be estimated under the unconfoundedness assumption from
observational data without requiring any parametric assumption about the underlying dis-
tributions. We also establish a rate of convergence of the proposed estimator which depends
on the smoothness of the conditional mean and the Radon-Nikodym derivative of the un-
derlying marginal distributions. Furthermore, our framework allows for more complex
outcomes such as images, sequences, and graphs. Our experimental results on synthetic
data and off-policy evaluation tasks demonstrate the advantages of the proposed estimator.
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1. Introduction

To make a rational decision, a decision maker must be able to anticipate the effects of
a decision to the outcomes of interest, before committing to that decision. For instance,
before building a certain facility in a city, e.g., a dam, policymakers and citizens must seek
to understand its environmental effects. In medicine, a doctor has some prior knowledge
about the effects a certain drug will have on a patient’s health, before actually prescribing it.
In business, a company needs to understand the effects of a certain strategy of advertisement
to its revenue. One approach to addressing these questions is counterfactual inference.

Counterfactual inference we consider in this work consists of the following three main
ingredients. Suppose that there exists a hypothetical subject (e.g., a patient in medical
treatment), and letX be covariates representing the features of the subject (e.g., age, weight,
medical record, etc.), T be a treatment indicator representing the treatment assigned to the
subject (a drug of interest or a placebo), and Y be the observed outcome representing the
post-treatment quantity of interest (e.g., whether the patient is recovered or not). Given
certain realizations of these variables {(xi, ti,yi)}ni=1, in which each index i represents the
identity of a subject, an analyst wishes to know how the treatment affects the outcome.

This problem is called counterfactual since for each subject i, we only observe the out-
come yi resulting from the assigned treatment ti and can never observe the outcome (say
y′i) that would have been realized under an alternative treatment t′i 6= ti. For example, if
a patient receives an active treatment (e.g., a drug of interest), we can never observe the
outcome from the same patient under a control treatment (e.g., a placebo). This is known
as the fundamental problem of causal inference (Holland, 1986) and also as bandit feedback
in the bandit literature (Dudík et al., 2011). One way to partially address this issue is a
randomized experiment (Fisher, 1935), in which treatments are randomly assigned to sub-
jects. Although considered a gold standard, in practice randomization can be too expensive,
time-consuming, or unethical. In most cases, therefore, analysis about treatment effects
needs to be done on the basis of observational data {(xi, ti,yi)}ni=1 in which the treatment
assignment ti may depend on covariates xi and possibly on some hidden confounders; this
setting is commonly known as observational studies (Rosenbaum, 2002; Rubin, 2005).

A fundamental framework for observational studies is the potential outcome framework
(Neyman, 1923; Rubin, 1974). It provides a clear notation for potential outcomes, i.e.,
the outcomes that would have been observed under different treatments, and elucidates the
conditions required for making a valid inference about treatment effects; see Section 3.1. The
framework has been studied extensively in statistics, and has a wide range of applications
in biomedical and social sciences; see, e.g., Imbens and Rubin (2015). Moreover, important
applications of machine learning such as off-policy evaluation for online advertisement and
recommendation systems can be reformulated under this framework (Schnabel et al., 2016;
Kallus and Zhou, 2018). We argue, however, that there exist the following challenges:

Average treatment effects. Many of existing works focus on estimating the average
treatment effect (ATE), which is the difference between the means of the outcome distribu-
tions; see Section 3.1 for details. However, the ATE does not inform changes in higher-order
moments, even when they exist. For instance, if a treatment of interest has an effect only in
the variance of the distribution of outcomes, then the analysis of average treatment effects
cannot capture such effects. Suppose that the treatment is whether to provide a certain drug,
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and the outcome is the blood pressure of a patient; just analyzing the average treatment ef-
fects may lead to an incorrect conclusion, if the drug increases/decreases the blood pressure
of a patient whose blood pressure was already high/low. This highlights the importance of
analyzing the outcome distribution as a whole.

In this work, we focus on the distributional treatment effect (DTE), which involves the
entire outcome distributions. This scenario often arises in several real-world socioeconomic
applications; see, e.g., Rothe (2010); Chernozhukov et al. (2013).

Parametric models. Many of the classical approaches in causal inference make para-
metric assumptions about relationships between covariates X, treatment assignment T , and
observed (or potential) outcomes. However, if the imposed parametric assumption is incor-
rect, i.e., model misspecification, then the conclusion about treatment effects can be wrong
or misleading. To overcome this limitation, there is a recent surge in applying nonparamet-
ric machine learning models to causal inference problems, e.g., Shalit et al. (2016) and Alaa
and van der Schaar (2017) among others. This paper also contributes to this endeavour.

Overparameterized models. Deep learning has become the first choice in many applied
fields due to its excellent empirical performance, and thus has also been applied to coun-
terfactual inference, e.g., Johansson et al. (2016); Hartford et al. (2017). Unfortunately,
such approaches based on deep learning lack theoretical guarantees, because arguably deep
learning itself lacks an established theory as a learning method (at least until now). This
is problematic when consequential decisions are based on the analysis of treatment effects
(e.g., political decisions and medical treatments). Having better theoretical grounding, ker-
nel methods have recently become popular tools for causal inference (Alaa and van der
Schaar, 2017; Singh et al., 2019; Muandet et al., 2020a,b).

Multivariate and structured outputs. Existing works often deal with outcomes that
are discrete or real-valued. However, depending on the application, outcome variables may
be multivariate (possibly high-dimensional) or structured, such as images and graphs. For
example, in medical data analysis, outcomes may be fMRI data taken from a subject after
receiving a certain treatment. Thus, it is not straightforward to apply existing approaches.

In this work, we propose a novel approach to counterfactual inference that addresses the
above challenges, which we term counterfactual mean embedding (CME). Our approach is
built on kernel mean embedding (Berlinet and Thomas-Agnan, 2004; Smola et al., 2007;
Muandet et al., 2017), a framework for representing probability distributions as elements in
a reproducing kernel Hilbert space (RKHS), so that each element representing a distribution
maintains all of its information (cf. Section 2.2 and 2.3). We define an element representing
a counterfactual distribution, for which we propose a nonparametric estimator. Notable
advantages of the proposed approach are summarized as follows:

1. The proposed estimator can be computed based only on linear algebraic operations
involving kernel matrices. Being a kernel method, it can be applied to not only stan-
dard domains (such as the Euclidean space), but also more complex and structured
covariates and/or outcomes such as images, sequences, and graphs, by using off-the-
shelf kernels designed for such data (Gärtner, 2003); this widens possible applications
of counterfactual inference in general (cf. Section 3.4). Thus our work offers more flex-
ibility than the existing approaches by Rothe (2010) and Chernozhukov et al. (2013),
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who focused on estimating the cumulative distribution functions of counterfactual dis-
tributions by assuming real-valued outcomes.

2. The proposed estimator can be used for computing a distance between the counterfac-
tual and controlled distributions, thereby providing a way of quantifying the effect of
a treatment to the distribution of outcomes; we define this distance as the maximum
mean discrepancy (MMD) (Borgwardt et al., 2006; Gretton et al., 2012) between the
counterfactual and controlled distributions. It also provides a way to sample points
from a counterfactual distribution based on kernel herding (Chen et al., 2010), a kernel-
based deterministic sampling method (cf. Section 3.5).

3. The proposed estimator is nonparametric, and has theoretical guarantees. Specifically,
we prove the consistency of the proposed estimator under a very mild condition (cf.
Theorem 8), and derive its convergence rates under certain regularity assumptions
involving kernels and underlying distributions (cf. Theorem 13). Both results hold
without assuming any parametric assumption.

The rest of the paper is organized as follows. After summarizing related work in Section
1.1, we review in Section 2 the potential outcome framework as well as kernel mean em-
bedding of distributions. Section 3 introduces counterfactual learning and then provides a
generalization of Hilbert space embedding to counterfactual distributions. This section also
presents how we can quantify and estimate distributional treatment effects (DTEs) with our
approach. We subsequently provide the detailed convergence analysis in Section 4, followed
by examples of the important applications in Section 5 (sampling and testing) and Section 6
(off-policy evaluation). Finally, we demonstrate the effectiveness of the proposed estimator
on simulated data as well as real-world policy evaluation tasks in Section 7.

1.1 Related Work

We summarize below related works on counterfactual inference.

Treatment effect estimation. Estimating treatment effects is one of the most funda-
mental tasks in counterfactual inference (Rubin, 1974; Shalit et al., 2017). This task is
hindered by the fact that one cannot observe all potential outcomes at the same time for
each subject. Moreover, the data is usually biased by a non-randomized treatment assign-
ment. Modern approaches attempt to resolve these problems by usingo state-of-the-art ML
algorithms. For example, Hill (2011) develops a nonparametric method for estimating the
ITE based on Bayesian additive regression tree (BART). Athey and Imbens (2016) and Wa-
ger and Athey (2018) adapt tree-based methods to treatment effect estimation. Shalit et al.
(2016) and Johansson et al. (2016) formulate the problem as a domain adaptation problem
and propose to balance the covatiates using representation learning. Hartford et al. (2017)
develop a two-step regression method based on deep neural networks for instrumental vari-
able regression. Adversarial training of neural networks for causal inference have also been
considered in Yoon et al. (2018), for example.

Off-policy evaluation and learning from observational data. In many circum-
stances, evaluating and learning a policy by interacting directly with an environment may
not be possible due to practical constraints (e.g., monetary costs, safety and ethics). As
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a result, several works have attempted to leverage historical data collected using a logging
policy in off-policy evaluation and learning, e.g., Langford et al. (2008); Atan et al. (2018).
Most methods rely on importance weighting (Langford et al., 2008; Bottou et al., 2013;
Swaminathan and Joachims, 2015). Dudík et al. (2011) uses a doubly robust estimator to
reduce the variance of off-policy evaluation. Swaminathan and Joachims (2015) presents
a framework for policy learning called counterfactual risk minimization (CRM) based on
empirical variance regularization. In this work, we also demonstrate the application of our
estimator in off-policy evaluation.

Causal inference with kernel mean embeddings. Hilbert space embedding of distri-
butions has been applied extensively in causal inference. For instance, in causal discovery,
Fukumizu et al. (2008); Zhang et al. (2011); Doran et al. (2014) develop powerful kernel-
based tests of conditional independence which allow for the recovery of causal graphs up to
the Markov equivalence class. See Muandet et al. (2017, Section 4.8) for a review of many
other applications. In treatment effect estimation, kernel methods have become a popular
approach to covariate balancing between treatment and control groups (Shalit et al., 2016;
Johansson et al., 2016; Wong and Chan, 2017; Kallus, 2017). Our work, on the contrary,
focuses on characterizing the representation of counterfactual distribution of outcomes using
the kernel mean embedding and provides nonparametric inference tools.

2. Preliminaries

The counterfactual mean embedding relies on the potential outcome framework as well as the
concepts of kernels, reproducing kernel Hilbert spaces (RKHSs), and kernel mean embedding
of distributions. We review these concepts in this section.

2.1 Kernels and Reproducing Kernel Hilbert Spaces (RKHSs)

We first review kernels and RKHSs, details of which can be found in, e.g., Schölkopf and
Smola (2002), Berlinet and Thomas-Agnan (2004), and Smola et al. (2007).

Let X be a nonempty set. Let H be a Hilbert space consisting of functions on X with
〈·, ·〉H and ‖·‖H being its inner-product and norm, respectively. The Hilbert space H
is called a reproducing kernel Hilbert space (RKHS), if there exists a symmetric function
k : X × X → R, called the reproducing kernel of H , satisfying the following properties:

1. For all x ∈ X , we have k(·,x) ∈H . Here k(·,x) is the function of the first argument
with x being fixed, such that x′ 7→ k(x′,x).

2. For all f ∈H and x ∈ X , we have f(x) = 〈k(·,x), f〉H . This is called the reproducing
property of H (or of k).

It is known that the linear span of functions k(·,x), denoted by span(k(·,x) | x ∈ X ), is
dense in H , i.e.,

H = span(k(·,x) | x ∈ X ),

where the closure on the right hand side is taken with respect to the norm of H . In
other words, any f ∈ H can be written as f =

∑∞
i=1 αik(·,xi) for some (αi)

∞
i=1 ⊂ R and

(xi)
∞
i=1 ⊂ X such that ‖∑∞i=1 αik(·,xi)‖2H =

∑∞
i,j=1 αiαjk(xi,xj) <∞.
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Any RKHS is uniquely associated with its reproducing kernel k, which is positive definite:
a symmetric function k : X ×X → R is called positive definite, if for all n ∈ N, α1, . . . , αn ∈
R, and all x1, . . . ,xn ∈ X , we have

∑n
i=1

∑n
j=1 αiαjk(xi,xj) ≥ 0. On the other hand, for

any positive definite kernel k : X × X → R, there exists an RKHS H for which k is the
reproducing kernel (Aronszajn, 1950). Therefore, by defining a positive definite kernel, one
always implicitly defines its RKHS.

As indicated from the definition of positive definiteness, kernels can be defined on any
nonempty set X . Therefore, they have been defined not only for the real vector space Rd,
but also for non-standard domains such as those of images and graphs. Popular kernels on
X ⊂ Rd include linear kernels k(x,x′) = x>x′, polynomial kernels k(x,x′) = (x>x′+c)p, c >
0, p ∈ N+, Gaussian kernels k(x,x′) = exp(−‖x − x′‖22/2σ2), σ > 0, and Laplace (or more
generally Matérn) kernels k(x,x′) = exp(−‖x−x′‖2/2σ2), σ > 0. More examples of positive
definite kernels can be found in Genton (2002) and Hofmann et al. (2008).

2.2 Kernel Mean Embedding of Distributions

In this work, we use kernels and RKHSs to represent, compare, and estimate probability
distributions. This is enabled by the approach known as kernel mean embedding of distribu-
tions (Berlinet and Thomas-Agnan, 2004; Smola et al., 2007; Muandet et al., 2017), which
we review here. In what follows, we assume that X is a measurable space with some sigma
algebra BX .

Definition 1 (Kernel mean embedding (KME)) Let P be the set of all probability
measures on a measurable space (X ,BX ) and k : X × X → R be a measurable positive
definite kernel with associated RKHS H , such that supx∈X k(x,x) < ∞. Then, the kernel
mean embedding (KME) of P ∈P is defined as the Bochner integral1 of k(·,x) with respect
to P:

µ : P →H , P 7→ µP :=

∫
k(·,x) dP(x). (1)

The element µP may be alternatively called the kernel mean of P. For a random variable
X ∼ P, the kernel mean may also be written as µX .

The kernel mean µP serves as a representation of P ∈ P in the RKHS H . This is
justified if H is characteristic (Fukumizu et al., 2004): the RKHS H (and the associated
kernel k) is defined to be characteristic, if the mapping µ : P → H in (1) is injective.
In other words, H is characteristic, if for any P,Q ∈ P, we have µP = µQ if and only if
P = Q. That is, µP is uniquely associated with P ∈ P, and thus µP becomes a unique
representation of P in H , maintaining all information about P. Examples of characteristic
kernels on X = Rd include Gaussian, Matérn and Laplace kernels (Sriperumbudur et al.,
2010). On the other hand, linear and polynomial kernels are not characteristic, since their
RKHSs are finite dimensional and only provide unique representations of distributions up
to certain moments.

The kernel mean embedding (1) is the key ingredient of a well-known metric on proba-
bility measures called maximum mean discrepancy (MMD) (Borgwardt et al., 2006; Gretton

1. See, e.g., Diestel and Uhl (1977, Chapter 2) and Dinculeanu (2000, Chapter 1) for the definition of
Bochner integral.
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et al., 2012). For two distributions P,Q ∈ P, their MMD is given as the RKHS distance
between the corresponding kernel means µP, µQ:

MMD[H ,P,Q] := ‖µP − µQ‖H = sup
f∈H ,‖f‖H ≤1

∣∣∣∣∫ f(x) dP(x)−
∫
f(x) dQ(x)

∣∣∣∣ , (2)

where the second identity follows from the reproducing property and H being a vector space
(Gretton et al., 2012, Lemma 4). The right expression is the maximum discrepancy between
the means of functions from the unit ball of the RKHS H , and is the original definition of
MMD. Being defined via the RKHS distance, MMD is a pseudo-metric on P. Moreover, if
H is characteristic, MMD[H ,P,Q] = 0 holds if and only if P = Q, and thus MMD becomes
a proper metric on probability measures. See Sriperumbudur et al. (2010); Simon-Gabriel
and Schölkopf (2018) for details and relationships to other popular metrics on probability
measures.

Given an i.i.d. (identically and independently distributed) sample x1, . . . ,xn from P, the
kernel mean µP can be estimated simply by the empirical average

µ̂P :=
1

n

n∑
i=1

k(·,xi). (3)

The
√
n-consistency of (3), that is ‖µP− µ̂P‖H = Op(n

−1/2) as n→∞, has been established
in Song (2008, Theorem 27) and also in Gretton et al. (2012); Lopez-Paz et al. (2015);
Tolstikhin et al. (2017). Importantly, this holds without any parametric assumption about
the underlying distribution P.

Given another i.i.d. sample x′1, . . . ,x
′
m from Q, and defining µ̂Q := 1

m

∑m
j=1 k(·,x′j) as

an estimate of the kernel mean µQ, the (squared) MMD (2) can be estimated as

M̂MD
2
[H ,P,Q] = ‖µ̂P − µ̂Q‖2H

=
1

n2

n∑
i=1

n∑
j=1

k(xi,xj)−
2

nm

n∑
i=1

m∑
j=1

k(xi,x
′
j) +

1

m2

m∑
i=1

m∑
j=1

k(x′i,x
′
j),

where the right expression follows from the reproducing property (Gretton et al., 2012,
Eq. 5). Applying the triangle inequality, it follows that |‖µP − µQ‖H −‖µ̂P − µ̂Q‖H | ≤
‖µP− µ̂P‖H +‖µQ− µ̂Q‖H = Op(n

−1/2)+Op(m
−1/2) as n,m→∞, implying the consistency

of the above estimator of MMD with a parametric convergence rate. This estimator only
requires evaluations of the kernel, and therefore is easy to implement in practice. We note
that the above MMD estimator is biased, while being consistent; an unbiased estimator is
also available for MMD (Gretton et al., 2012, Eq. 3).

2.3 Kernel Mean Embedding of Conditional Distributions

Finally, the notion of KME can be extended to conditional distributions (Song et al., 2009;
Grünewälder et al., 2012; Song et al., 2013; Fukumizu et al., 2013). To describe this, let
(X,Y ) be a random variable taking values in the product space X × Y, where X and Y
are measurable spaces. We define a measurable kernel k on X and let H be the associated
RKHS. Similarly, we define a measurable kernel ` on Y and let F be the associated RKHS.
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Let PXY be the joint distribution of (X,Y ), and PY |X=x be the conditional distribution of
Y given X = x.

The KME of the conditional distribution PY |X=x is then defined as the conditional
expectation of `(·,y) with respect to PY |X=x:

µY |X=x :=

∫
`(·,y) dPY |X=x(y) ∈ F (x ∈ X ). (4)

Again, if F is characteristic, this kernel mean maintains all information about PY |X=x, thus
being qualified as its representation. It is instructive to note that µY |X=x is defined for each
x ∈ X individually.

Given an i.i.d. sample (x1,y1), . . . , (xn,yn) from the joint distribution PXY , the condi-
tional mean embedding (4) can be estimated as

µ̂Y |X=x :=
n∑
i=1

wi(x)`(·,yi), (5)

where

(w1(x), . . . , wn(x))> := (K + nεI)−1k(x) ∈ Rn,
k(x) := (k(x,x1), . . . , k(x,xn))> ∈ Rn.

Here, K ∈ Rn×n is the kernel matrix such that Ki,j = k(xi,xj), and ε > 0 is a regularization
constant. As pointed out by Grünewälder et al. (2012), this estimator can be interpreted as
that of function-valued kernel ridge regression, where the task is to estimate the mapping
x 7→

∫
`(·,y) dPY |X=x(y) from training data (x1, `(·,y1)), . . . , (xn, `(·,yn)) ∈ X × F . In

fact, the weights w1(x), . . . , wn(x) in (5) are identical to those of kernel ridge regression (or
Gaussian process regression). As such, the regularization constant ε should decay to 0 at an
appropriate speed as n → ∞, in order to ensure a good convergence rate of the estimator
(5), see, e.g., Caponnetto and Vito (2007).

3. Counterfactual Mean Embeddings

In this section, we formulate our problem of estimating distributional treatment effects and
describe our approach. In Section 3.1, we review the potential outcome framework and, based
on it, we define distributional treatment effects. The key concepts here are counterfactual
distributions on outcomes. In Section 3.2, we describe our approach, counterfactual mean
embeddings, as the kernel mean embeddings of counterfactual distributions. Section 3.3
provides details of the distributional effects of covariate distributions, which are essential for
applications in off-policy evaluation. We then define their empirical estimators in Section
3.4. Finally, we introduce the kernel treatment effect (KTE) as a way to evaluate the
distributional treatment effect in Section 3.5.

3.1 Potential Outcome Framework and Distributional Causal Effects

We pose our problem based on the potential outcome framework, also known as the Neyman-
Rubin causal model, which is a classic and widely used approach to estimating causal effects
of treatments from observational data (Neyman, 1923; Rubin, 1974, 2005).
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We consider a hypothetical subject (e.g., a patient) in a population. Let X ∈ X be a
covariate random variable representing the subject’s features (e.g., age, weight, blood pres-
sure, etc.), where X is a measurable space. Let T ∈ T a random variable that indicates the
treatment assigned to the subject, where T denotes the set of treatments of interest. We call
T treatment indicator or treatment assignment. In this work, we focus on binary treatments
T := {0, 1} for simplicity, but an extension to multiple treatments is straightforward. For
instance, T = 1 may represent that the subject is assigned an active treatment (e.g., a drug
of interest), and T = 0 a control treatment (e.g., placebo).

Let Y ∗0 , Y ∗1 ∈ Y be random variables representing potential outcomes, where Y is a
measurable space. That is, Y ∗1 represents the outcome of interest after the subject is exposed
to treatment 1, and Y ∗0 the outcome after the subject is exposed to treatment 0. For instance,
Y ∗1 may be the blood pressure of the patient measured after the patient had the drug, and
Y ∗0 be that after having nothing. The problem here, known as the fundamental problem of
causal inference, is that one can only observe either Y ∗1 or Y ∗0 , but not both. For instance, if
one gave the drug to the patient and measured the resulting blood pressure, it is no longer
possible to measure the blood pressure of the same patient without the drug. Thus, the
observed outcome Y ∈ Y can be defined as

Y := 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 ,

where 1(T = j) := 1 if T = j, and zero otherwise. Note that in observational studies, the
treatment assignment may not be completely random, i.e., T depends on Y ∗0 , Y ∗1 and X.

Assume that there are N subjects, and that each subject i = 1, . . . , N is associated with
random variables (xi, ti,y

∗
0i,y

∗
1i) that are distributed as (X,T, Y ∗0 , Y

∗
1 ) independently to the

other subjects,2 i.e.,

(xi, ti,y
∗
0i,y

∗
1i)

N
i=1 ∼ (X,T, Y ∗0 , Y

∗
1 ), i.i.d. (6)

Note that for each subject i, only one of y∗0i or y∗1i can be observed. Thus, observational
data given to the analyst are

(xi, ti,yi)
N
i=1, yi := 1(ti = 0)y∗0i + 1(ti = 1)y∗1i, (7)

which are i.i.d. with (X,T, Y ). We write n :=
∑N

i=1 1(ti = 0) the number of subjects
receiving treatment T = 0, and m :=

∑N
i=1 1(ti = 1) that of treatment T = 1.

We consider three kinds of distributional causal effect, as described below. For ease of
understanding, we also present the corresponding expressions based on the sample (6). Nev-
ertheless, these sample expressions are also counterfactual quantities due to the fundamental
problem of causal inference.

3.1.1 Distributional Treatment Effect (DTE)

Let PY ∗0 and PY ∗1 be the distributions of the potential outcomes Y ∗0 and Y ∗1 , respectively.
Then we define the distributional treatment effect (DTE) as the difference between these
two distributions:

PY ∗0 (·)− PY ∗1 (·). (8)

2. This independence assumption may be seen as a version of the Stable Unit Treatment Value Assumption
(SUTVA), which requires that the potential outcomes of any subject i are independent of the treatments
tj assigned to the other subjects j 6= i.
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The corresponding sample expression is given by

1

N

N∑
i=1

δ(· − y∗0i)−
1

N

N∑
i=1

δ(· − y∗1i),

where δ is the Dirac distribution. As mentioned, this sample expression cannot be obtained
from observational data (7), since for each subject i, we only have either y∗0i or y

∗
1i.

The DTE (8) can capture the treatment effects on the potential outcomes that may
not be identified only by the average treatment effect (ATE) (Imbens, 2004), the difference
between the expectations of Y ∗0 and Y ∗1 :

ATE := E[Y ∗0 ]− E[Y ∗1 ] (9)

or its corresponding sample version

ATEN :=
1

N

N∑
i=1

y∗0i −
1

N

N∑
i=1

y∗1i.

For instance, even when the ATE is 0, the higher order moments of PY ∗0 and PY ∗1 , such as
their variances, may differ. The DTE can capture such a difference, while the ATE cannot.

3.1.2 Distributional Treatment Effects on the Treated

This is defined as the difference in two conditional distributions as

PY ∗1 |T (· | t)− PY ∗0 |T (· | t), t ∈ {0, 1}. (10)

For t = 1, this can be understood as the distributional treatment effect for the treated, and
the corresponding sample expression is given by

1

m

N∑
i=1

1(ti = 1)δ(· − y∗1i)−
1

m

N∑
i=1

1(ti = 1)δ(· − y∗0i),

where the second term is counterfactual. The details of the conditional treatment effect (10)
can be found, for example, in Chernozhukov et al. (2013, p.2214).

3.1.3 Distributional Effects of the Covariate Distributions

This is defined as the difference between the conditional distribution of Y ∗0 given T = 0 and
that of Y ∗0 given T = 1:

PY ∗0 |T (· | 0)− PY ∗0 |T (· | 1) (11)

where PY ∗0 |T is the conditional distribution of Y ∗0 given T . A similar definition can be given
for Y ∗1 . The corresponding sample expression is given by

1

n

N∑
i=1

1(ti = 0)δ(· − y∗0i)−
1

m

N∑
i=1

1(ti = 1)δ(· − y∗0i). (12)

10



Counterfactual Mean Embeddings

Note that the second term in (11) and (12) are counterfactual in the sense that the potential
outcome y∗0i of subject i with ti = 1 is not observable.

The above distributional differences capture the effects caused by the difference in the
characteristics (i.e., covariates) of subjects exposed to different treatments, e.g., selection
bias, rather than the effects caused by the treatment itself. For instance, let us assume
that a drug was assigned to subjects whose blood pressures were already high (ti = 1) and
not assigned to subjects with low blood pressures (ti = 0). Then the counterfactual blood
pressures y∗0i of the subjects with ti = 1, which would have been observed if they had not
taken the drug, would be higher than those y∗0i with ti = 0.

This kind of “selection bias” can be captured in the above distributional difference, and
this helps understand how the difference in observed outcome distributions arises. To explain
this more precisely, however, we need the notation, definitions and assumptions introduced
in the next subsection. Thus, we defer further explanations to Section 3.3. There, we also
explain that this distributional difference is useful in studying counterfactual effects of a
policy defined as a specification of a covariate distribution. In fact, this is how we formulate
the problem of off-policy evaluation in Section 6.

3.2 Counterfactual Distributions

To deal with distributional treatment effects discussed in the previous subsection, we need
to introduce the notion of counterfactual distributions (Chernozhukov et al., 2013). We
first summarize the notation defined above and introduce new ones, which we follow Cher-
nozhukov et al. (2013, Appendix C).

Definition 2 Let Y ∗0 and Y ∗1 be random variables taking values in Y, and X and T be
random variables taking values in X and T = {0, 1}, respectively. The random variables Y ,
Yt and Xt (t = 0, 1) are defined as

Y := 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 ,

Yt := Y | T = t (t = 0, 1),

Xt := X | T = t (t = 0, 1).

In Definition 2, Y is the observed outcome variable. Thus, Yt is Y given that the
treatment assignment is T = t (t = 0, 1). By the definition of Y , this implies that Yt =
Y ∗t | (T = t), that is, Yt is the potential outcome conditional on T = t. Note that, since
Y ∗t and T may be dependent, Y ∗t | (T = t) may differ from Y ∗t as a random variable. The
variable Xt is the covariate variable X conditional on T = t. The pair of variables (Xt, Yt)
can thus be seen as observed random variables conditional on the treatment assignment
T = t.

The following is a key assumption, which is needed in general for counterfactual inference
with observational data.

Assumption 1 (A1) Conditional exogeneity: Y ∗0 , Y
∗
1 ⊥⊥ T |X almost surely for X.

(A2) Support condition: X0 = X1, where Xj is the support of the distribution PXj of Xj

for j = 0, 1.

11
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TY ∗1Y ∗0

X

Potential Outcomes

Covariates

Treatment Indicator

Figure 1: A graphical representation of the conditional exogeneity assumption. An edge be-
tween two random variables indicates that they are dependent. The conditional
exogeneity assumption states that given the covariates X, the potential outcomes
Y ∗0 , Y

∗
1 and the treatment assignment T are conditionally independent. The as-

sumption does not hold if there exists an edge between Y ∗0 , Y
∗
1 and T , which is

the case, for instance, when there exists a hidden confounder Z that is dependent
to both Y ∗0 , Y ∗1 and T .

The conditional exogeneity (A1), also known as the unconfoundedness or ignorability,
is a common assumption in observational studies to guarantee the identifiability of causal
effects from observational data (Rosenbaum and Rubin, 1983; Imbens, 2004; Rubin, 2005).
It requires that there is no hidden confounder, say Z, that affects both the treatment as-
signment T and potential outcomes Y ∗0 , Y ∗1 . In other words, the covariates X include all
important characteristics regarding the potential outcomes. This assumption is described
further in Figure 1, where the graphical model represents the conditional independence
structure between the random variables. The support condition (A2) is needed to make
the counterfactual distribution (introduced in (13) below) well-defined, and is also made in
Chernozhukov et al. (2013, Eq. 2.3). It is analogous to the overlap assumption required for
propensity score methods (e.g. Imbens, 2004, Assumption 2.2).

We now define counterfactual distributions. Let PX0 and PX1 be the probability distribu-
tions of X0 and X1, respectively. Denote by PY 〈0|0〉 and PY 〈1|1〉 the corresponding marginal
distributions of outcomes defined by

PY 〈0|0〉(y) :=

∫
PY0|X0

(y|x) dPX0(x) = PY0(y)

PY 〈1|1〉(y) :=

∫
PY1|X1

(y|x) dPX1(x) = PY1(y)

where PY0|X0
(y|x) is the conditional distribution of Y0 given X0, and PY1|X1

(y|x) is that of
Y1 given X1. Following Chernozhukov et al. (2013), counterfactual distributions are then
defined as

PY 〈0|1〉(y) :=

∫
PY0|X0

(y|x) dPX1(x), (13)

12



Counterfactual Mean Embeddings

PY 〈1|0〉(y) :=

∫
PY1|X1

(y|x) dPX0(x), (14)

which are well-defined as long as the support condition in Assumption 1 is satisfied.
The distributions introduced above are defined in terms of the observed random variables

(Xt, Yt)t=0,1. We now see how these distributions are related to the distributions on potential
outcomes that appear in distributional causal effects (10) and (11). First, as summarized
in the following lemma, PY 〈0|0〉 and PY 〈1|1〉 are nothing but PY ∗0 |T (y|0) and PY ∗1 |T (y|1),
respectively. For completeness, we include the proof in Appendix C.1.

Lemma 3 We have PY 〈0|0〉(y) = PY ∗0 |T (y|0) and PY 〈1|1〉(y) = PY ∗1 |T (y|1).

On the other hand, the counterfactual distributions PY 〈0|1〉 and PY 〈1|0〉 are respectively
equal to distributions PY ∗0 |T (y|1) and PY ∗1 |T (y|0) appearing in (11) and (10), provided that
Assumption 1 holds (Chernozhukov et al., 2013, Lemma 2.1); we provide a proof for com-
pleteness in Appendix C.2.

Lemma 4 (Causal interpretation) Suppose that Assumption 1 is satisfied. Then we
have PY 〈0|1〉 = PY ∗0 |T=1 and PY 〈1|0〉 = PY ∗1 |T=0.

Lemma 4 shows that the distributions PY ∗0 |T=1 and PY ∗1 |T=0, which play the key role in
analyzing distributional treatment effects (10) (11), can be obtained by estimating the cor-
responding counterfactual distributions PY 〈0|1〉 and PY 〈1|0〉 defined in terms of observed ran-
dom variables (Xt, Yt)t=0,1. The key assumption in this regard is the conditional exogeneity
in Assumption 1.

3.3 Further Explanation on the Distributional Effects of Covariate
Distributions

We are now in a position to provide further explanation on the distributional difference
introduced in Section 3.1.3. To this end, let us assume that the conditional exogeneity in
Assumption 1 is satisfied. Then, by Lemmas 3 and 4, the distributional difference in (11)
can be written as

PY ∗0 |T (y | 0)− PY ∗0 |T (y | 1) = PY 〈0|0〉(y)− PY 〈0|1〉(y)

=

∫
PY0|X0

(y|x) dPX0(x)−
∫

PY0|X0
(y|x) dPX1(x). (15)

The rhs of (15) shows that this distributional difference (if it exists) is due to the difference
between the covariate distributions PX0 and PX1 . In what follows, we provide two distinct
interpretations. First, it quantifies a selection bias that affects the difference in observed
outcome distributions. Second, it quantifies the causal effect for a policy implemented as a
specification of a covariate distribution.

3.3.1 Quantifying a Selection Bias

We can decompose the difference in the observed outcome distributions PY0 and PY1 as

PY0(y)− PY1(y) = PY ∗0 |T (y | 0)− PY ∗1 |T (y | 1)

13
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= PY ∗0 |T (y | 0)− PY ∗0 |T (y | 1)︸ ︷︷ ︸
(A)

+PY ∗0 |T (y | 1)− PY ∗1 |T (y | 1)︸ ︷︷ ︸
(B)

,

where the first term (A) is the distributional effect of covariate distributions (15), and the
second term (B) is the distributional treatment effect on the treated. Thus, the difference
in the observed outcome distributions can arise from (A) and/or (B), and the estimation of
(A) and (B) is useful in studying the origin of the difference in observed outcome distribu-
tions. For instance, if we find that (A) is zero, the difference between the observed outcome
distributions is originated from the distributional difference on the treated (B). On the
other hand, if (B) is zero, then the difference between the observed outcome distributions
is due to (A), i.e., by the selection bias, and is not due to the effects of the treatment.

Note that this difference is different from the difference between the potential outcome
distributions PY ∗0 , PY ∗1 , which accounts for the effects of the treatments 0 and 1 and thus is
of primary interest. The observed outcome distributions PY0 , PY1 are biased approximations
to the potential outcome distributions, if the treatment assignment is not randomized (i.e.,
if X and T are not independent).

3.3.2 Policy as a Specification of a Covariate Distribution

The distributional difference (15) can also be used to quantify the effects of a policy that
specifies a covariate distribution. Recall that we introduced the random variables X0, X1 as
the covariate random variable X conditioned on T = t, t ∈ {0, 1}, i.e., Xt := X | (T = t).
We can instead directly define two random variables X0, X1 by specifying their probabil-
ity distributions PX0 = PX|T (· | 0) and PX1 = PX|T (· | 1), respectively. In this case, the
conditioning T = t for t ∈ {0, 1} may be regarded as specifying the covariate distribution
PXt = PX|T (· | t) on the space of covariates X . This specification of the covariate distribution
PXt = PX|T (· | t) itself can be regarded as a certain policy.3

For instance, Rothe (2010, Section 5.2) used this formulation to study the effects of
smoking of a pregnant mother on the birth weight of the baby. There, the observed outcome
Y > 0 is the birth weight of the baby, and covariates X := (X1, X2, X3, X4) ∈ R4 are
relevant features of the mother: X1 is the number of cigarettes per day, X2 is the age,
X3 is the weight gain and X4 is the marital status. The distribution PX0 is the covariate
distribution of available data of smoking mothers, while PX1 is a transformation of PX0 so
that the number of cigarettes per day, X1

0 , is reduced to 75%. Thus, T = 1 or PX1 may be
regarded as a hypothetical policy that reduces the amount of cigarettes of smoking pregnant
women. Then, P〈0|1〉(y) =

∫
PY0|X0

(y |x) dPX1(x) is the counterfactual distribution of the
birth weights of babies that would have been observed if the mothers had smoked 75 %
less amount of cigarettes than they actually did. The comparison to the observed outcome
distribution P〈0|0〉(y) =

∫
PY0|X0

(y |x) dPX0(x) then enables studying the effects of the
amount of cigarettes on birth weights.

Another important instance is the off-policy evaluation task, which will be discussed
further in Section 6.

3. Here we use the terminology “policy” instead of “treatment” not to confuse the two notions. In our paper,
a “treatment” t ∈ {0, 1} specifies the corresponding potential outcome Y ∗t and its distribution PY ∗

t
; thus,

the difference between PY ∗
0

and PY ∗
1

characterizes the treatment effects. On the other hand, a “policy”
here t ∈ {0, 1} specifies the corresponding covariate random variable Xt and its distribution PXt .
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3.4 Kernel Mean Embeddings for Counterfactual Distributions

We now define counterfactual mean embeddings. Let ` be a positive definite kernel on Y
with RKHS F , and assume that the support condition in Assumption 1 is satisfied. We
then refer to the kernel mean embeddings of the counterfactual distributions (13) and (14)

µY 〈0|1〉 :=

∫
`(·,y) dPY 〈0|1〉(y) ∈ F , (16)

µY 〈1|0〉 :=

∫
`(·,y) dPY 〈1|0〉(y) ∈ F , (17)

as counterfactual mean embeddings (CME). Lemma 4 implies that, under Assumption 1,
these CMEs are respectively identical to the kernel mean embeddings of PY ∗0 |T (y|1) and
PY ∗1 |T (y|0) defined as

µY ∗0 |T=1 :=

∫
`(·,y) dPY ∗0 |T (y|1), µY ∗1 |T=0 :=

∫
`(·,y) dPY ∗1 |T (y|0).

Therefore, by defining an empirical estimator of the CME (16), one can hope to estimate
the distributional treatment effects in (10) and (11), which will be done below.

Estimating counterfactual mean embeddings. In what follows, we introduce our es-
timator of the CME µY 〈0|1〉 defined in (16); one can define an estimator of (17) in a similar
manner. In practice, it is not possible to obtain a sample from PY 〈0|1〉, and therefore the
counterfactual mean embedding µY 〈0|1〉 cannot be estimated directly. Instead, we propose
an estimator that uses samples from PX0Y0 and PX1 to estimate µY 〈0|1〉. To this end, first
note that µY 〈0|1〉 in (16) can be written in terms of the conditional mean embedding (4) of
PY0|X0=x:

µY 〈0|1〉 =

∫
µY0|X0=x dPX1(x) ∈ F ,

where µY0|X0=x :=
∫
`(·,y) dPY0|X0=x(y) ∈ F . This formulation suggests that µY 〈0|1〉 can

be estimated by i) constructing an estimator of the conditional mean embedding µY0|X0=x

and then ii) taking its average over PX1(x). This is how our estimator is derived below.
Suppose that we are given independent samples (x1,y1), . . . , (xn,yn) from PY0X0(x,y)

and x′1, . . . ,x
′
m from PX1(x). For x ∈ X , let µ̂Y0|X0=x denote the estimate (5) of the

conditional mean embedding µY0|X0=x based on (x1,y1), . . . , (xn,yn). Then, an empirical
estimator of µY 〈0|1〉 is defined and expressed as

µ̂Y 〈0|1〉 :=
1

m

m∑
j=1

µ̂Y0|X0=x′j
=

n∑
i=1

βi`(·,yi) with (β1, . . . , βn)> = (K+nεI)−1K̃1m, (18)

where ε > 0 is a regularization constant, 1m = (1/m, . . . , 1/m)> ∈ Rm, K ∈ Rn×n with
Kij = k(xi,xj), and K̃ ∈ Rn×m with K̃ij = k(xi,x

′
j).

The proposed estimator (18) is nonparametric, and can be implemented without knowl-
edge about parametric forms of the conditional PY0|X0

and marginal PX1 . Thus, the esti-
mator is useful when such knowledge is not available. In Section 4, we theoretically analyze
the asymptotic behavior of the estimator, proving its consistency and deriving convergence
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rates. In doing so, we elucidate conditions required for the consistency of the proposed
estimator.

The computational complexity of our estimator (18) is O(n3) because of the matrix
inversion, which may be expensive when the sample size n is huge. To reduce the complexity,
one can adopt existing approximation methods such as Nyström method and random Fourier
features (Williams and Seeger, 2001; Rahimi and Recht, 2008).

We note that the form of the estimator is identical to the kernel sum rule (Song et al.,
2013, Section 4.1), a mean embedding approach to computing forward probabilities in
Bayesian inference. The way we use the estimator is different from this previous approach,
however. That is, we use our estimator to estimate the counterfactual distribution and dis-
tributional causal effects (11), and this requires Assumption 1 to hold for data (or for the
population random variables), as shown in Lemma 4.

3.5 Kernel Treatment Effects

We quantify distributional treatment effects by using the RKHS distance between the mean
embeddings of potential outcome distributions under consideration. We call this approach
Kernel Treatment Effects (KTE). We show below how KTEs can be defined for the different
distributional treatment effects discussed in Section 3.1.

3.5.1 KTE for Distributional Treatment Effects

As before, let ` be a kernel on the output space Y and F be its RKHS. For the distributional
treatment effect (8) discussed in Section 3.1.1, the corresponding KTE is defined as

KTE(Y ∗0 , Y
∗
1 ,F ) := ‖µY ∗0 − µY ∗1 ‖F , (19)

where µY ∗0 and µY ∗1 are the kernel mean embeddings of the distributions of potential out-
comes PY ∗0 and PY ∗1 , respectively, i.e.,

µY ∗0 :=

∫
`(·,y) dPY ∗0 (y), µY ∗1 :=

∫
`(·,y) dPY ∗1 (y). (20)

The KTE (19) may be regarded as a generalization of the ATE (9) in the sense that, if `
is the linear kernel `(y,y′) = 〈y,y′〉 on Y = Rd, then the KTE only distinguishes the means
of the two outcome distributions. By using a different kernel `, the KTE may capture the
differences between higher-order statistics of the outcome distributions PY ∗0 and PY ∗1 . For
instance, if ` is a polynomial kernel `(y,y′) = (〈y,y′〉+ c)m of degree m ∈ N with c > 0,
then the KTE (19) is equal to 0 if and only if PY ∗0 and PY ∗1 have the same moments up to
degree m (see, e.g., Muandet et al. 2017, Chapter 3).

If ` is a characteristic kernel, such as Gaussian and Matérn kernels, then the KTE (19)
is equal to 0 if and only if the two distributions PY ∗0 and PY ∗1 are the same. In this case,
the KTE takes a positive value if and only if there is a difference between PY ∗0 and PY ∗1 .
This means that the KTE informs the existence of any difference in the potential outcome
distributions, quantifying the distributional treatment effect.

The question is how to estimate the KTE (19) from data. As in (7), let (xi, ti,yi)
N
i=1 be

observational data, which are i.i.d. with the random variables (X,T, Y ). Recall that Y is the
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observed outcome and thus given by Y = 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 where Y ∗0 and Y ∗1 are
the potential outcomes. In observational studies, it is common to use the propensity score
e(x) := E[T |X = x], the conditional probability of the treatment assignment T being made
given that the covariates areX = x, to define an unbiased estimator of the average treatment
effect E[Y ∗1 ] − E[Y ∗0 ] (Rosenbaum and Rubin, 1983). We show here that the same strategy
of inverse propensity weighting (Imbens, 2004, Section III-C) can be straightforwardly used
to define unbiased estimators of the mean embeddings µY ∗1 and µY ∗0 of potential outcome
distributions PY ∗1 and PY ∗0 , respectively, thus providing a way of estimating the KTE. That
is, assuming that the propensity e(x) is available, we define

µ̂Y ∗1 :=
1

m

N∑
i=1

ti`(·,yi)
e(xi)

, µ̂Y ∗0 :=
1

n

N∑
j=1

(1− tj)`(·,yj)
1− e(xj)

, (21)

wherem :=
∑N

i=1 ti and n :=
∑N

j=1(1−tj) are the populations of treated and control groups,
respectively.

In the special case of a completely randomized experiment where X and T are inde-
pendent and thus the propensity is e(x) = 1/2 for all x ∈ X , the above estimators reduce
to the standard empirical estimators of mean embeddings: µ̂Y ∗1 := 2

m

∑N
i=1 ti`(·,yi) and

µ̂Y ∗0 := 2
n

∑N
j=1(1− tj)`(·,yj). Note that these uniformly-weighted empirical estimators are

biased if the experiment is not completely randomized, i.e., in observational studies. This is
because, for instance, the sample yi contributing to µ̂Y ∗1 follows the distribution of Y ∗1 |T = 1,
which is different from the unconditional Y ∗1 . Thus, we need the inverse propensity weighting
to obtain unbiased estimators in the case of observational studies.

The following result shows that the estimators (21) are indeed unbiased estimators of
the corresponding mean embeddings µY ∗1 and µY ∗0 of potential outcome distributions. The
proof is presented in Appendix C.3.

Theorem 5 Suppose that 0 < e(x) < 1 for all x ∈ X and that the conditional exogeneity
in Assumption 1 is satisfied. Let (xi, ti,yi)

N
i=1 be i.i.d. with (X,T, Y ), and let µ̂Y ∗1 and

µ̂Y ∗0 be the estimators (21) of the mean embeddings µY ∗1 and µY ∗0 of the potential outcome
distributions PY ∗1 and PY ∗0 in (20). Then, we have

E[µ̂Y ∗1 ] = µY ∗1 , E[µ̂Y ∗0 ] = µY ∗0 .

Theorem 5 shows that the estimators (21) are unbiased, but does not say anything about
their convergence rates as the sample size goes to infinity. The following result provides this;
it essentially shows that the estimators (21) converge to the mean embeddings µY ∗1 and µY ∗0
at the same rates as the standard kernel mean estimators, which are minimax optimal
(Tolstikhin et al., 2017). The key assumption here is that the propensity e(x) is uniformly
lower- and upper-bounded away from 0 and 1. The proof is presented in Appendix C.4.

Theorem 6 Suppose the propensity score e(x) satisfies infx∈X e(x) > 0 and supx∈X e(x) <
1, that supy∈Y `(y,y) <∞, and that the conditional exogeneity in Assumption 1 is satisfied.
Let (xi, ti,yi)

N
i=1 be i.i.d. with (X,T, Y ), and let µ̂Y ∗1 and µ̂Y ∗0 be the estimators (21) of the
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mean embeddings µY ∗1 and µY ∗0 of the potential outcome distributions PY ∗1 and PY ∗0 in (20).
Then, we have

E
[∥∥µ̂Y ∗1 − µY ∗1 ∥∥2F ] = O(m−1), E

[∥∥µ̂Y ∗0 − µY ∗0 ∥∥2F ] = O(n−1), (N →∞),

where m :=
∑N

i=1 ti and n :=
∑N

i=1(1− ti).

Based on the estimators (21), we can define a consistent estimator of (19) as

K̂TE
2

b(Y
∗
0 , Y

∗
1 ,F ) :=

∥∥µ̂Y ∗1 − µ̂Y ∗0 ∥∥2F =
∥∥µ̂Y ∗1 ∥∥2F − 2

〈
µ̂Y ∗1 , µ̂Y ∗0

〉
F

+
∥∥µ̂Y ∗0 ∥∥2F (22)

=
1

m2

N∑
i,j=1

titj`(yi,yj)

e(xi)e(xj)
− 2

mn

N∑
i,j=1

ti(1− tj)`(yi,yj)
e(xi)(1− e(xj))

+
1

n2

N∑
i,j=1

(1− ti)(1− tj)`(yi,yj)
(1− e(xi))(1− e(xj))

,

where the last equality follows from the reproducing property of the kernel `. By the trian-
gle inequality, we have |K̂TEb(Y ∗0 , Y ∗1 ,F ) − KTE(Y ∗0 , Y

∗
1 ,F )|= |

∥∥µ̂Y ∗1 − µ̂Y ∗0 ∥∥F
− ‖µY ∗0 −

µY ∗1 ‖F |≤ |
∥∥µ̂Y ∗1 − µY ∗1 ∥∥F

+
∥∥µ̂Y ∗0 − µY ∗0 ∥∥F

|= Op(m
−1/2+n−1/2) as n,m→∞, which shows

that the estimator (22) is asymptotically unbiased.
Note that (22) is a biased estimator, while being asymptotically unbiased. This bias is

caused by the terms with identical indices (i = j) in the first and third summations of (22).
Thus, by subtracting these terms, an unbiased estimator of the KTE can be defined as

K̂TE
2

u(Y ∗0 , Y
∗
1 ,F ) :=

1

m(m− 1)

∑
i 6=j

titj`(yi,yj)

e(xi)e(xj)
(23)

− 2

mn

N∑
i,j=1

ti(1− tj)`(yi,yj)
e(xi)(1− e(xj))

+
1

n(n− 1)

∑
i 6=j

(1− ti)(1− tj)`(yi,yj)
(1− e(xi))(1− e(xj))

.

By similar arguments as in the proof of Theorem 6, it can be shown that this is indeed an
unbiased estimator of (the square of) KTE (19). Moreover, since it can be shown that∣∣∣K̂TE

2

u(Y ∗0 , Y
∗
1 ,F )− K̂TE

2

b(Y
∗
0 , Y

∗
1 ,F )

∣∣∣ = Op(m
−1 + n−1) (n,m→∞)

given that the assumptions in Theorem 6 hold, this unbiased estimator (23) enjoys the
same convergence rate as the biased one (22): |K̂TEu(Y ∗0 , Y

∗
1 ,F ) − KTE(Y ∗0 , Y

∗
1 ,F )|=

Op(m
−1/2 + n−1/2) as n,m→∞.

3.5.2 KTE for Distributional Treatment Effects on the Treated

We define KTE for the distributional effect PY ∗1 |T (· | t) − PY ∗0 |T (· | t) introduced in Section
3.1.2, where t ∈ {0, 1}. We only consider the case t = 1 here, which is interpreted as the
distributional treatment effect for the treated; the case t = 0 can be defined similarly. The
definition is

KTE(Y ∗1 |(T = 1), Y ∗0 |(T = 1),F ) :=
∥∥∥µY ∗1 |T=1 − µY ∗0 |T=1

∥∥∥
F
, (24)
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where µY ∗1 |T=1 and µY ∗0 |T=1 are the kernel mean embeddings of PY ∗1 |T (· | 1) and PY ∗0 |T (· | 1),
respectively:

µY ∗1 |T=1 :=

∫
`(·,y) dPY ∗1 |T (y | 1), µY ∗0 |T=1 :=

∫
`(·,y) dPY ∗0 |T (y | 1).

Lemma 3 shows that PY 〈1|1〉(y) = PY ∗1 |T (y | 1), while Lemma 4 implies that PY 〈0|1〉 =
PY ∗0 |T=1 under Assumption 1. Thus, we can define an estimator of the above KTE (24) as
follows. Let µ̂Y 〈0|1〉 =

∑n
i=j βi`(·,yj) be the estimator (18) of the CME, and let µ̂Y 〈1|1〉 :=

1
m

∑m
i=1 `(y̌i, ·) where y̌1, . . . , y̌m is a sample from PY 〈1|1〉. Note that such y̌1, . . . , y̌m can

be obtained in practice, as PY 〈1|1〉 is the distribution of the observed outcome Y given that
the treatment assignment is T = 1. Then, we can define an empirical estimator of the KTE
in (24) as follows:

K̂TE
2
(Y ∗1 |(T = 1), Y ∗0 |(T = 1),F )

:=
∥∥µ̂Y 〈1|1〉 − µ̂Y 〈0|1〉∥∥2F

=
1

m2

m∑
i,j=1

`(y̌i, y̌j)−
2

m

m∑
i=1

n∑
j=1

βj`(y̌i,yj) +
n∑

i,j=1

βiβj`(yi,yj). (25)

3.5.3 KTE for Distributional Effects of the Covariate Distributions

Similarly, we can define a KTE for the distributional effect PY ∗0 |T (· | 0)− PY ∗0 |T (· | 1) defined
in (11) by

KTE(Y ∗0 |(T = 0), Y ∗0 |(T = 1),F ) :=
∥∥∥µY ∗0 |T=0 − µY ∗0 |T=1

∥∥∥
F
, (26)

where µY ∗0 |T=0 and µY ∗0 |T=1 are the kernel mean embeddings of PY ∗0 |T (· | 0) and PY ∗0 |T (· | 1),
respectively, i.e.,

µY ∗0 |T=0 :=

∫
`(·,y) dPY ∗0 |T (y | 0), µY ∗0 |T=1 :=

∫
`(·,y) dPY ∗0 |T (y | 1).

Lemma 3 shows that PY 〈0|0〉(y) = PY ∗0 |T (y | 0), and Lemma 4, under Assumption 1,
implies that PY 〈0|1〉 = PY ∗0 |T=1. Therefore, we define an estimator of (26) in the following
way. Let µ̂Y 〈0|1〉 be the estimator (18) of the CME, and let µ̂Y 〈0|0〉 := 1

n

∑n
i=1 `(·, ỹi) where

ỹ1, . . . , ỹn is a sample from PY 〈0|0〉. Note that such ỹ1, . . . , ỹn can be obtained in practice,
as PY 〈0|0〉 is the distribution of the observed outcome Y given that the treatment assignment
is T = 0. Then, we can define an empirical estimator of the KTE in (26) as follows:

K̂TE
2
(Y ∗0 |(T = 0), Y ∗0 |(T = 1),F )

:=
∥∥µ̂Y 〈0|0〉 − µ̂Y 〈0|1〉∥∥2F

=
1

n2

n∑
i,j=1

`(ỹi, ỹj)−
2

n

n∑
i,j=1

βj`(ỹi,yj) +

n∑
i,j=1

βiβj`(yi,yj). (27)

In the next section, we analyze the convergence behavior of the proposed CME estimator
in (18) as the sample size n goes to infinity. Readers who are interested in applications may
skip the next section and jump to Section 5 and Section 6 directly.
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4. Convergence Analysis of the CME Estimator

We provide here a convergence analysis of the CME estimator introduced in Section 3.4.
In Section 4.1, we first establish its consistency under mild assumptions. In Section 4.2,
we derive its convergence rates by making a quantitative assumption on the smoothness of
certain functions involved.

We first introduce necessary notation and definitions. We assume that the covariate
space X and the outcome space Y are measurable spaces, and that the kernels k and ` are
measurable on X and Y, respectively, with H and F being their respective RKHSs. Let
PX0 and PX1 be the probability distributions of the random variables X0 ∈ X and X1 ∈ X ,
respectively (see Definition 2 for the definition of these random variables).

Let L2(PX0) be the Hilbert space of square-integral functions4 with respect to PX0 :

L2(PX0) :=

{
f : X → R |

∫
f2(x) dPX0(x) <∞

}
,

which is equipped with the inner product 〈f, g〉L2(PX0
) :=

∫
f(x)g(x) dPX0(x) and the re-

sulting norm ‖f‖L2(PX0
):=

√
〈f, f〉L2(PX0

). Let PX0 ⊗ PX0 be the product measure of PX0

and PX0 on the product space X × X .

4.1 Consistency

To establish the consistency of the CME estimator, we require the following conditions.

Assumption 2 Assume that the following conditions are satisfied:

(i) The kernels k and ` are bounded on X and Y, respectively, that is, supx∈X k(x,x) <∞
and supy∈Y `(y,y) <∞.

(ii) The RKHS H of k is dense in L2(PX0).

(iii) The distribution PX1 is absolutely continuous with respect to PX0 with the Radon-
Nikodym derivative g := dPX1/ dPX0 satisfying g ∈ L2(PX0).

(iv) (x1,y1), . . . , (xn,yn) are i.i.d. observations of the random variables (X0, Y0), and
x′1, . . . ,x

′
m are i.i.d. observations of the random variable X1, with n = m.

Remark 7 We make the following comments on Assumption 2.

• The boundedness condition (i) is satisfied, for instance, if k and ` are shift-invariant
kernels, such as Gaussian and Matérn kernels.

• The condition (ii) requires that the RKHS be rich enough to approximate square-
integrable functions with respect to PX0 . For instance, this is satisfied by the Gaussian
kernel (Steinwart and Christmann, 2008, Theorem 4.63), and therefore by any kernel
whose RKHS is larger than that of the Gaussian kernel, such as Laplace and Matèrn
kernels (Steinwart and Christmann, 2008, Theorem 4.48).

4. More precisely, each element in L2(PX0) is a PX0 -equivalent class of functions; see Appendix D.1.
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• The condition (iii) requires the support of PX1 be included in that of PX0 , and thus
is related to the common support assumption in Assumption 1. If both PX1 and
PX0 have density functions pX1 and pX0 , respectively, with respect to a common
reference measure (e.g., the Lebesgue measure in the case of X ⊂ Rd), then the
Radon-Nikodym derivative becomes the density ratio or the importance weight func-
tion g(x) = pX1(x)/pX0(x). Thus, the square-integrability of g requires, intuitively,
that pX1 should not be very different from pX0 .

• In the condition (iv), we assume n = m for simplicity of presentation.

Before presenting the result, we introduce a function θ : X × X → R defined by

θ(x, x̃) :=

∫∫
`(y, ỹ) dPY0|X0

(y|x) dPY0|X0
(ỹ|x̃). (28)

This function appears in the proof of consistency, and also is needed to derive convergence
rates in Section 4.2. Note that the assumption in (i) that ` being bounded implies that
θ ∈ L2(PX0 ⊗ PX0); this property is used in the proof of consistency.

Theorem 8 below shows the consistency of the CME estimator (18). The proof can be
found in Appendix E.2.

Theorem 8 (Consistency) Suppose that Assumption 2 is satisfied. Let µ̂Y 〈0|1〉 be the
estimator defined in (18) with a regularization constant εn > 0. Then if εn → 0 and
n1/2εn →∞ as n→∞, we have∥∥µ̂Y 〈0|1〉 − µY 〈0|1〉∥∥F

→ 0

in probability as n→∞.

Remark 9 As discussed, the form of the CME estimator (18) is the same as that of the
kernel sum rule, and Fukumizu et al. (2013, Theorem 8) proves its consistency. Unlike
ours, however, Fukumizu et al. (2013) assume that the function θ in (28) belongs to the
tensor-product RKHS H ⊗H , which is a rather strong assumption for proving just the
consistency. For instance, if H is the RKHS of the Gaussian kernel, then this assumption
requires that θ be infinitely differentiable. The theoretical contribution of our analysis is in
removing this condition.

Recall that by Lemma 4 we have µY 〈0|1〉 = µY ∗0 |T=1 under the conditional exogeneity
condition (Assumption 1). Thus, Theorem 8 implies that the CME estimator is consistent
in estimating µY ∗0 |T=1, as summarized in the following corollary. This justifies the use of the
CME estimator in dealing with counterfactual questions, as will be described in Section 5.

Corollary 10 Suppose that Assumptions 1 and 2 are satisfied. Let µ̂Y 〈0|1〉 be the estimator
defined in (18) with a regularization constant εn > 0. Then, if εn → 0 and n1/2εn →∞ as
n→∞, we have ∥∥∥µ̂Y 〈0|1〉 − µY ∗0 |T=1

∥∥∥
F
→ 0

in probability as n→∞.
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4.2 Convergence Rates

Next, we present a result on the convergence rate of the CME estimator (18). This result
is obtained based on certain smoothness assumptions on the Radon-Nikodym derivative
g = dPX1/dPX0 and the function θ defined in (28). To state these assumptions, we need to
introduce the following concepts, details of which can be found in Appendix D.1.

In the sequel, I ⊂ N denotes a set of indices, which is a finite set or an infinite set
depending on whether the RKHS H is finite dimensional (e.g., if k is a linear or polynomial
kernel) or infinite dimensional (e.g., if k is a Gaussian or Matérn kernel). We define an
integral operator T : L2(PX0)→ L2(PX0) by

Tf :=

∫
k(·,x)f(x) dPX0(x), f ∈ L2(PX0).

Intuitively, the output function Tf is a smoother version of the input function f , as Tf can
be seen as a convolution between f and the kernel k.

Under Assumption 2 (i) and (ii), there exist at most countable families of functions
(ei)i∈I ⊂ H and the associated positive constants (µi)i∈I ⊂ (0,∞) such that i) µ1 ≥ µ2 ≥
· · · > 0, that ii) (µ

1/2
i ei)i∈I is an orthonormal basis (ONB) in H , that iii) (ei)i∈I is an ONB

in L2(PX0), and that iv) the integral operator can be written as

Tf =
∑
i∈I

µi 〈f, ei〉L2(PX0
) ei,

with convergence in L2(PX0); see Lemmas 16 and 18 in Appendix D.1. In other words, the
pairs (µi, ei)i∈I are eigenvalues and eigenfunctions of the integral operator: Tei = µiei for
i ∈ I. Based on this eigendecomposition, one can define a power of the integral operator T :
for a constant α ≥ 0, the α-th power of T is defined as

Tαf :=
∑
i∈I

µαi 〈f, ei〉L2(PX0
) ei, f ∈ L2(PX0).

We now make the following assumption about the smoothness of the Radon-Nikodym
derivative g = dPX1/ dPX0 , where Range(Tα) denotes the range or image of Tα. This way
of stating a smoothness condition is common in learning theory for kernel methods, e.g.,
Caponnetto and Vito (2007); Smale and Zhou (2007); Fukumizu et al. (2013).

Assumption 3 There exists a constant 0 ≤ α ≤ 1 such that the Radon-Nikodym derivative
g = dPX1/dPX0 satisfies g ∈ Range(Tα).

Remark 11 • Assumption 3 quantifies the smoothness of the Radon-Nikodym deriva-
tive g = dPX1/ dPX0 by the constant 0 ≤ α ≤ 1. That is, g is smoother if α is close
to 1 and less smooth if α is close to 0. Since we have dPX1(x) = g(x) dPX0(x), a
larger α may therefore be understood as that PX0 and PX1 are more similar. This
interpretation can be obtained as follows.

• The assumption implies that there exists a square-integrable function f ∈ L2(PX0)
that g = Tαf . As mentioned, T acts as a smoother, outputting a smoothed version
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Tf of an input function f . Similarly, its power Tα acts as a smoother, but now α
determines the degree of smoothness of the output function. For α = 0, Tα is just
the identity map, and there is no effect of smoothing. As α increases, the degree of
smoothness increases. In fact, Steinwart and Scovel (2012, Theorem 4.6) shows that
Range(Tα) for 0 < α ≤ 1/2 is equal to an interpolation space between L2(PX0) and the
RKHS H as a set of functions. In particular, we have Range(Tα) = H for α = 1/2,
and thus the assumption implies g ∈H . Thus, the case α > 1/2 is that g is smoother
than the least smooth functions in H .

We next state a smoothness assumption about the function θ(x,x′) defined in (28). To
simplify the presentation, let X 2 := X × X . Define a kernel on X 2 as the product kernel
kprod : X 2 ×X 2 → R such that

kprod ((x1,x2), (x̃1, x̃2)) := k(x1, x̃1)k(x2, x̃2), (x1,x2), (x̃1, x̃2) ∈ X 2.

We then define an integral operator Tprod : L2(PX0 ⊗ PX0)→ L2(PX0 ⊗ PX0) by

Tprodη :=

∫
kprod (·, (x̃1, x̃2)) η ((x̃1, x̃2)) d (PX0 ⊗ PX0) ((x̃1, x̃2)) , η ∈ L2(PX0 ⊗ PX0).

By Assumption 2 (i) and (ii), this can be written in terms of the eigensystem (µi, ei)i∈I as

Tprodη =
∑
i,j∈I

µiµj 〈η, ei ⊗ ej〉L2(PX0
⊗PX0

) ei ⊗ ej ,

where ei ⊗ ej : X 2 → R denotes the tensor product of ei and ej , and the convergence is in
L2(PX0 ⊗ PX0); see Lemma 19 in Appendix D. That is, each ei ⊗ ej is an eigenfunction of
Tprod with the corresponding eigenvalue µiµj . The β-th power of Tprod for 0 ≤ β ≤ 1 is then
defined as

T βprodη =
∑
i,j∈I

(µiµj)
β 〈η, ei ⊗ ej〉L2(PX0

⊗PX0
) ei ⊗ ej . (29)

Similar to Assumption 3, we make the following smoothness assumption for the function
θ : X × X → R defined in (28), based on the range of the power T βprod.

Assumption 4 There exists a constant 0 ≤ β ≤ 1 such that the function θ defined in (28)
satisfies θ ∈ Range(T βprod).

Remark 12 As for Assumption 3, we can interpret Assumption 4 as quantifying the smooth-
ness of θ by the constant β. That is, larger β implies that θ is smoother. Note that θ can
be written as θ(x,x′) =

〈
µY0|X0=x, µY0|X0=x′

〉
F
, where µY0|X0=x :=

∫
`(·,y) dPY0|X0

(y|x)
is the kernel mean of PY0|X0

(·|x). Therefore, θ is smooth if the mapping x → µY0|X0=x is
smooth. Thus, β may be interpreted as quantifying the smoothness of this mapping.

We are now ready to state Theorem 13 below, which establishes the convergence rate of
the CME estimator. The rate is given in terms of the constants α and β introduced in the
above assumptions. The proof is given in Appendix E.3.
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Theorem 13 (Convergence rates) Suppose that Assumptions 2, 3 and 4 hold with α +
β ≤ 1. Let µ̂Y 〈0|1〉 be the estimator defined in (18) with a regularization constant εn > 0.
Let c > 0 be an arbitrary constant, and set εn = cn−1/(1+β+max(1−α,α)). Then we have∥∥µ̂Y 〈0|1〉 − µY 〈0|1〉∥∥F

= Op

(
n−(α+β)/2(1+β+max(1−α,α))

)
(n→∞).

Remark 14 Let us interpret the rate of Theorem 13.

• The exponent (α+β)/2(1+β+max(1−α, α)) in the rate is smaller than 1/2 for any α
and β, and thus the rate is always slower than the parametric rate n−1/2. For instance,
the rate becomes n−1/4 if α = β = 1/2. This is due to the CME estimator being
nonparametric, as for other nonparametric statistical estimators in general (Tsybakov,
2008). We are not aware of, however, whether the obtained rate is minimax optimal.
We leave this question for future research.

• An important interpretation of the rate is as follows: if either the Radon-Nikodym
derivative g = dPX1/ dPX0 or the function θ is smooth, then the CME estimator
converges reasonably fast. For instance, the rate becomes n−1/6 if α = 0 and β = 1,
and n−1/4 if α = 1 and β = 0 (recall that α and β quantify the smoothness of g
and θ, respectively). Therefore, even in the situation where the change from PX1 to
PX0 is large, we may still expect a good performance for the CME estimator if the
relationship between X0 and Y0 is smooth (and vice versa).

As for Corollary 10, we obtain the following corollary from Theorem 13.

Corollary 15 Suppose that Assumptions 1, 2, 3 and 4 hold with α+ β ≤ 1. Let µ̂Y 〈0|1〉 be
the estimator defined in (18) with a regularization constant εn > 0. Let c > 0 be an arbitrary
constant, and set εn = cn−1/(1+β+max(1−α,α)). Then we have∥∥∥µ̂Y 〈0|1〉 − µY ∗0 |T=1

∥∥∥
F

= Op

(
n−(α+β)/2(1+β+max(1−α,α))

)
(n→∞).

5. Applications to Sampling and Testing

In this section, we discuss important applications of the proposed framework.

5.1 Sampling from Counterfactual Distributions

While a CME estimate can be seen as a weighted sample (βi,yi)
n
i=1, the coefficients

β1, . . . , βn may in general include negative values; thus it is not straightforward to interpret
them as importance weights. If one can generate sample points ỹ1, . . . , ỹm from the CME
estimate, then these unweighted points may be more useful for an analyst. For instance, we
might use them for the purpose of visualization (e.g., scatter plot and histogram). Moreover,
as will be described below, such unweighted points can be straightforwardly used for testing
hypotheses regarding distributional treatment effects.

We propose a method for sampling from the counterfactual distribution based on the
CME estimator and the kernel herding algorithm (Chen et al., 2010; Kanagawa et al., 2016;
Kajihara et al., 2018). The method is summarized in Algorithm 1, which generates sample
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Algorithm 1 Sampling from a counterfactual mean embedding estimate
1: Input: A CME estimate µ̂Y 〈0|1〉 =

∑n
i=1 βi`(yi, ·) with (βi,yi)

n
i=1 ⊂ R × Y and kernel

` : Y × Y → R; the number m ∈ N of sample points to generate.
2: Compute ỹ1 := arg maxy∈Y

∑n
i=1 βi`(yi,y).

3: for t = 2 to m do
4: Compute ỹt := arg maxy∈Y

∑n
i=1 βi`(yi,y)− 1

t

∑t−1
i=1 `(ỹi,y).

5: end for
6: Output: ỹ1, . . . , ỹm.

points ỹ1, . . . , ỹm from µ̂Y 〈0|1〉 in (18). When the kernel ` is shift-invariant (e.g., Gaussian),
the procedure in Algorithm 1 to generate ỹ1, . . . , ỹt for t = 1, . . . ,m ∈ N is equivalent to
the greedy minimization of the RKHS distance between the CME estimate µ̂Y 〈0|1〉 and the
empirical kernel mean 1

t

∑t
i=1 `(ỹi, ·):∥∥∥∥∥µ̂Y 〈0|1〉 − 1

t

t∑
i=1

`(ỹi, ·)
∥∥∥∥∥

F

= sup
‖f‖F≤1

∣∣∣∣∣∣
n∑
i=1

βif(yi)−
1

t

t∑
j=1

f(ỹj)

∣∣∣∣∣∣ . (30)

See Chen et al. (2010) for details. In other words, the points ỹ1, . . . , ỹm are those greedily
minimizing the worst case error to the weighted points (βi,yi)

n
i=1 in the unit ball of the

RKHS F ; thus, this algorithm is a greedy variant of Quasi Monte Carlo methods (Dick
et al., 2013). Notice that therefore these points are, of course, not independent to each
other. The convergence rate O(n−1/2) is guaranteed for 1

t

∑t
i=1 `(·, ỹi) (Bach et al., 2012),

which may hold even when the optimization problem (30) is solved approximately (Lacoste-
Julien et al., 2015; Kanagawa et al., 2016).

Lastly, to obtain high dimensional samples, e.g., images, from the counterfactual distri-
bution, one can train deep generative models using MMD-GAN (Li et al., 2015; Dziugaite
et al., 2015; Sutherland et al., 2017; Li et al., 2017) based the CME estimate. We defer this
promising application to future work.

5.2 Counterfactual Inference as Two-sample Testing

One can also identify distributional treatment effects by formulating the problem as that
of hypothesis testing, or more specifically, two-sample testing. To describe this, we assume
that we are given data (xi, ti,yi)

N
i=1, which are i.i.d. with random variables (X,T, Y ) with

Y = Y ∗0 1(T = 0) +Y ∗1 1(T = 1) being the observed outcome and Y ∗0 , Y ∗1 being the potential
outcomes. Let n :=

∑N
i=1(1− ti) and m :=

∑N
i=1 ti. See Section 3.5 for the notation.

Distributional treatment effects. Here we are interested in testing whether PY ∗0 and
PY ∗1 are equal or not (see Section 3.1.1). The null hypothesis H0 and the alternative hy-
pothesis H1 are thus defined as

H0 : PY ∗0 = PY ∗1 , H1 : PY ∗0 6= PY ∗1 ,

As a test statistic, we propose to use an estimate K̂TE(Y ∗0 , Y
∗
1 ,F ) of the kernel treat-

ment effect, KTE(Y ∗0 , Y
∗
1 ,F ) = ‖µY ∗0 − µY ∗1 ‖2F , introduced in Section 3.5.1. This esti-
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mate K̂TE(Y ∗0 , Y
∗
1 ,F ), computed from the data (xi, ti,yi)

N
i=1, can either be the biased one,

K̂TEb(Y ∗0 , Y ∗1 ,F ), defined in (22), or the unbiased one, K̂TEu(Y ∗0 , Y
∗
1 ,F ), in (23).

To decide a critical region, we need the distribution of the test statistic under the
null hypothesis H0. One way to approximate this distribution is to use a bootstrap pro-
cedure (Efron and Tibshirani, 1993), as follows. Let B ∈ N be the number of boot-
strap samples. For each b = 1, . . . , B, we randomly permute the indices 1, . . . , N to, say,
πb(1), . . . , πb(N) ⊂ {1, . . . , N}. Then we compute the test statistic ηb := K̂TE(Y ∗0 , Y

∗
1 ,F )

based on the permuted data (xi, tπb(i),yi)
N
i=1. We then approximate the null distribution

by the histogram of η1, . . . , ηB, and determine a critical tail region for rejecting the null
hypothesis (e.g., with significance level α = 0.05).

Distributional effects of the covariate distributions. Here, we are interested in
whether the two distributions PY ∗0 |T (· | 0) and PY ∗0 |T (· | 1) are equal or not (see Section 3.1.3).
If they are different, there is a distributional effect on the outcomes arising from the dif-
ference in covariate distributions. The identification of such an effect can be phrased as a
hypothesis test with the null and alternative hypotheses being

H0 : PY ∗0 |T (· | 0) = PY ∗0 |T (· | 1), H1 : PY ∗0 |T (· | 0) 6= PY ∗0 |T (· | 1), (31)

To describe the approach, we rearrange the data (xi, ti,yi)
N
i=1 so that ti = 0 for i = 1, . . . , n

and ti = 1 for i = n+1, . . . , n+m = N . Note that y1, . . . ,yn are a sample from PY ∗0 |T (· | 0),
while the distribution PY ∗0 |T (· | 1) is counterfactual and we do not have a sample from it.
However, we can estimate the kernel mean of PY ∗0 |T (· | 1) by the CME estimator (18) using
the data (xi,yi)

n
i=1 and (x̃j)

m
j=1 := (xn+j)

m
j=1 under the conditional exogeneity assumption,

and let µ̂〈0|1〉 be the resulting estimate. We then apply kernel herding to µ̂〈0|1〉 for obtaining
sample points ỹ1, . . . , ỹm approximating PY ∗0 |T (· | 1), as described in Algorithm 1.

We can then apply any method for two-sample test, e.g., those in Gretton et al. (2012),
to the two samples y1, . . . ,yn and ỹ1, . . . , ỹm to test the hypotheses (31). We note that
this is a rather heuristic approach, since ỹ1, . . . , ỹm are not drawn from PY ∗0 |T (· | 1), but
generated deterministically so as to approximate PY ∗0 |T (· | 1). We leave a further theoretical
study regarding the validity of this approach for future research.

Finally, one can develop a testing procedure for identifying distributional treatment
effects on the treated (see Section 3.1.2) in the same way as described here, and thus we
omit the explanation.

5.3 Discussion

Here we discuss how the above sampling and testing procedures may be used in practice.
Suppose that an analyst is interested in the distributional effects of the difference in covariate
distributions, i.e., the hypotheses in (31), and that the null hypothesis has been rejected as a
result of applying the above testing procedure. This suggests the existence of a difference in
the two distributions, PY ∗0 |T (· | 0) and PY ∗0 |T (· | 1). This is usually not the end of the analysis,
but is the starting point of a further exploratory analysis. There are several ways to proceed,
to understand how the two outcome distributions differ.

One way is to use the samples y1, . . . ,yn and ỹ1, . . . , ỹm (the latter being a counterfac-
tual sample generated from Algorithm 1) approximating the distributions PY ∗0 |T (· | 0) and

26



Counterfactual Mean Embeddings

PY ∗0 |T (· | 1), respectively. The analyst can use any available statistical method for finding
the source of the difference in the two distributions. For instance, she may compute sum-
mary statistics of both samples (e.g., mean, variance, etc.) and compare them. It is also
possible to just plot both samples, or to estimate the densities, to visualize the difference
(as we demonstrate in Section 7.1). Another useful method in this context is the approach
of Jitkrittum et al. (2016) and their follow-up works, which returns interpretable features
for explaining the difference in the two samples, such as the sample locations on which
(smoothed version) of the two density values differ substantially.

Another important point for discussion is the use of non-characteristic kernels. If the
kernel ` is not characteristic, such as polynomial kernels, rejecting the null hypothesis implies
that there exist a certain kind of difference in the two distributions. For instance, if the kernel
` is a polynomial kernel of order 2, then rejecting the null hypothesis implies that there exists
a difference in the mean or in the variance of the two outcome distributions. In this sense, if
one is interested in the existence of a specific difference in the outcome distributions (such
as the mean and variance), non-characteristic kernels may be more useful.

6. Application to Off-Policy Evaluation (OPE)

We describe here how our approach can be applied to the off-policy evaluation task (OPE),
e.g., Dudík et al. (2011), which aims at evaluating the performance of a given target policy
of deciding a certain action given a context. The performance is measured in terms of the
resulting rewards. For instance, consider a recommendation system, where an action is a
list of items to be recommended to a user, and a policy determines which action to take,
given the features of the user. There will be a positive reward if the user clicks or buys one
of the recommended items, and no reward otherwise. The goal of OPE is to estimate how a
given policy would work, without actually implementing the policy. Instead, the evaluation
is to be done relying only on logged (or historical) data obtained from a possibly unknown
initial policy, which is different from the target policy. This task is important when actually
implementing a new policy is expensive or difficult, with wide applications including ad
placement, recommendation systems, and health care.

We first describe the OPE problem more formally in Section 6.1. We then interpret it
with the potential outcome framework and formulate the OPE problem as an estimation
of a counterfactual distribution in Section 6.2. Finally, we present a concrete algorithm in
Section 6.3.

6.1 Problem Description

Formally, the OPE task may be defined as follows. Let U be a space of context features,
A be a space of actions and R be a space of rewards. For instance, in the case of rec-
ommendation systems, each u ∈ U represents a user’s features, a ∈ A a recommendation
(e.g., a list of items), and r ∈ R the number of clicks on the recommendation. A policy
π(a|u) is a conditional distribution on the action space A given context features u ∈ U . In a
recommendation system, π(a|u) determines the probability of providing a recommendation
a to a user having features u.

Assume that tuples {(ui,ai, ri)}ni=1 ⊂ U × A × R of context features ui ∈ U , action
ai ∈ A and reward ri ∈ R are available as logged (or historical) data. We assume that they
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were independently generated from a joint distribution P0(u,a, r) := q0(u)π0(a|u)P0(r|u,a)
in the data collection phase, where q0(u) is a marginal distribution on U , π0(a|u) is an
initial (or logging/behavior) policy, and P0(r |u,a) is a conditional distribution of a reward
r ∈ R given (u,a) ∈ U ×A. In a recommendation system, for instance, P0(r |u,a) describes
whether a user with features u who has been recommended a list of items a would choose
one of the items. As such, it is typically unknown a priori. Similarly, q0(u) and π0(a|u)
may be unknown in practice, if {(ui,ai, ri)}ni=1 are given as historical data.

Let π∗(a|u) be another conditional distribution of actions a ∈ A given context features
u ∈ U , which represents the target policy that one wants to evaluate. By design, the target
policy is known and sampling from it is possible. Let q∗(u) be a probability distribution
on U , which represents the distribution of context features under the target environment
(e.g., the distribution of user features when a recommendation system is deployed). In the
standard OPE setting, it is typically assumed that q0(u) = q∗(u), i.e., the historical and
target environments are the same; but in general these can be different, q0(u) 6= q∗(u). The
latter situation is not uncommon in practice and has been recently studied by Uehara et al.
(2020). Finally, let P∗(r |u,a) be the conditional distribution of a reward r given context
features u and action a under the target environment. We assume that this remains the
same as in the data collection phase, i.e.,

P∗(r |u,a) = P0(r |u,a).

This assumption may be understood as the policy invariance assumption commonly made
in the econometric policy evaluation literature, e.g., Heckman and Vytlacil (2007).5

The task of off-policy evaluation is then to estimate the expected reward under the target
environment:

R∗ :=

∫
U×A

∫
R
r dP∗(r|u,a) dπ∗(u,a) =

∫
U×A

∫
R
r dP0(r|u,a) dπ∗(u,a), (32)

where the identity follows from the assumption P∗(r |u,a) = P0(r |u,a), and π∗(u,a) :=
π∗(a|u)q∗(u) is the joint distribution on U ×A given by π∗(a|u) and q∗(u). This estimation
is to be done using logged data {(ui,ai, ri)}ni=1 and the target policy π∗(u|a).

6.2 OPE as Counterfactual Inference

We explain below how our CME estimator (18) can be applied to the OPE task. To this
end, we consider the marginal distribution of a reward under the target environment:

P∗(r) :=

∫
U×A

P∗(r |u,a) dπ∗(u,a) =

∫
U×A

P0(r |u,a) dπ∗(u,a). (33)

Note that the expected reward (32) is the mean of this distribution. We first show that the
distribution P∗(r) can be interpreted as a counterfactual distribution, by formulating the
OPE task using the potential outcome framework6 in Section 3.

5. More precisely, this assumption may be identified with the policy invariance assumptions PI-1 and PI-2
in Section 2.2 of Heckman and Vytlacil (2007), where s and ω there correspond to a and u in our setting,
respectively, and tuple (a, b, τ) there essentially corresponds to a policy in our setting.

6. Our formulation of the OPE task using the potential outcome framework is different from the existing
formulation, e.g., Kallus and Zhou (2018), where each action a ∈ A is defined as a treatment, and for
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Random variables. Consider a hypothetical subject in population. This subject is asso-
ciated with covariates X := (U,A), where U ∈ U is context features and A ∈ A is an action
taken. As such, we define the covariate space as X := U × A, the product of the context
feature space U and action space A. In a recommendation system, for instance, U is the
user features and A is a recommended list of items. We define two treatments 0 and 1 as
exposing the subject to the environment during the data collection phase and that during
the evaluation phase, respectively; and the associated potential outcomes Y ∗0 and Y ∗1 as the
rewards under the respective treatments 0 and 1. Let T ∈ {0, 1} be a treatment indicator.

In a recommendation system, for example, an environment may refer to the situation
where a user is about to choose an item, such as the calendar year when this takes place.
For instance, treatment 0 may refer to the environment in the year 2000, and treatment 1
the environment in year 2020. Consider a user with the features U and the recommended
items A, and suppose that A consists of items which were popular in 2000 but are outdated
in 2020. Then this user may have chosen an item from A if it were in 2000, but may not
choose any item in 2020, i.e., we may have Y ∗0 6= Y ∗1 .

For ease of understanding, consider a finite population of N subjects with

(y∗i0,y
∗
i1,xi, ti)

N
i=1 (34)

being i.i.d. realizations of the random variables (Y ∗0 , Y
∗
1 , X, T ). That is, the i-th subject

is associated with covariates xi := (ui,ai) consisting of context features ui and action
ai. The treatment assignment ti ∈ {0, 1} indicates which environment the i-th subject is
exposed to. Thus, the potential outcomes y∗i0 and y∗i1 are the rewards from the i-th subject
(associated with xi := (ui,ai)) that would have been observed if she was exposed to the
environment during the data collection phase (treatment 0) and that during the evaluation
phase (treatment 1), respectively.

Distributions of the potential outcomes. The distributions of the potential outcomes
Y ∗0 , Y

∗
1 are defined via their conditional distributions given X = (U,A), i.e., PY ∗0 |X(y|x) and

PY ∗1 |X(y|x) where y = r and x = (u,a). These are the conditional distributions of rewards
r ∈ R given context features u ∈ U and action a ∈ A, under the environment during the
data collection phase (treatment 0) and that during the evaluation phase (treatment 1),
respectively:

PY ∗0 |X(y|x) = P0(r|u,a), PY ∗1 |X(y|x) = P∗(r|u,a) (y = r, x = (u,a)).

Note that our assumption P0(r|u,a) = P∗(r|u,a) implies that

PY ∗0 |X(y|x) = PY ∗1 |X(y|x), (35)

each action a there is a corresponding potential outcome Y ∗a . In our formulation, on the other hand,
an action a taken for the subject is defined as a part of covariates x = (u,a), and binary treatments, 0
and 1, are considered, each of which is defined as exposing the subject to a certain environment. Our
formulation enables us to interpret the OPE task as counterfactual inference of changing the covariate
distribution, so that our CME estimator can be naturally applied. Thus, our motivation of introducing
this formulation is rather pragmatic, and we do not argue whether it is more reasonable than the existing
one. One benefit may exist, however: In our formulation, we explicitly model the assumption on the
conditional distributions of rewards being the same for the data collection and evaluation phases via the
potential outcome notation (35), while this assumption is implicitly made in the existing formulation.
This explicit statement of the assumption helps a researcher to understand when the OPE may be
justified.
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i.e., the conditional distributions of the potential outcomes (rewards) Y ∗0 and Y ∗1 are the
same, given the covariates X = x := (u,a).

For instance, consider a recommendation system with a finite population (34) with the
i-th user equipped with covariates xi = (ui,ai) consisting of features ui and recommended
items ai. The identity (35) then implies that, for the i-th user, the distributions of the
potential outcomes (rewards) y∗i0 and y∗i1 are the same. This means that this user should have
the same stochastic behavior in choosing (or not choosing) an item from the recommended
ones during the data collection (treatment 0) and evaluation (treatment 1) phases. In other
words, the environmental factors that affect the user behavior should be the same for the
data collection and evaluation phases. This excludes, for instance, the above example where
the data collection phase is in year 2000 and the evaluation phase is in 2020, in which case
user preferences are different.

Distributions of covariates. As in Section 3.3.2, we interpret here a policy as specifying
a distribution on the covariate space X = U×R. More specifically, consider the conditioning
T = 0 or T = 1, which imply that the hypothetical subject is exposed to the environment
of the data collection phase (T = 0) or to that of the evaluation phase (T = 1). Then the
corresponding distributions of the covariates X0 = X|(T = 0) and X1 = X|T = 1 are given
by the logging policy π0(u|a) and the target policy π∗(u|a), respectively:

PX0(x) = π0(a|u)q0(u), PX1(x) = π∗(a|u)q∗(u) (x = (u,a) ∈ U ×A). (36)

To describe this, consider the finite population (34), and assume that for the i-th user
the treatment indicator is ti = 0, which implies that her data are given in the data collection
phase. In this case, her covariates xi = (ui,ai) are generated according to the joint distri-
bution π0(a|u)q0(u) involving the logging policy π0(a|u). On the other hand, if ti = 1, her
covariates xi = (ui,ai) are generated from the joint distribution π∗(a|u)q∗(u) given by the
target policy π∗(a|u). Note that in the OPE setting, if ti = 1 we have access to neither y∗i0
nor y∗1i; note also that in this case this “user” may be imaginary, with covariates xi = (ui,ai)
generated artificially.

Distributions of observed outcomes. The observed outcome (reward) from the hypo-
thetical subject is defined as Y = 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 . Let Y0 = Y |(T = 0) =
Y ∗0 |(T = 0) and Y1 = Y |(T = 1) = Y ∗1 |(T = 1) be the observed outcome Y conditioned on
T = 0 or T = 1, respectively. Then Y0 conditioned on X0 = X|(T = 0) and Y1 conditioned
on X1 = X|(T = 1) can be written in terms of the potential outcomes Y ∗0 and Y ∗1 as

Y0|X0 = Y ∗0 |X, (T = 0), Y1|X1 = Y ∗1 |X, (T = 1).

Note that the potential outcomes Y ∗0 and Y ∗1 are independent to the treatment indicator
T given the covariates X under the conditional exogeneity in Assumption 1. Therefore,
Y ∗0 |X, (T = 0) = Y ∗0 |X and Y ∗1 |X, (T = 1) = Y ∗1 |X.

Thus, we can identify the conditional distributions PY0|X0
and PY1|X1

as P0(r|u,a) and
P∗(r|u,a), respectively:

PY0|X0
(y|x) = PY ∗0 |X(y|x) = P0(r|u,a), PY1|X1

(y|x) = PY ∗1 |X(y|x) = P∗(r|u,a), (37)

where y = r and x = (u,a). Therefore, the assumption P0(r|u,a) = P∗(r|u,a) (or (35))
implies that

PY0|X0
(y|x) = PY1|X1

(y|x).
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Reward distribution as a counterfactual distribution. Finally, the reward distribu-
tion (33) under the target environment can be written as a counterfactual distribution using
the identities (36) and (37) (assuming the conditional exogeneity) as

P∗(r) =

∫
PY0|X0

(y|x) dPX1(x) = PY 〈0|1〉(y).

with y = r and x = (u,a). Thus, we can use the CME estimator (18) to estimate the kernel
mean of this reward distribution, which is described below.

6.3 Off-Policy Evaluation by the CME Estimator

Let ` be a kernel on the outcome (reward) space Y = R with F its RKHS. Then the mean
embedding of the reward distribution under the target environment is defined as

µP∗ :=

∫
`(·, r) dP∗(r) ∈ F . (38)

Note that this becomes the expected reward (32) if we define ` as a linear kernel: `(r, r′) :=
rr′, which we use in our experiments in Section 7.2. In principle, however, the use of other
nonlinear kernels (in particular characteristic kernels) makes the mean embedding more
informative, and this may be beneficial in assessing the effectiveness of the target policy.

Kernel on covariates. To use the CME estimator, we also need to define a kernel k on
the covariate space X = U×A. To this end, we first define kernels kU and kA on the context
feature space U and the action space A, respectively. Then we can define k as the product
kernel of kU and kA: k((u,a), (u′,a′)) := kU (u,u′)kA(a,a′) for (u,a), (u′,a′) ∈ U ×A.
Joint sample. Recall that logged data {(ui,ai, ri)}ni=1 are i.i.d. with the joint distribution
P0(u,a, r) = P0(r|u,a)π0(a|u)q0(u), which is identified as PX0Y0(x,y) = PY0|X0

(y|x)PX0(x)
for x = (u,a) and y = r because of (36) and (37). Thus, by defining xi := (ui,ai) and
yi := ri, we have an i.i.d. sample (xi,yi)

n
i=1 from the joint distribution PX0Y0(x,y).

Covariate sample. We also need to express PX1 in terms of a sample in the form (x′j)
m
j=1 .

As in (36), the covariate distribution PX1 is the joint distribution given by the target policy
π∗(a|u) and the marginal distribution q∗(u) of context features. Thus, if we can sample
from both π∗(a|u) and q∗(u) (the former is typically possible because it is defined by the
designer of the target policy, while the latter depends on the problem), then (x′j)

m
j=1 may

be given by

x′j := (u∗j ,a
∗
j ), where u∗j ∼ q∗(u), a∗j ∼ π∗(a|u∗j ), j = 1, . . . ,m. (39)

In the particular case where q∗(u) = q0(u), we can use the sample (ui)
n
i=1 in the logged data

{(ui,ai, ri)}ni=1, which are from q0(u), as a sample from q∗(u): u∗j := uj for j = 1, . . . ,m :=
n. Note that even if q∗(u) 6= q0(u), we can use the CME estimator as long as we have
a sample of context features (u∗j )

m
j=1 from the target environment, i.e., the covariate shift

setting of Uehara et al. (2020).

Algorithm. The resulting algorithm is described in Algorithm 2, which only requires
matrix operations and thus is simple to implement. We note that the expected reward (32)
under the target environment can be estimated as µ̂P∗(r) =

∑n
i=1 βiri; this is obtained by

setting ` as a linear kernel on R.
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Algorithm 2 Off-Policy Evaluation using the CME estimator (18)
1: Requirement: A kernel kU on the context space U , a kernel kA on the action space A,

a kernel ` on the reward space R, and a regularization constant ε > 0.
2: Input: Logged data (ui,ai, ri)

n
i=1, a target policy π∗(u|a) and a sample of context

features (u∗j )
m
j=1. (If q∗(u) = q0(u), set u∗j := uj , j = 1, . . . ,m := n.)

3: for j = 1 to n do
4: a∗j ∼ π∗(a |u∗j )
5: end for
6: Compute K ∈ Rn×n with Kij := kU (ui,uj)kA(ai,aj), i, j = 1, . . . , n.
7: Compute K̃ ∈ Rn×m with K̃ij := kU (ui,u

∗
j )kA(ai,a

∗
j ), i = 1, . . . , n, j = 1, . . . ,m.

8: Compute β := (β1, . . . , βn)> = (K+nεI)−1K̃1m ∈ Rn, where 1m := 1
m(1, . . . , 1)> ∈ Rm.

9: Output: An estimate µ̂P∗ =
∑n

i=1 βi`(·, ri) of the mean embedding (38) or an estimate
R̂∗ :=

∑n
i=1 βiri of the expected reward (32).

Extensions. Note that the above method of approximating the covariate distribution PX1

via the sampling procedure in (39) does not fully exploit the information of the target policy
π∗(a|u), since for each u∗j we only sample one action a∗j ∼ π∗(a|u∗j ). In Appendix A, we
discuss extensions of Algorithm 2 to make use of more information from the target policy.

7. Experiments

This section provides empirical results that demonstrate the advantages of the proposed
framework. The codes to reproduce the experiments are available at https://github.com/
sorawitj/counterfactual-mean-embedding.

7.1 Simulations: Distributional Treatment Effects

We first conduct simulation experiments on distributional treatment effects in Section 7.1.1
and on distributional effects of covariate distributions in Section 7.1.2.

7.1.1 Distributional Treatment Effects (DTE)

We first deal with the identification of DTE (Sections 3.1.1), defined as the difference between
the distributions PY ∗0 and PY ∗1 of two potential outcomes Y ∗0 , Y ∗1 ∈ R. As discussed in Section
5.2, this identification problem can be formulated as hypothesis testing of the null hypothesis
H0 : PY ∗1 = PY ∗0 against the alternative H1 : PY ∗1 6= PY ∗0 . For this purpose, we assume that
i.i.d. observations {(xi, ti,yi)}Ni=1 of random variables (X,T, Y ) are available, where X ∈ R5

is covariates, T ∈ {0, 1} is a treatment indicator, and Y = 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 ∈ R
is the observed outcome.

The purpose here is to demonstrate the validity of our approach to identifying DTE,
described in Sections 3.5.1 and Section 5.2. To this end, we compare it with a baseline
approach that uses an estimate of ATE (9) as a test statistic. For simplicity, we call here
our approach “DTE” and the baseline “ATE”. We consider the following three scenarios:
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Figure 2: Histograms of observed outcomes (yi)
N
i=1 from the data {(xi, ti,yi)}Ni=1 generated

under the three scenarios in Section 7.1.1, with N = 500. For each scenario,
the green histogram consists of outcomes yi with ti = 0, which are i.i.d. with
Y0 = Y |(T = 0)), and the blue histogram consists of yi with ti = 1, which are
i.i.d. with Y1 = Y |(T = 1). Note that Y0 = Y ∗0 |(T = 0) and Y1 = Y ∗1 |(T = 1), so
the distributions of Y0 and Y1 (described here) are slightly different from those of
the potential outcomes Y ∗0 and Y ∗1 .

Scenario I. There exists no treatment effect so that the distributions of the potential
outcomes Y ∗0 , Y ∗1 are the same: PY ∗0 = PY ∗1 . Hence, we expect that both ATE and DTE do
not detect any treatment effect.

Scenario II. There exists a treatment effect that only makes the means of PY ∗0 and PY ∗1
different: i.e., the mean-shift scenario. Hence, we expect that both ATE and DTE can
detect the treatment effect.

Scenario III. There exists a treatment effect that does not change the means of PY ∗0 and
PY ∗1 , but changes their higher order moments. Hence, we expect that ATE fails to detect
any treatment effect, whereas DTE with non-linear kernels can detect the difference.

To realize these scenarios, we define the random variables X, T , Y ∗0 and Y ∗1 as

X ∼ N (0, σxI5), T ∼ Bernoulli
(

1

1 + exp (−α>X − α0)

)
Y ∗0 = β>X + ε0, Y ∗1 = β>X + b+ ε1,

where ε0, ε1 ∼ N (0, σ2ε) are independent noises. Throughout the experiment, we set β =
[0.1, 0.2, 0.3, 0.4, 0.5]>, α = [0.05, 0.04, 0.03, 0.02, 0.01]>, α0 = 0.05, and σ2ε = σ2x = 0.1.
We set b = 0 for the Scenario I and b = 2 for the Scenario II. For Scenario III, we set
b = 2z− 1, where z ∈ {0, 1} is an independent Bernoulli random variable z ∼ Bernoulli(0.5)
generated for every observation. By construction, the conditional exogeneity Y ∗0 , Y

∗
1 ⊥⊥

T |X in Assumption 1 is satisfied. For each scenario, we generate data {(xi, ti,yi)}Ni=1 as
i.i.d. observations of X, T and Y = 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 , with N ∈ {50, 100}. Figure
2 describes the empirical distributions of observed outcomes for the three scenarios, where
Y0 = Y |(T = 0) and Y1 = Y |(T = 1).

For DTE and ATE, we perform the following tests using data {(xi, ti,yi, ei)}ni=1 aug-
mented with propensity scores ei := e(xi) := E[T |X = xi]. For DTE, we use the
unbiased KTE estimate in (23) as a test statistic, with the Gaussian kernel `(y,y′) =
exp(−‖x − y‖22/2σ2) whose bandwidth parameter σ is chosen using the median heuristic
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N = 50 N = 100
ATE DTE ATE DTE

Scenario I: No Treatment Effect 0.013 0.012 0.013 0.012
Scenario II: Mean Shift Effect 1.000 1.000 1.000 1.000
Scenario III: High-order Treatment Effect 0.012 0.224 0.012 0.639

Table 1: The frequencies of rejecting the null hypothesis H0 : PY ∗1 = PY ∗0 when the null
hypothesis is true (i.e., the probability of the Type-I error in Scenario I) and when
the alternative hypothesis H1 : PY ∗1 6= PY ∗0 is true (i.e., the power of the test in
Scenario II & III), computed from 1000 repetitions. The significance level α is 0.01.

(Garreau et al., 2017). For ATE, we also use (23) as a test statistic, but with the linear
kernel `(y,y′) = y>y′, resulting in a test that distinguishes only the means of two distribu-
tions. We use the bootstrap procedure described in Section 5.2 to construct the distribution
of the test statistic under the null H0 : PY ∗0 = PY ∗1 , with B = 10, 000 bootstrap samples.
The significance level α is set to 0.01 in all experiments.

Table 1 reports the frequencies of rejecting the null hypothesis H0 : PY ∗0 = PY ∗1 over 1000
repetitions, for each of the three scenarios. When the null hypothesis H0 is true (Scenario
I), these are the frequencies of Type-I errors, which are well calibrated approximately at
the designed level α = 0.01 for both ATE and DTE. When the alternative hypothesis
H1 : PY ∗0 6= PY ∗1 is true (Scenarios II and III), these represent test powers (i.e., one minus
the probability of Type II error). In Scenario II, both ATE and DTE successfully reject
the null hypothesis, capable of detecting the mean shift effect in the potential outcome
distributions. In Scenario III, where the treatment effects do not appear in the mean but
in the higher order moments, DTE has significantly higher power than ATE, demonstrating
that DTE can identify higher order distributional effects.

7.1.2 Distributional Effects of Covariate Distributions

We next consider the identification of distributional effects of covariate distributions (see
Sections 3.1.3, 3.3 and 3.5.3). As before, let Y ∗0 , Y ∗1 ∈ R be potential outcomes, T ∈ {0, 1} be
a treatment indicator, Y = 1(T = 0)Y ∗0 +1(T = 1)Y ∗1 be the observed outcome, and X ∈ R5

be covariates. Let X0 = X|(T = 0), X1 = X|(T = 1) and Y0 = Y |(T = 0) = Y ∗0 |(T = 0).
Here we are interested in the distributional effects defined as

PY ∗0 |T (· | 0)− PY ∗0 |T (· | 1) = PY 〈0|0〉 − PY 〈0|1〉

=

∫
PY0|X0

(·|x)PX0(x)−
∫

PY0|X0
(·|x)PX1(x)

where the first identity holds under the conditional exogeneity. As discussed in Section
5.2, the identification of this distributional effect can be cast as testing the null hypothesis
H0 : PY ∗0 |T (· | 0) = PY ∗0 |T (· | 1) against the alternative H1 : PY ∗0 |T (· | 0) 6= PY ∗0 |T (· | 1).

For this experiment, we define the joint distribution of T , X and Y ∗0 by first specifying the
distribution of T , and then specifying the conditional distributions of X, Y ∗0 and Y ∗1 given
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T (note that Y ∗1 is not relevant in this experiment). To this end, we define the distribution
PT of T as PT (0) = PT (1) = 1/2. Then, we define the conditional distributions of X and
Y ∗0 given T as

Y ∗0 | (T = 0) = β>X0 + ε0, X0 = X|(T = 0) ∼ N (0, σxI5),

Y ∗0 | (T = 1) = β>X1 + ε1, X1 = X|(T = 1) ∼
3∑
j=1

γjN (νj , σxI5),

where ε0, ε1 ∼ N (0, σ2ε) are independent, β = [0.1, 0.2, 0.3, 0.4, 0.5]>, σε = σx = 0.1, and
γ1 = γ2 = γ3 = 1/3. We set ν1 = [−5, 2.5, 0, 0, 2.5], ν2 = [2.5, 2.5, 0, 0,−5], and ν3 =
[2.5,−5, 0, 0, 2.5], so that X0 and X1 have the same zero mean. By construction, Y ∗0 |T = 0
and Y ∗0 |T = 1 have the same mean, which is zero, while their higher-order moments differ.
In other words, the distributional effects of the covariate distributions appear only in the
higher-order moments. We generate data (xi,yi)

n
i=1 as i.i.d. observations of (X0, Y0) (recall

that Y0 = Y ∗0 |(T = 0)) and (x′j)
m
j=1 as i.i.d. observations ofX1, where n = m (which amounts

to PT (0) = PT (1) = 1/2).
We estimate the embedding µY0|T=1 =

∫
`(·,y) dPY0|T (y|1) of the counterfactual distri-

bution PY0|T (·|1) = PY 〈0|1〉 with the CME estimator (18) based on (xi,yi)
n
i=1 and (x′j)

m
j=1.

We set the kernel ` on the outcome space as the Gaussian kernel `(y,y′) = exp(−‖y −
y′‖22/2σ2Y ) whose bandwidth parameter σY is chosen by the median heuristic using (yi)

n
i=1.

We also set the kernel k on the covariate space as the Gaussian kernel k(x,x′) = exp(−‖x−
x′‖22/2σ2X), whose parameter σX as well as the regularization constant ε in the CME estima-
tor are chosen by 5-fold cross validation from σX ∈ {0.01, 0.1, 1, 10} and ε ∈ {0.01, 0.1, 1, 10}.
This cross validation is done by regarding the joint sample (xi,yi)

n
i=1 as training data for

regression from xi to yi, and by performing kernel ridge regression with kernel k and regu-
larization parameter ε, motivated by the interpretation of conditional mean embedding as
kernel ridge regression (Grünewälder et al., 2012).

We apply Algorithm 1 to the resulting CME estimate µ̂Y 〈0|1〉 =
∑n

i=1 βi`(·,yi) to gener-
ate counterfactual samples (y′j)

n
j=1. We now have (yi)

n
i=1 as an i.i.d. sample from PY ∗0 |T (· | 0)

and (y′j)
n
j=1 as an approximate sample of the counterfactual distribution PY ∗0 |T (· | 1). As dis-

cussed in Section 5.2, we can test the null hypothesis H0 : PY ∗0 |T (· | 0) = PY ∗0 |T (· | 1) against
the alternative H1 : PY ∗0 |T (· | 0) 6= PY ∗0 |T (· | 1) by performing a two sample test using the sam-
ples (yi)

n
i=1 and (y′j)

n
j=1. For this purpose, we perform the kernel two-sample test with the

unbiased MMD statistic (Gretton et al., 2012, Eq. 3), with permutation-based bootstrapping
using B = 10, 000 bootstrap samples and with significance level α = 0.01. For comparison,
we also perform the same kernel two-sample test, but with linear kernel `(y,y′) = y>y′,
resulting in a test that only uses the means of (yi)

n
i=1 and (y′j)

n
j=1.

Figure 3 describes the experimental results. Figure 3(a) illustrates the observed out-
comes (yi)

n
i=1 of Y ∗0 |(T = 0) (red), a counterfactual sample of Y ∗0 |(T = 1) (blue) and the

approximate counterfactual sample (y′j)
n
j=1 generated with Algorithm 1 applied to our CME

estimate (green). Note that the sample of Y ∗0 |(T = 1) is shown here for an illustration pur-
pose; in practice we never have access to such a sample, but we can generate it here as
we know the ground-truth model. For illustration, we also show the corresponding density
curves obtained from the respective samples using kernel density estimation. The approxi-
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Figure 3: Results of the experiments in Section 7.1.2. (a) Histograms of observed outcomes
(yi)

n
i=1 of Y ∗0 |(T = 0) (red), a counterfactual sample of Y ∗0 |(T = 1) (blue) and the

approximate counterfactual sample (y′j)
n
j=1 generated with Algorithm 1 applied to

our CME estimate (green), obtained from data with size n = 500. For illustration,
we also show density curves obtained from the corresponding samples of the same
colors, estimated with kernel density estimation. (b) Powers of the two sample
tests based on the generated counterfactual sample (y′j)

n
j=1 and observed outcomes

(yi)
n
i=1, using the unbiased MMD statistic with the Gaussian or the linear kernel

with significance level α = 0.01. The powers are obtained from 1,000 repetitions,
for each of different sample sizes.

mate counterfactual sample (y′j)
n
j=1 resembles that from the ground-truth model, supporting

the validity of our CME estimator (18) and the sampling method (Algorithm 1).
Figure 3(b) describes the test powers (i.e., the frequencies of rejecting the null hypothesis

H0 : PY ∗0 |T (· | 0) = PY ∗0 |T (· | 1)) over 1,000 repetitions of the above testing procedure for each
case of using the Gaussian or the linear kernel for computing the test statistic, for different
sample sizes. The test with the linear kernel has very low power. This implies that the mean
of the generated counterfactual sample (y′j)

n
j=1 is close to the mean of the observed sample

(yi)
n
i=1 from Y ∗0 |(T = 0) since the kernel two-sample test with the linear kernel only uses the

information of the sample means. On the other hand, the power of the test with the Gaussian
kernel increases as the size n of observed data increases, suggesting that the higher-order
moments of the generated counterfactual sample (y′j)

n
j=1 differ substantially from those of the

observed sample (yi)
n
i=1. These observations suggest that the approximate counterfactual

sample (y′j)
n
j=1 has properties consistent with the ground-truth counterfactual distribution

Y ∗0 |T = 1. Thus our CME estimator (18) and Algorithm 1 are capable of producing an
approximate counterfactual sample based on which a test for distributional effects can be
constructed.

7.2 Off-Policy Evaluation

We conduct experiments on the off-policy evaluation (OPE) task for a recommendation
system, described in Section 6. Let η : U × A → R be the regression function that takes a
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pair (u,a) of user features u ∈ U and recommendation a ∈ A as an input and outputs the
conditional expectation of the reward r:

η(u,a) := E[r |u,a] :=

∫
R
r dP∗(r |u,a) =

∫
R
r dP0(r |u,a),

where P∗(r |u,a) = P0(r |u,a) is the conditional distribution of the reward r given the pair
(u,a), which is assumed to be invariant under the target and logging environments.

For a given target policy π∗(a|u), the OPE task is to estimate the expected reward under
the target environment defined by

R∗ :=

∫
U×A

∫
R
r dP∗(r |u,a) dπ∗(u,a) =

∫
U×A

η(u,a) dπ∗(u,a),

where π∗(u,a) = π∗(a |u)q∗(u) = π∗(a |u)q0(u) is the joint distribution of context features
u ∈ U and action a ∈ A. Here we consider the standard setting where the marginal
distributions of the user features u are the same under the target and logging environments:
q∗(u) = q0(u). The above estimation is to be done based on the logged data Dinit :=
{(ui,ai, ri)}ni=1 obtained from the joint distribution P0(u,a, r) = P0(r |u,a)π0(a,u) during
the data collection phase, where π0(u,a) = π0(u|a)q0(u).

We compare our approach in Algorithm 2, which we call CME below, to the following
benchmark estimators using both simulated and real-world data.

Direct method with a parametric regressor (DM). The direct method (Dudík et al.,
2011) first learns the regression function η based on the logged data Dinit with a regression
model of one’s choice. Let η̂ : U × A → R be the learned regressor. Then the expected
reward R∗ is estimated as

R̂DM =
1

n

n∑
i=1

Ea∼π∗(a |ui)[η̂(ui,a)].

The direct method obtains the approximation η̂ based on the logged data Dinit =
{(ui,ai, ri)}ni=1, in which input pairs (ui,ai) are generated from the covariate distribution
π0(u,a) = π0(u|a)q0(u) that is different from the target covariate distribution π∗(u,a) =
π∗(u|a)q0(u). Recall that we interpret the paired variables (u,a) as “covariates” in our
discussion. This situation is known as covariate shift in the literature. It is well known
that under the covariate shift, a parametric regression model may produce a significant
bias (Shimodaira, 2000). That is, the approximation quality of the learned model η̂ ob-
tained with the logged data Dinit may be good with respect to the covariate distribution
π0(u,a) under the data collection environment, but can be poor with respect to the tar-
get covariate distribution π∗(u,a), e.g., ‖η − η̂‖2L2(π∗)

:=
∫

(η(u,a)− η̂(u,a))2 dπ∗(u,a) may
be large. This in turn may induce a large bias in the estimation of the expected reward
R∗ =

∫
η(u,a) dπ∗(u,a). To demonstrate this, we use a 3-layer feedforward neural network,

which is an (overparametrized) parametric model, as a regressor for the direct method.

Weighted inverse propensity score (wIPS). The wIPS estimator obtains an unbiased
estimate of the target reward by re-weighting each observation in the logged dataset by the
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ratio of the propensity scores under the target and initial policies (Horvitz and Thompson,
1952; Precup et al., 2000). The wIPS estimator is defined by

R̂wIPS =

(
n∑
i=1

wiri

)/(
n∑
i=1

wi

)
,

where wi := π∗(ai,ui)/π0(ai,ui) = π∗(ai|ui)/π0(ai|ui) are the propensity weights.

Doubly robust (DR). The DR estimator combines the two aforementioned estimators by
exploiting both the regression model η̂(u,a) and the propensity scores (Cassel et al., 1976;
Dudík et al., 2011). The estimator is given by

R̂DR =
1

n

n∑
i=1

(
Ea∼π∗(a |ui)[η̂(ui,a)] + wi(ri − η̂(ui,ai))

)
.

It has been proved to be unbiased if at least one of the estimators, η̂ and π∗/π0 is correctly
specified; see, e.g., Cassel et al. (1976); Dudík et al. (2011).

Slate estimator. The Slate estimator, proposed for recommendation systems, makes
use of the structure within a recommendation (= action) by assuming a certain linearity
assumption on the regression function with respect to the recommendation (Swaminathan
et al., 2017). More precisely, Swaminathan et al. (2017) consider a recommendation system
in which an action a ∈ A is an ordered list (called slate) of K ∈ N items chosen from
M ∈ N possible items. Let 1a ∈ RKM be the indicator vector whose (k,m)-th element
is 1 if a contains the item m ∈ {1, . . . ,M} in the slot k ∈ {1, . . . ,K}, and 0 otherwise.
Swaminathan et al. (2017, Assumption 1) then model the regression function η(u,a) as a
linear function of this indicator vector: η(u,a) = w>u1a, where wu is an unknown feature
vector of the context u (Note that wu can be a nonlinear function of u ∈ U). Under this
assumption, the authors derive the slate estimator as

R̂slate =
1

n

n∑
i=1

ri · q>uiΓ†ui1ai ,

where Γ†ui is the Moore-Penrose pseudoinverse of the matrix Γui := Ea∼π∗(a |ui)[1a1
>
a ] ∈

RKM×KM , and qui := Ea∼π∗(a |ui)[1a] ∈ RKM . Thanks to the linearity assumption, the
slate estimator may enjoy a lower variance than the wIPS estimator, while the assumption
may also lead to a non-vanishing bias if it does not hold.

For the CME, we use a kernel defined as k((u,a), (u′,a′)) := kU (u,u′)kA(a,a′) where
kU (u,u′) := exp

(
−‖u− u′‖22/2σ2u

)
and kA(a,a′) := exp

(
−‖a− a′‖22/2σ2a

)
. For this exper-

iment, the linear kernel `(r, r′) := rr′ is used as a reward kernel since we only compare
the estimation of the expected reward. The regularization parameter ε is selected by the
cross validation procedure in Appendix B, while we determined σu and σa by the median
heuristic, i.e., σ2u = median{‖ui − uj‖22}1≤i<j≤n and σ2a = median{‖ai − aj‖22}1≤i<j≤n.

Before proceeding, we point out here a connection between our approach and the direct
method. Assume that we use kernel ridge regression to obtain the approximation η̂ of
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the regression function η using the logged data: η̂(u,a) = r>(K + nεI)−1k̃(u,a), where
r := (r1, . . . , rn)> ∈ Rn and k̃(u,a) := (k((uj ,aj), (u,a)))nj=1 ∈ Rn Then, the estimate of
the direct method can be related to the CME estimate as

R̂DM =
1

n

n∑
i=1

Ea∼π∗(a |ui)[η̂(ui,a)] ≈ 1

n

n∑
i=1

η̂(ui,a
∗
i )

=
1

n

n∑
i=1

r>(K + nεI)−1k̃(ui,a
∗
i ) = r>(K + nεI)−1

1

n

n∑
i=1

k̃(ui,a
∗
i ), (40)

where the approximation in the first line is a Monte Carlo approximation based on a single
draw a∗i from the target policy π∗(a |ui) for each i. As we can see from (40), the estimate
has the same form as the CME estimate given in Algorithm 2 when the output kernel ` is
a linear kernel, i.e., when we are only interested in the expected reward.

In this sense, the CME estimate can be interpreted as the direct method with kernel
ridge regressor. Note that the kernel ridge regression is a nonparametric method (as long
as the RKHS of the kernel on covariates is infinite dimensional such as the RKHS of the
Gaussian kernel), and thus less prone to the effects of covariate shift. In fact, our convergence
results in Section 4 show that the CME is consistent and thus asymptotically unbiased. This
explains why our method, even if it can be related to the direct method, works well in the
off-policy evaluation task compared to the direct method using a parametric model (as we
will show shortly).

7.2.1 Simulated Data

We consider the following setting for our simulation experiment. When a user visits a
website, the system provides a recommendation as an ordered list ofK ∈ N items out ofM ∈
N available items to that user. Each item m ∈ {1, . . . ,M} is represented by a feature vector
vm ∈ Rd generated randomly as vm ∼ N (0, Id), where d ∈ N. Hence, a recommendation
is an ordered list a = (vm1 ,vm2 , ...,vmK ) ∈ Rd×K , where m1,m2, . . . ,mK ⊂ {1, . . . ,M}.
Likewise, each user j ∈ {1, . . . , N} has a feature vector uj ∈ Rd generated as uj ∼ N (0, Id),
where N ∈ N is the number of users. The reward from a user is 1 if the user clicks
any of the recommended items and 0 otherwise. Specifically, for each (ai,uj) pair, let
θij = P(click |ai,uj) = 1/(1 + exp(−a>i uj + εij)) be the probability of a click, where ai is
the mean vector of the item vectors listed in ai, and εij ∼ N (0, 1) is an independent noise.
The reward from user j receiving recommendation ai is defined as rij ∼ Bernoulli(θij).

In this experiment, we consider the following policy setup. For each user j, a policy
π(a|u) generates a list a = (vm1 ,vm2 , ...,vmK ) of K recommended items by sampling with-
out replacement with respect to a multinomial distribution over all items. The probability of
item l ∈ {1, . . . ,M} being selected for user j is exp(b>j vl)/

∑M
k=1 exp(b>j vk), where {bj}Nj=1

are parameter vectors of the policy π(a|u). Note that we obtain an optimal policy if bj = uj
for all j ∈ {1, . . . , N}. To construct initial policy π0(a|u) and target policy π∗(a|u), we first
randomly generate user feature vectors u1, . . . ,uN . Then, for the target policy π∗, we set
b∗j = p>j uj for j = 1, . . . , N where pj := (pjk)

d
k=1 with pjk ∼ Bernoulli(0.5). That is,

the parameter vector b∗j is equal to the user feature vector with about half of its entries
randomly set to zero. For the initial policy π0, we set bj = αb∗j where α ∈ [−1, 1]. The
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Figure 4: Mean square error (MSE) of the expected reward estimated by different estimators
as we vary the value of (a) the multiplier α, (b) the context dimension d, (c) the
number of available items M , (d) the number of users N , (e) the number of
recommended items K, and (f) the number of observations n. Each error bar
represents a 95% confidence interval.

parameter α controls how similar the policies are. If α = 1, we obtain π0 = π∗, whereas π0
and π∗ differ the most when α = −1.

We generate two datasets Dinit = {(ui,ai, ri)}ni=1 and Dtarget = {(u∗i ,a∗i , r∗i )}ni=1 using
π0(a|u) and π∗(a|u), respectively, where ui = u∗i for i = 1, . . . , n. Note that the target
rewards r∗1, r∗2, . . . , r∗n are only used for evaluation. Our task is to estimate the expected
reward of the target policy from the remaining information. We perform 5-fold CV over
parameter grids, i.e., the number of hidden units nh ∈ {50, 100, 150, 200} for the Direct
and DR estimators, and the regularization parameter ε ∈ {10−8, . . . , 100} for our CME. We
repeat the experiments 30 times independently to obtain the mean square errors (MSE) and
their 95% confidence intervals in the estimation of the expected reward for each estimator.

We investigate the behavior of different estimators as we vary different experimental
conditions including the degree of difference between initial and target policies (α), the
context dimensionality (d), the number of items (M), the number of users (N), the number
of recommended items (K), and the number of observations (n). Figure 4 depicts the
experimental results (note that vertical axis is in log scale). In brief, we find that a) the
performance of all estimators degrade as the difference between π0 and π∗ increases (i.e., as
α tends to −1), but the CME is least susceptible to this difference, b) the Slate estimator
does not perform well in this setting because its linearity assumption does not hold, c) all
estimators deteriorate as the context dimension increases, but the effect appears to be more
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Figure 5: The performance of different estimators on the MSLR-WEB30K dataset.

pronounced for the Direct, DR, and CME estimators than for the wIPS and Slate estimators as
they do not rely directly on the covariates, d) the opposite effect is observed if we increase
the number of available items M , as illustrated in Figure 4(c), and e) the CME estimator
achieves better performance than other estimators in most experiments.

7.2.2 Real Data

For our real data experiment, we use the data from the Microsoft Learning to Rank Challenge
dataset (MSLR-WEB30K) (Qin and Liu, 2013) and treat them as an off-policy evaluation
problem. We follow the same experiment setting as described in Swaminathan et al. (2017,
Section 4.1). The data contains a set of queries and the corresponding URLs. Each pair of
query q and URL u is represented by a feature vector fq,u and accompanied by a relevance
judgment ρ(q, u) ∈ {0, ..., 4}. We consider the expected reciprocal rank (ERR) (Chapelle
et al., 2009) as our reward function, which is defined as ERR(q, u) :=

∑K
k=1

1
k

∏k−1
j=1(1 −

R(q, uj))R(q, uk), where R(q, u) := 2ρ(q,u)−1
2maxrel with maxrel := 4. In order to obtain distinct

initial and target policies π0(a|u) and π∗(a|u), the feature vector fq,u is split into URL
features furl

q,u and body features fbody
q,u , which are used to train two regression models to

predict the relevance score ρ(q, u): a Lasso regression model is trained to predict ρ(q, u)
from furl

q,u (denoted by lassourl), and a regression tree model is trained to predict ρ(q, u) from
fbody
q,u (denoted by treebody). These two regression models are then used in the initial and
target policies as will be described below.

In order to generate logged data Dinit, we first sample a query q uniformly from the
dataset, and select top M candidate URLs based on the relevance scores predicted by the
treebody model. We then generate K recommended URLs out of these top M candidates
using an initial policy π0 and compute its corresponding reward. The initial policy is a
stochastic policy which recommends K URLs by sampling without replacement according
to a multinomial distribution parameterized by pα(u|q) ∝ 2−α[log2 rank(u,q)], where rank(u, q)
is the ERR of the relevance score ρ(q, u) predicted by the treebody model and α ≥ 0 is
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an exploration rate parameter. For target data Dtarget, we consider both stochastic and
deterministic target policies. The stochastic target policy π∗(a|u) is similar to the initial
policy described earlier except that it employs lassourl model for the predicted relevance
scores, but this makes the two policies distinct; their top-10 rankings are only overlapping
by 2.5 URLs, on average. On the other hand, the deterministic target policy directly selects
top-K URLs ranked by the predicted relevance scores obtained from the lassourl model. In
this experiment, we set the exploration rate parameter α = 1 for the stochastic initial policy,
and set α = 2 for the stochastic target policy.

We compare our estimator (CME) with the benchmark estimators Direct, wIPS, DR and
Slate. In addition, we include the OnPolicy method as a baseline, which estimates rewards
directly from the target policies (and thus, this baseline should always perform the best). To
accelerate the computation of the CME, we make use of the Nyström approximation method
(Williams and Seeger, 2001). We repeat the experiments 10 times independently to obtain
the mean square errors (MSEs) and their 95% confidence intervals in the estimation of the
expected reward for each estimator.

Figure 5 depicts the results. In short, our CME dominates other estimators in most of
experimental conditions (note that the vertical axis is in log scale, so the margins are sig-
nificantly large). The wIPS clearly suffers from high variance, especially in the deterministic
target policy. The reason is that, in the deterministic setting, the propensity score ad-
justment requires that the treatments picked by logged and target policies match exactly.
Otherwise, the propensity ratio π∗(a|u)/π0(a|u) will be zero. The exact match is likely not
to happen in practice and leads to higher variance in estimation of rewards. The Slate,
Direct and CME are relatively robust across different conditions. The Direct method and
CME perform particularly well when sample size is small, regardless of the action space, while
the Slate estimator is less sample-efficient, especially in the large action space.

8. Discussion

This paper presents a general-purpose kernel mean representation of counterfactual dis-
tributions called the counterfactual mean embedding (CME). It draws insights and tools
from kernel methods in machine learning and the potential outcome framework in causal
inference. We show that our estimator of counterfactual distributions exhibits appealing
theoretical properties, and also serves as a practical tool for causal inference. Ultimately,
we hope that our work will be useful not only for researchers in disciplines that rely on the
potential outcome framework, such as social and biomedical sciences, but also for researchers
in machine learning and statistics to develop novel methodology for counterfactual inference,
since several important open questions still remain: e.g., the use of high-order moments of
counterfactual distributions, and how to handle a hidden confounder and an instrumental
variable.

One promising application of our framework is in generating a sample from the counter-
factual distribution. For instance, neuroscientists can visualize the fMRI images of subjects
under alternative setups without explicitly conducting invasive experiments. In this case,
the outcome variable corresponds to an fMRI image. Let Gθ be a generative model over the
outcome parametrized by a parameter vector θ. The choice of Gθ can range from a mixture
of Gaussians to deep generative models, e.g., generative adversarial networks (GAN). An
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estimate of the counterfactual distribution, denoted by G∗θ, can be obtained via an optimiza-
tion problem: G∗θ = arg minθ

∥∥µ̂Y 〈0|1〉 − µ̂Gθ

∥∥2
F
, where µ̂Y 〈0|1〉 is our CME estimate and µ̂Gθ

denotes the mean embedding of Gθ in the RKHS F . Counterfactual sample generation is
ubiquitous for qualitative analysis in many application domains. We leave it as an open
problem to future research.
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Appendix A. Possible Extensions for Off-Policy Evaluation

Here we describe possible extensions of the proposed approach to the off-policy evaluation
task described in Section 6.3 (Algorithm 2). As mentioned there, Algorithm 2 only generates
one action a∗j ∼ π∗(a|u∗j ) for each u∗j , which does not fully exploit the information of the
target policy π∗(a|u∗j ). We show a possible approach to using more information from the
target policy, thereby improving the quality of the algorithm.

First, notice that the weight vector β ∈ Rn in Algorithm 2 depends on the sample
(x′j)

m
j=1 = (u∗j ,a

∗
j )
m
j=1 only through the vector K̃1m ∈ Rm, where K̃ = (k(xi,x

′
j)) ∈ Rn×m

and 1m = 1
m(1, . . . , 1)> ∈ Rm. This vector can be written as

K̃1m = (
1

m

m∑
j=1

k(xi,x
′
j))

n
i=1 = (µ̂X1(xi))

n
i=1 ∈ Rn, (41)

where (xi)
n
i=1 = (ui,ai)

n
i=1 are from the logged data, and µ̂PX1

is an empirical approximation
of the mean embedding µPX1

of the covariate distribution PX1 , given by

µ̂X1 =
1

m

m∑
j=1

k(·,x′j), µX1 =

∫
k(·,x)dPX1(x). (42)

This implies that the role of the sample (x′j)
m
j=1 is essentially to approximate the kernel mean

µPX1
. In fact, the quality of the CME estimator (based on which Algorithm 2 is constructed)

depends on the sample (x′j)
m
j=1 only through the the approximation error ‖µ̂X1−µX1‖F (see

e.g., the proof of Theorem 30).
Thus, Algorithm 2 may be improved by constructing a better approximation, say µ̌X1 ,

of the kernel mean µ̂X1 , and replace (41) in the computation of the weight vector β by the
evaluations of this new approximation:

β := (K + nεI)−1v ∈ Rn, v := (µ̌X1(xi)) ∈ Rn,

where K := (k(xi,xj))
n
i,j=1 ∈ Rn×n.

To construct µ̌X1 , recall that the kernel k is given as a product kernel k(x,x′) =
kA(a,a′)kU (u,u′) for x = (u,a), x = (u′,a′), and rewrite the kernel mean µX1 as

µX1(x) = µπ∗(u,a) =

∫
U

∫
A
kA(a,a′)kU (u,u′) dπ∗(a

′|u′) dq∗(u
′)

=

∫
U

(∫
A
kA(a,a′) dπ∗(a

′|u′)
)
kU (u,u′) dq∗(u

′)

≈ 1

m

m∑
j=1

(∫
A
kA(a,a′) dπ∗(a

′|u∗j )
)
kU (u,u∗j ).

Thus, if we can approximate the integral in the last expression accurately, we can obtain a
good approximation for the kernel mean.

One approach is to generate M > 1 actions aj1, . . . ,ajM ∼ π∗(a|u∗j ) from the target
policy for each u∗j , and the approximate the integral as

1

M

M∑
ν=1

kA(a,a∗jν) ≈
∫
A
kA(a,a′) dπ∗(a

′|u∗j )
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Thus, a new approximation of µX1 may be defined as

µ̌X1(x) := µ̌π∗(u,a) :=
1

m

m∑
j=1

(
1

M

M∑
ν=1

kA(a,a∗jν)

)
kU (u,u∗j ),

where x := (u,a). Note that M = 1 recovers Algorithm 2.
Another approach is to exactly compute the integral

∫
A kA(a,a′) dπ∗(a

′|u∗j ) when it is
possible, and define a new approximation of µX1 as

µ̌X1(x) := µ̌π∗(u,a) :=
1

m

m∑
j=1

(∫
A
kA(a,a′) dπ∗(a

′|u∗j )
)
kU (u,u∗j )

This essentially is the case of M =∞. For instance, the integral can be computed analyti-
cally when the kernel kA is Gaussian and the target policy π∗(a|u) is an additive Gaussian
noise model of the form π∗(a|u) = N (a|F (u), σ2) for some function F : U → A and σ2 > 0.
This way of using an analytic integral for approximating the kernel mean is studied in
Nishiyama et al. (2020); we refer to this paper for details and other examples.

Appendix B. Cross Validation Procedure for Counterfactual Prediction

Here we describe an approach to cross validation for model selection in counterfactual pre-
diction, focusing on the problem of off-policy evaluation (OPE). We use below the notation
defined in Section 6. Unlike the standard situation in machine learning, performing cross
validation directly on the logged data D := {(ui,ai, ri)}ni=1 may lead to a biased estimate
on the performance measure for counterfactual prediction, resulting in sub-optimal model
selection. This is due to the covariate shift – the change of the covariate distribution from
π0(u,a) in the data collection environment to π∗(u,a) in the target environment. To cor-
rect for the bias due to this distributional shift, we propose the following procedure for cross
validation. A similar cross validation approach has been proposed by Sugiyama et al. (2007).

Let M := {1, . . . ,M} be a set of indicators for candidate models. (e.g., each m ∈ M
may represent a specific choice of the kernel k and regularization constant ε in our CME
estimator.)

1. Split D into K folds: Dk = {(uj ,aj , rj)}qkj=q(k−1)+1 for k = 1, . . . ,K and q = bn/Kc.

2. For each model m ∈M:

(a) For each fold k = 1, 2, . . . ,K:

i. Calculate w1, . . . , wq ≥ 0 using propensity scores or covariate matching.
ii. Re-weight the validation reward r̂∗k =

∑q
j=1wjrq(k−1)+j (bias correction).

iii. Use the remaining logged data D¬k and validation data {(x∗j , s∗j )}qkj=q(k−1)+1

to compute the estimated reward r̂k and corresponding error ek = (r̂k− r̂∗k)2.
(b) Calculate the mean CV error ēp = 1

K

∑K
k=1 ek (variance reduction).

3. Pick the m-th parameter setting whose ēm is the smallest.
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The algorithm above follows the standard cross validation procedure, except the bias
correction step on validation sets. In the bias correction step, we re-weight the sample in
the validation set so that the performance estimate computed from this set is unbiased.
Nevertheless, the estimate may have high variance, e.g., when the propensity weights are
used. This pitfall is alleviated by the variance reduction step.

Appendix C. Proofs for Section 3

C.1 Proof of Lemma 3

Proof We only show PY 〈0|0〉(y) = PY ∗0 |T (y|0); the other identity PY 〈1|1〉(y) = PY ∗1 |T (y|1)

can be shown similarly. First notice that Y0 := Y | (T = 0) =
∑1

t=0 1(T = t)Y ∗t | (T = 0) =
Y ∗0 | (T = 0). From this and Definition 2, it follows that PY 〈0|0〉(y) =

∫
PY0|X0

(y|x) dPX0(x) =∫
PY |T,X(y|0,x) dPX|T (x|0) =

∫
PY ∗0 |T,X(y|0,x) dPX|T (x|0) = PY ∗0 |T (y|0).

C.2 Proof of Lemma 4

Proof We only show here PY 〈0|1〉 = PY ∗0 |T=1; the other identity PY 〈1|0〉 = PY ∗1 |T=0 can
be shown similarly. We first derive basic identities: (a) The conditional exogeneity implies
that PY ∗0 |T,X(y|1,x) = PY ∗0 |X(y|x) = PY ∗0 |T,X(y|0,x) for almost every x with respect to the
distribution of X; (b) Recalling that Y = 1(T = 0)Y ∗0 + 1(T = 1)Y ∗1 , we have Y | (T =
0) = Y ∗0 | (T = 0); (c) By Definition 2, we have PY0|X0

(y|x) = P(Y |T=0)|(X|T=0)(y|x) =
PY |T,X(y|0,x). Using these, we have

PY ∗0 |T (y|1) =

∫
PY ∗0 |T,X(y|1,x) dPX|T (x|1)

(a)
=

∫
PY ∗0 |T,X(y|0,x) dPX|T (x|1)

(b)
=

∫
PY |T,X(y|0,x) dPX|T (x|1)

(c)
=

∫
PY0|X0

(y|x) dPX1(x) = PY 〈0|1〉(y),

as required.

C.3 Proof of Theorem 5

Proof We prove here E[µ̂Y ∗1 ] = µY ∗1 ; the proof of E[µ̂Y ∗0 ] = µY ∗0 is similar and thus omitted.
First note that, since (xi, ti,yi)

N
i=1 are i.i.d. with (X,T, Y ) and m :=

∑N
i=1 ti, we have

E[µ̂Y ∗1 ] = E

[
1

m

N∑
i=1

ti`(·,yi)
e(xi)

]
= E

[
T`(·, Y )

e(X)

]
.

By the definition of Y , the conditional exogeneity and the definition of the propensity e(x),
we then have

E
[
T`(·, Y )

e(X)

]
= E

[
T`(·, Y ∗1 )

e(X)

]
= EX

[
E
[
T`(·, Y ∗1 )

e(X)

∣∣∣X]]
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= EX
[
E[T |X]E[`(·, Y ∗1 )|X]

e(X)

]
= EX

[
e(X)E[`(·, Y ∗1 )|X]

e(X)

]
= EX [E[`(·, Y ∗1 )|X]] = E[`(·, Y ∗1 )] = µY ∗1 ,

where EX denotes the expectation with respect to X.

C.4 Proof of Theorem 6

.
Proof We derive the convergence rate of µ̂Y ∗1 ; the rate of µ̂Y ∗0 can be derived in a similar
way, and thus is omitted. Let Ỹ ∗1 be an independent copy of Y ∗1 .

E
[∥∥µ̂Y ∗1 − µY ∗1 ∥∥2F ] = E

∥∥∥∥∥ 1

m

N∑
i=1

ti`(·,yi)
e(xi)

− µY ∗1

∥∥∥∥∥
2

F


= E

 1

m2

∑
i,j

titj`(yi,yj)

e(xi)e(xj)


︸ ︷︷ ︸

(A)

−2E

[
1

m

∑
i

tiEY ∗1 [`(yi, Y
∗
1 )]

e(xi)

]
︸ ︷︷ ︸

(B)

+E[`(Y ∗1 , Ỹ
∗
1 )]. (43)

We first deal with the term (A). It can be expanded as

(A) =
1

m2
E

∑
i 6=j

titj`(yi,yj)

e(xi)e(xj)

+
1

m2
E

[∑
i

t2i `(yi,yi)

e2(xi)

]
.

Let (X̃, T̃ , Ỹ ∗0 , Ỹ
∗
1 ) be an independent copy of (X,T, Y ∗0 , Y

∗
1 ), and write Ỹ = 1(T̃ = 0)Ỹ ∗0 +

1(T̃ = 1)Ỹ ∗1 . Since in the first term of (A), (xi, ti,yi) and (xj , tj ,yj) are independent but
distributed as (X,T, Y ), the first term can be written as

1

m2
E

∑
i 6=j

T T̃ `(Y, Ỹ )

e(X)e(X̃)

 =
m− 1

m
E

[
T T̃ `(Y, Ỹ )

e(X)e(X̃)

]
.

For the right hand side, we have

E

[
T T̃ `(Y, Ỹ )

e(X)e(X̃)

]
(a)
= E

[
T T̃ `(Y ∗1 , Ỹ

∗
1 )

e(X)e(X̃)

]
= EX̃,T̃ ,Ỹ ∗1

[
T̃

e(X̃)
EX,T,Y ∗1

[
T`(Y ∗1 , Ỹ

∗
1 )

e(X)
| Ỹ ∗1

]]

= EX̃,T̃ ,Ỹ ∗1

[
T̃

e(X̃)
EX

[
ET,Y ∗1 [T`(Y ∗1 , Ỹ

∗
1 ) | X]

e(X)
| Ỹ ∗1

]]
(b)
= EX̃,T̃ ,Ỹ ∗1

[
T̃

e(X̃)
EX

[
ET [T | X]EY ∗1 [`(Y ∗1 , Ỹ

∗
1 ) | X]

e(X)
| Ỹ ∗1

]]
(c)
= EX̃,T̃ ,Ỹ ∗1

[
T̃

e(X̃)
EX
[
EY ∗1 [`(Y ∗1 , Ỹ

∗
1 ) | X] | Ỹ ∗1 ]

]]
= EX̃,T̃ ,Ỹ ∗1

[
T̃

e(X̃)
EY ∗1 [`(Y ∗1 , Ỹ

∗
1 )] | Ỹ ∗1 ]

]
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= EX̃

[
1

e(X̃)
ET̃ ,Ỹ ∗1

[
T̃EY ∗1 [`(Y ∗1 , Ỹ

∗
1 )] | Ỹ ∗1 ] | X̃

]]
(d)
= EX̃

[
1

e(X̃)
ET̃ [T̃ |X̃]EY ∗1 ,Ỹ ∗1 [`(Y ∗1 , Ỹ

∗
1 ) | X̃]

]
(e)
= EX̃

[
EY ∗1 ,Ỹ ∗1 [`(Y ∗1 , Ỹ

∗
1 ) | X̃]

]
= EY ∗1 ,Ỹ ∗1 [`(Y ∗1 , Ỹ

∗
1 )].

where (a) follows from the definitions of Y and Ỹ , (b) from the conditional exogeneity, (c)
from E[T | X] = e(X), (d) from the conditional exogeneity, and (e) from E[T̃ | X̃] = e(X̃).
On the other hand, the second term of (A) can be written as

1

m2
E

[∑
i

t2i `(yiyi)

e2(xi)

]
=

1

m
E
[
T 2`(Y, Y )

e2(X)

]
.

For the last expression, we have

E
[
T 2`(Y, Y )

e2(X)

]
(a)
= E

[
T`(Y, Y )

e2(X)

]
(b)
= E

[
T`(Y ∗1 , Y

∗
1 )

e2(X)

]
= EX

[ET,Y ∗1 [T`(Y ∗1 , Y
∗
1 ) | X]

e2(X)

]
(c)
= EX

[ET [T |X]EY ∗1 [`(Y ∗1 , Y
∗
1 ) | X]

e2(X)

]
(d)
= EX

[EY ∗1 [`(Y ∗1 , Y
∗
1 ) | X]

e(X)

]
≤ supy∈Y `(y,y)

infx∈X e(x)
=: C`,e

(e)
< ∞,

where (a) follows from T taking values in {0, 1}, (b) from Y being Y ∗1 if T = 1, (c) from
the conditional exogeneity, (d) from E[T |X] = e(X), and (e) from our assumptions that
supy∈Y `(y,y) <∞ and infx∈X e(x) > 0. Thus, the term (A) is upper-bounded as

(A) ≤ m− 1

m
EY ∗1 ,Ỹ ∗1 [`(Y ∗1 , Ỹ

∗
1 )] +

1

m
C`,e.

Next we deal with the term (B), which can be written as

E

[
1

m

∑
i

tiEY ∗1 [`(yi, Y
∗
1 )]

e(xi)

]
= E

[
T̃EY ∗1 [`(Ỹ , Y ∗1 )]

e(X̃)

]
,

where, as before, (X̃, T̃ , Ỹ ∗0 , Ỹ
∗
1 ) is an independent copy of (X,T, Y ∗0 , Y

∗
1 ) and Ỹ := 1(T̃ =

0)Ỹ ∗0 + 1(T̃ = 1)Ỹ ∗1 . The right expression can be expanded as

E

[
T̃EY ∗1 [`(Ỹ , Y ∗1 )]

e(X̃)

]
(a)
= E

[
T̃EY ∗1 [`(Ỹ ∗1 , Y

∗
1 )]

e(X̃)

]
= EX̃

ET̃ ,Ỹ ∗1
[
T̃EY ∗1 [`(Ỹ ∗1 , Y

∗
1 )] | X̃

]
e(X̃)


(b)
= EX̃

[
ET̃ [T̃ | X̃]EY ∗1 ,Ỹ ∗1 [`(Ỹ ∗1 , Y

∗
1 )] | X̃]

e(X̃)

]
(c)
= EX̃

[
EY ∗1 ,Ỹ ∗1 [`(Ỹ ∗1 , Y

∗
1 )] | X̃]

]
= EY ∗1 ,Ỹ ∗1 [`(Ỹ ∗1 , Y

∗
1 )],

where (a) follows from Ỹ being Ỹ ∗1 if T̃ = 1, (b) from the conditional exogeneity and (c)
from ET̃ [T̃ | X̃] = e(X̃).

Using the obtained results for (A) and (B) in (43), we now have

E
[∥∥µ̂Y ∗1 − µY ∗1 ∥∥2F ] ≤ m− 1

m
E[`(Y ∗1 , Ỹ

∗
1 )] +

1

m
C`,e − 2E[`(Y ∗1 , Ỹ

∗
1 )] + E[`(Y ∗1 , Ỹ

∗
1 )]
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=
1

m

(
C`,e − E[`(Y ∗1 , Ỹ

∗
1 )]
)
,

which completes the proof.

Appendix D. Preliminaries to the Proofs for Section 4

We collect here preliminary results required for proving the theoretical results in Section 4.
Thus, the interested reader may first look at Appendix E, where the proofs for the main
theoretical results are presented. We use here the notation and basic definitions provided
in Section 4 of the main body. In Appendix D.1, we introduce certain integral operators
and collect basic facts regarding them. Based on them, in Appendix D.2 we present various
lemmas needed for the proofs of the convernce results in Appendix E.

D.1 Integral Operators

To be rigorous, we employ the following notation used in Steinwart and Scovel (2012): For
a measurable function f : X → R, [f ]∼ denotes the class of measurable functions that are
PX0-equivalent to f :

[f ]∼ := {g : X → R | PX0({x ∈ X | f(x) 6= g(x)}) = 0} .

Integral operators. Define three integral operators T : L2(PX0)→ L2(PX0), S : L2(PX0)→
H and CXX : H →H by

Tf :=

∫
k(·,x)f(x) dPX0(x) ∈ L2(PX0), f ∈ L2(PX0), (44)

Sf :=

∫
k(·,x)f(x) dPX0(x) ∈H , f ∈ L2(PX0), (45)

CXX f :=

∫
k(·,x)f(x) dPX0(x) ∈H , f ∈H . (46)

Note that while these operators look similar, they are different in their domains and ranges.
In particular, CXX is the covariance operator. Under Assumption 2 (i), i.e., supx∈X k(x,x) <
∞, Steinwart and Scovel (2012, Lemma 2.3) implies that the operator S∗ : H → L2(PX0)
defined by

S∗g = [g]∼, g ∈H

is compact, and thus continuous. This operator S∗ is the adjoint of the operator S defined
in (45). Since S∗ is continuous, by Steinwart and Scovel (2012, Lemma 2.3), the operators
T and CXX can be written as

T = S∗S, CXX = SS∗.

The following lemma summarizes conditions required for eigen-decompositions of (44),
(45) and (46). In the sequel, “ONS” and “ONB” mean “orthonormal series” and “orthonormal
basis,” respectively. The set I ⊂ N is a set of indices, which is finite if the RKHS H is finite
dimensional, and infinite if H is infinite dimensional.
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Lemma 16 (Spectral decomposition of integral operators) Let X , k and PX0 be such
that Assumption 2 (i) is satisfied. Then there exist at most countable families (ei)i∈I ⊂H

and (µi)i∈I ⊂ (0,∞) such that µ1 ≥ µ2 ≥ · · · > 0, (µ
1/2
i ei)i∈I is an ONS in H , ([ei]∼)i∈I

is an ONS in L2(PX0), and

Tf =
∑
i∈I

µi 〈[ei]∼, f〉L2(PX0
) [ei]∼, f ∈ L2(PX0), (47)

Sf =
∑
i∈I

µi 〈[ei]∼, f〉L2(PX0
) ei, f ∈ L2(PX0), (48)

CXX g =
∑
i∈I

µi

〈
µ
1/2
i ei, g

〉
H
µ
1/2
i ei, g ∈H , (49)

where the convergence is in L2(PX0) for (47), and in H for (48) and (49).

Proof Since k and PX0 satisfy Assumption 2 (i), it follows from Steinwart and Scovel (2012,
Lemma 2.3) that H is compactly embedded into L2(PX0). As a result, Steinwart and Scovel
(2012, Lemma 2.12) implies that there exist at most countable families (e)i∈I ⊂ H and
(µi)i∈I ⊂ (0,∞) such that µ1 ≥ µ2 ≥ · · · > 0, ([ei]∼)i∈I is an ONS in L2(PX0), (µ

1/2
i ei)i∈I

is an ONS in H , and (47) holds with convergence in L2(PX0).
To show (48), since ([ei]∼)i∈I is an ONS in L2(PX0), any f ∈ L2(PX0) can be written as

f =
∑
i∈I
〈[ei]∼, f〉L2(PX0

) [ei]∼ + f⊥,

with convergence in L2(PX0), where f⊥ ∈ L2(PX0) is such that
〈
[ei]∼, f

⊥〉
L2(PX0

)
= 0 for

all i ∈ I. By Steinwart and Scovel (2012, Lemma 2.12, Eq.15) we have µiei = S[ei]∼ for all
i ∈ I. It then holds that

Sf =
∑
i∈I

µi 〈[ei]∼, f〉L2(PX0
) ei + Sf⊥,

where the convergence is in H since S is continuous. Note that we have Tf⊥ = 0, since
we have (47) and

〈
[ei]∼, f

⊥〉
L2(PX0

)
= 0 for all i ∈ I. That is, f⊥ is in the null space of

T . Since the null spaces of S and T are equal (Steinwart and Scovel, 2012, Lemma 2.12,
Eq.16), it follows that Sf⊥ = 0, which implies (48).

Finally we show (49). First note that CXX ei = SS∗ei = S[ei]∼ = µei for all i ∈ I. Using
this and (48), for any g ∈H we have

CXX g = SS∗g =
∑
i∈I

µi 〈[ei]∼, S∗g〉L2(PX0
) ei =

∑
i∈I

µi 〈SS∗ei, g〉L2(PX0
) ei

=
∑
i∈I

µi 〈CXX ei, g〉H ei =
∑
i∈I

µi 〈µiei, g〉H ei,

where the convergence is in H , which implies (49).
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Definition 17 Let X , k and PX0 be such that Assumption 2 (i) is satisfied. Let (ei)i∈I ⊂H
and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. Then for a constant β > 0, the β-th power of T ,
S and CXX are respectively defined by

T βf :=
∑
i∈I

µβi 〈[ei]∼, f〉L2(PX0
) [ei]∼, f ∈ L2(PX0),

Sβf :=
∑
i∈I

µβi 〈[ei]∼, f〉L2(PX0
) ei, f ∈ L2(PX0),

CβXX f :=
∑
i∈I

µβi

〈
µ
1/2
i ei, f

〉
H
µ
1/2
i ei, f ∈H .

Lemma 18 Let X , k and PX0 be such that Assumption 2 (i) and (ii) hold. Let (ei)i∈I ⊂H
and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. Then, ([e]∼)i∈I is an ONB of L2(PX0).

Proof Since k and PX0 satisfy Assumption 2 (i), it follows from Steinwart and Scovel (2012,
Lemma 2.3) that H is compactly embedded into L2(PX0). Then one can use Steinwart and
Scovel (2012, Theorem 3.1), which states that the assertion is equivalent to the Assumption
2 (ii) that the embedding S∗ : H → L2(PX0) has a dense image in L2(PX0).

We provide a condition for the integral operator Tprod defined in Section 4.2 to admit
an eigen-decomposition, which is needed for its power T βprod in (29) to be well-defined.

Lemma 19 Let X , k and PX0 be such that Assumption 2 (i) and (ii) are satisfied. Let
Tprod : L2(PX0 ⊗ PX0) → L2(PX0 ⊗ PX0) be the integral operator defined as in Section 4.2,
and let (ei)i∈I ⊂H and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. Then we have

Tprodη =
∑
i,j∈I

µiµj 〈η, [ei]∼ ⊗ [ej ]∼〉L2(PX0
⊗PX0

) [ei]∼ ⊗ [ej ]∼, η ∈ L2(PX0 ⊗ PX0),

where the convergence is in L2(PX0 ⊗ PX0).

Proof By Assumption 2 (ii) that S∗ has a dense image in L2(PX0) and Lemma 18, ([ei]∼)i∈I
is an ONB in L2(PX0). This implies that ([ei]∼ ⊗ [ej ]∼)i,j∈I is an ONB in L2(PX0 ⊗ PX0);
see e.g., Folland (1999, Ex. 61, p.178). Therefore any η ∈ L2(PX0 ⊗ PX0) can be written as

η =
∑
i,j∈I
〈η, [ei]∼ ⊗ [ej ]∼〉L2(PX0

⊗PX0
) [ei]∼ ⊗ [ej ]∼

with convergence in L2(PX0⊗PX0). Note that [ei]∼⊗[ej ]∼ for any i, j ∈ I is an eigenfunction
of Tprod with the corresponding eigenvalue being µiµj , since

Tprod([ei]∼ ⊗ [ej ]∼) =

∫
k(·,x)[ei]∼(x) dPX0(x)⊗

∫
k(·, x̃)[ej ]∼(x̃) dPX0(x̃)

= (T [ei]∼)⊗ (T [ej ]∼) = µiµi[ei]∼ ⊗ [ej ]∼.

The assertion follows from this and the above eigendecomposition of η in Assumption 4.

As a direct corollary of Lemma 19, we have the following result, which provides an
eigenbasis expression of the range assumption θ ∈ Range(T βprod).
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Corollary 20 Let X , k and PX0 be such that Assumption 2 (i) and (ii) are satisfied, and
let (ei)i∈I ⊂ H and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. Suppose that Assumption 4 is
satisfied, i.e., θ ∈ Range(T βprod) holds for θ ∈ L2(PX0 ⊗ PX0) and 0 ≤ β ≤ 1, where T βprod is
defined in (29). Then there exist (ai,j)i,j∈I ⊂ R such that

∑
i,j∈I a

2
i,j <∞ and

θ =
∑
i,j∈I

ai,j(µiµj)
β[ei]∼ ⊗ [ej ]∼,

where the convergence is in L2(PX0 ⊗ PX0).

Proof The assumption θ ∈ Range(T βprod) implies that there exists some η ∈ L2(PX0 ⊗PX0)

such that θ = T βη. Therefore

θ =
∑
i,j∈I

(µiµj)
β 〈η, [ei]∼ ⊗ [ej ]∼〉L2(PX0

⊗PX0
) [ei]∼ ⊗ [ej ]∼

where the convergence is in L2(PX0 ⊗ PX0). Defining ai,j := 〈η, [ei]∼ ⊗ [ej ]∼〉L2(PX0
⊗PX0

),
we have

∑
i,j∈I a

2
i,j <∞ from η ∈ L2(PX0 ⊗ PX0), which completes the proof.

Lastly, let CY X : H → F be the covariance operator of the random variables X0 and
Y0 defined as (see e.g., Fukumizu et al. (2013))

CY Xf =

∫
`(·,y)f(x) dPX0Y0(x,y) = EX0,Y0 [`(·, Y0)f(X0)], f ∈H (50)

where PX0Y0 is the joint distribution of X0 and Y0. Under Assumption 2 (i), this covariance
operator satisfies

〈CY Xf, g〉F = 〈EX0,Y0 [`(·, X0)f(X0)], g〉F = EX0,Y0 [g(Y0)f(X0)], f ∈H , g ∈ F .

The conjugate operator of CY X is denoted by CXY : F →H and given by

CXY g =

∫
k(·,x)g(y) dPX0Y0(x,y) = EX0,Y0 [k(·, X0)g(Y0)],

since for any f ∈H and g ∈ F it holds that

〈f, CY Xg〉H = 〈f,EX0,Y0 [k(·, X0)g(Y0)]〉H = EX0,Y0 [f(X0)g(Y0)] = 〈CY Xf, g〉F .

D.2 Lemmas

We collect here lemmas used in the proofs for the convergence results in Appendix E.

Lemma 21 Let X , k, PX0, PX1 and g := dPX1/ dPX0 be such that Assumption 2 (i) and
(iii) are satisfied. Then we have µX1 = Sg.

Proof By definitions of the kernel mean µX1 and the Radon-Nikodym derivative g, we have

µX1 =

∫
k(·,x) dPX1(x) =

∫
k(·,x)g(x) dPX0(x) = Sg ∈H ,

where the expression Sg is justified from Assumption 2 (iii) that g ∈ L2(PX0).
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Lemma 22 Let X , k and PX0 be such that Assumption 2 (i) is satisfied. Then for any
f ∈ L2(PX0) and ε > 0, we have S∗(CXX + εI)−1Sf = (T + εI)−1Tf.

Proof Let (ei)i∈I ⊂H and (µi)i∈I ⊂ (0,∞) as in Lemma 16. Then we have

S∗(CXX + εI)−1Sf = S∗(CXX + εI)−1
∑
j∈I

µj 〈f, [ej ]∼〉L2(PX0
) ej

= S∗
∑
i∈I

(µi + ε)−1

〈
µ
1/2
i ei,

∑
j∈I

µj 〈f, [ej ]∼〉L2(PX0
) ej

〉
H

µ
1/2
i ei

= S∗
∑
i∈I

(µi + ε)−1µi 〈f, [ei]∼〉L2(PX0
) ei =

∑
i∈I

(µi + ε)−1µi 〈f, [ei]∼〉L2(PX0
) [ei]∼

= (T + εI)−1Tf,

as required.

Lemma 23 Let X , k and PX0 be such that Assumption 2 (i) is satisfied. Then for any
f ∈ L2(PX0) and α ≥ 0, we have STαf = C1/2+αXX S1/2f.

Proof Let (ei)i∈I ⊂H and (µi)i∈I ⊂ (0,∞) as in Lemma 16. Then we have

C1/2+αXX S1/2f = C1/2+αXX

∑
i∈I

µ
1/2
i 〈[ei]∼, f〉L2(PX0

) ei

=
∑
`∈I

µ
1/2+α
`

〈
µ
1/2
` e`,

∑
i∈I

µ
1/2
i 〈[ei]∼, f〉L2(PX0

) ei

〉
H

µ
1/2
` e`

=
∑
`∈I

µ
1/2+α
` 〈[e`]∼, f〉L2(PX0

) µ
1/2
` e` =

∑
`∈I

µα` 〈[e`]∼, f〉L2(PX0
) µ`e`

=
∑
`∈I

µα` 〈[e`]∼, f〉L2(PX0
) S[e`]∼ = S

∑
`∈I

µα` 〈[e`]∼, f〉L2(PX0
) [e`]∼

= STαf,

as required.

Lemma 24 Let X , k, PX0, PX1 and g := dPX1/ dPX0 be such that Assumption 2 (i) and
(iii) are satisfied. Assume also that Assumption 3 holds, i.e., g ∈ Range(Tα) for a constant
α ≥ 0. Then for any ε > 0, we have

∥∥(CXX + εI)−1µX1

∥∥
H
≤
{
cαε
−1/2+α, (if α ≤ 1/2)

cα

∥∥∥Cα−1/2XX

∥∥∥ , (if α > 1/2),

where cα := ‖h‖L2(PX0
) is a constant defined by h ∈ L2(PX0) such that g = Tαh.
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Proof As in the assertion, write g = Tαh for h ∈ L2(PX0), which exists from the assumption
g ∈ Range(Tα). By Lemmas 21 and 23, we can then write µX1 as

µX1 = Sg = STαh = C1/2+αXX S1/2h.

Since (µ
1/2
i ei)i∈I is an ONS of H , ([ei]∼)i∈I is an ONS in L2(PX0) and

S1/2h =
∑
i∈I
〈[ei]∼, h〉L2(PX0

) µ
1/2
i ei,

it holds that ‖S1/2h‖2H =
∑

i∈I 〈[ei]∼, h〉2L2(PX0
) ≤ ‖h‖2L2(PX0

) and thus S1/2h ∈ H . There-
fore we have∥∥(CXX + εI)−1µX1

∥∥
H

=
∥∥∥(CXX + εI)−1C1/2+αXX S1/2h

∥∥∥
H

≤
∥∥∥(CXX + εI)−1C1/2+αXX

∥∥∥∥∥∥S1/2h
∥∥∥

H
≤
∥∥∥(CXX + εI)−1C1/2+αXX

∥∥∥ ‖h‖L2(PX0
) .

Below we focus on bounding the first term in the above bound. If α ≤ 1/2,∥∥∥(CXX + εI)−1C1/2+αXX

∥∥∥ ≤ ∥∥∥(CXX + εI)−1/2+α
∥∥∥∥∥∥(CXX + εI)−1/2−αC1/2+αXX

∥∥∥ ≤ ε−1/2+α.
On the other hand, if α > 1/2,∥∥∥(CXX + εI)−1C1/2+αXX

∥∥∥ ≤ ∥∥(CXX + εI)−1CXX

∥∥∥∥∥Cα−1/2XX

∥∥∥ ≤ ∥∥∥Cα−1/2XX

∥∥∥ .
This completes the proof.

Lemma 25 Let X , k and PX0 be such that Assumption 2 (i) and (ii) are satisfied. Then,
for any g ∈ L2(PX0), we have

lim
ε→0
‖(T + εI)−1Tg − g‖L2(PX0

)= 0.

Proof Let (ei)i∈I ⊂H and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. By Lemma 18, ([ei]∼)i∈I
is an ONB of L2(PX0), which implies that g can be expanded using ([ei]∼)i∈I . From this
and Lemma 16, we then have

(T + εI)−1Tg − g =
∑
i∈I

(µi + ε)−1µi 〈g, [ei]∼〉L2(PX0
) [ei]∼ −

∑
i∈I
〈g, [ei]∼〉L2(PX0

) [ei]∼

=
∑
i∈I
−ε(µi + ε)−1 〈g, [ei]∼〉L2(PX0

) [ei]∼.

Thus, by Parseval’s identity,

‖(T + εI)−1Tg − g‖2L2(PX0
)=
∑
i∈I

∣∣ε(µi + ε)−1
∣∣2 |〈g, [ei]∼〉L2(PX0

) |2.
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Note that
∣∣ε(µi + ε)−1

∣∣2 ≤ 1 for all i ∈ I, that ∑i∈I |〈g, [ei]∼〉L2(PX0
) |2= ‖g‖2L2(PX0

)< ∞,

and that limε→0

∣∣ε(µi + ε)−1
∣∣2 = 0 (which follows from µi > 0 for all i ∈ I). These facts

enable the use of the dominated convergence theorem, from which we have

lim
ε→0
‖(T + εI)−1Tg − g‖2L2(PX0

) = lim
ε→0

∑
i∈I

∣∣ε(µi + ε)−1
∣∣2 |〈g, [ei]∼〉L2(PX0

) |2

=
∑
i∈I

lim
ε→0

∣∣ε(µi + ε)−1
∣∣2 |〈g, [ei]∼〉L2(PX0

) |2= 0.

This completes the proof.

Lemma 26 Let X , k and PX0 be such that Assumption 2 (i) is satisfied. Let g ∈ L2(PX0)
be such that g ∈ Range(Tα) for a constant 0 ≤ α ≤ 1. Then, for all ε > 0, we have

‖(T + εI)−1Tg − g‖L2(PX0
)≤ cαεα,

where cα := ‖h‖L2(PX0
) with h ∈ L2(PX0) being such that g = Tαh.

Proof Let (ei)i∈I ⊂ H and (µi)i∈I ⊂ (0,∞) be as in Lemma 16. From g ∈ Range(Tα)
there exists h ∈ L2(PX0) such that g = Tαh. Therefore g can be written as

g = Tαh =
∑
i∈I

µαi bi[ei]∼, (51)

where the convergence is in L2(PX0), and bi := 〈h, [ei]∼〉L2(PX0
). It then follows that

(T + εI)−1Tg − g =
∑
i∈I

(µi + ε)−1µiµ
α
i bi[ei]∼ −

∑
i∈I

µαi bi[ei]∼

=
∑
i∈I
−ε(µi + ε)−1µαi bi[ei]∼.

Therefore, by Parseval’s identity, we have

‖(T + εI)−1Tg − g‖2L2(PX0
)=
∑
i∈I

ε2(µi + ε)−2µ2αi b
2
i .

The rhs of the above equation can be bounded from above as

ε2(µi + ε)−2µ2αi b
2
i = ε2(µi + ε)−2+2α(µi + ε)−2αµ2αi b

2
i

≤ ε2(µi + ε)−2+2αb2i = ε2αε2−2α(µi + ε)−2+2αb2i ≤ ε2αb2i ,

where the above two inequalities follow from ε > 0 and µi > 0, and the last inequality uses
α ≤ 1. Thus, we have

‖(T + εI)−1Tg − g‖2L2(PX0
)≤ ε2α

∑
i∈I

b2i = ε2α
∑
i∈I

(
〈h, [ei]∼〉L2(PX0

)

)2
≤ ε2α‖h‖2L2(PX0

),

where the last inequality follows from ([ei]∼)i∈I being an ONS in L2(PX0).
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Remark 27 Different from Lemma 25, Lemma 26 does not require Assumption 2 (ii) that
S∗ has a dense image in L2(PX0). In Lemma 25, this condition is required to guarantee that
([ei]∼)i∈I is an ONB in L2(PX0), so that g can be expanded by this ONB. On the other hand,
in Lemma 26, g can be written as (51), thanks to the assumption g ∈ Range(Tα); this is the
reason why Lemma 26 does not need Assumption 2 (ii).

The following is a key lemma, based on which we show the consistency and convergence
rates of our estimator.

Lemma 28 Let X , Y, k, `, PX0, PX1, g := dPX1/ dPX0 and θ : X × X → R defined in
(28) be such that Assumption 2 (i) and (iii) are satisfied. Then for any ε > 0, we have

‖CYX (CXX + εI)−1µX1 − µY 〈0|1〉‖2F

= 〈gε ⊗ gε, θ〉L2(PX0
⊗PX0

) − 2

〈
g, (T + εI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

+

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃)

where gε := (T + εI)−1Tg. In the second term of the right hand side, the inner product is
well defined, since we have (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃) ∈ L2(PX0).

Proof First note that, because ` is bounded (Assumption 2 (i)), the function θ in (28)
satisfies θ ∈ L2(PX0 ⊗ PX0). Therefore, the right hand side of the assertion is well defined.
The left hand side of the assertion can be written as

‖CYX (CXX + εI)−1µX1 − µY 〈0|1〉‖2F (52)

= ‖CYX (CXX + εI)−1µX1‖2F−2
〈
CYX (CXX + εI)−1µX1 , µY 〈0|1〉

〉
F

+ ‖µY 〈0|1〉‖2F .

As in the proof of Fukumizu et al. (2013, Thm. 8), the third term in (52) can be written as

‖µY 〈0|1〉‖2F =

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃). (53)

We thus derive the expressions for the first two terms in (52) in the sequel.

The first term in (52). Let f ∈H be arbitrary, and let (X̃0, Ỹ0) denote an independent
copy of (X0, Y0). By the property of CYX that 〈CYX f, h〉F = EX0,Y0 [f(X0)h(Y0))] for any
h ∈ F and the expression θ(x, x̃) = EY0,Ỹ0 [`(Y0, Ỹ0)|X0 = x, X̃0 = x̃], we have

‖CYX f‖2F = 〈CYX f, CYX f〉F = EX0,Y0 [f(X0)(CYX f)(Y0))]

= EX0,Y0 [f(X0)EX̃0,Ỹ0
[`(Y0, Ỹ0)f(X̃0)]]

= EX0,X̃0
[f(X0)f(X̃0)EY0,Ỹ0 [`(Y0, Ỹ0)|X0, X̃0]] (∵ Fubini theorem)

= EX0,X̃0
[f(X0)f(X̃0)θ(X0, X̃0)], (54)

where the use of Fubini’s theorem is enabled by ` and f being bounded, the latter implied
by k being bounded. Now define f := (CXX + εI)−1µX1 ∈ H . With this choice of f , the
quantity ‖CYX f‖2F is equal to the first term in (52). From (54), it follows that

‖CYX f‖2F = EX0,X̃0
[f(X0)f(X̃0)θ(X0, X̃0)]
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=

∫∫
f(x)f(x̃)θ(x, x̃) dPX0(x) dPX0(x̃) = 〈S∗f ⊗ S∗f, θ〉L2(PX0

⊗PX0
)

=
〈
S∗(CXX + εI)−1µX1 ⊗ S∗(CXX + εI)−1µX1 , θ

〉
L2(PX0

⊗PX0
)

=
〈
S∗(CXX + εI)−1Sg ⊗ S∗(CXX + εI)−1Sg, θ

〉
L2(PX0

⊗PX0
)

(∵ Lemma 21)

=
〈
(T + εI)−1Tg ⊗ (T + εI)−1Tg, θ

〉
L2(PX0

⊗PX0
)

(∵ Lemma 22)

= 〈gε ⊗ gε, θ〉L2(PX0
⊗PX0

) , (55)

where gε := (T + εI)−1Tg.

The second term in (52). First we have

EY0 [µY 〈0|1〉(Y0)|X0 = x] = EY0
[∫

EỸ0 [`(Y0, Ỹ0)|X̃0 = x̃] dPX1(x̃)|X0 = x

]
=

∫
EY0,Ỹ0

[
`(Y0, Ỹ0)|X0 = x, X̃0 = x̃

]
dPX1(x̃) (∵ Fubini)

=

∫
θ(x, x̃) dPX1(x̃) (56)

where (X̃0, Ỹ0) is an independent copy of (X0, Y0). Note that for the first expression in (56),
we have EY0 [µY 〈0|1〉(Y0)|X0 = ·] ∈ L2(PX0) since ` is bounded. Using this and (56), we have

CXY µY 〈0|1〉 = EX0,Y0 [k(·, X0)µY 〈0|1〉(Y0)] = EX0

[
k(·, X0)EY0 [µY 〈0|1〉(Y0)|X0]

]
= SEY0 [µY 〈0|1〉(Y0)|X0 = ·] = S

∫
θ(·, x̃) dPX1(x̃). (57)

Now for the second term in (52), we have〈
CYX (CXX + εnI)−1µX1 , µY 〈0|1〉

〉
F

=
〈
µX1 , (CXX + εnI)−1CXY µY 〈0|1〉

〉
H

=

〈
Sg, (CXX + εnI)−1S

∫
θ(·, x̃) dPX1(x̃)

〉
H

(∵ Lemma 21 and (57))

=

〈
g, S∗(CXX + εnI)−1S

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

=

〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

(∵ Lemma 22).

This completes the proof.

Appendix E. Proofs for Section 4

We provide proofs for the convergence results presented in Section 4 of the main paper.
The proofs rely on several lemmas collected and proved in Appendix D. The notation and
definitions follow those in these sections. In the following, for any bounded linear operator
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A : V →W between normed vector spaces V and W , we denote by ‖A‖ its operator norm:
‖A‖:= sup‖v‖V ≤1‖A(v)‖W , where ‖·‖V and ‖·‖W denote the norms of V andW , respectively.

We first show that the CME estimator µ̂〈0|1〉 in (18) can be expressed in terms of certain
empirical covariance operators. Given an i.i.d. sample (xi,yi)

n
i=1 from PX0Y0 , the covari-

ance operators CXX : H → H in (46) and CY X : H → F in (50) can be respectively
approximated by ĈXX : H →H and ĈYX : H → F , defined as

ĈXX f :=
1

n

n∑
i=1

k(·,xi)f(xi), ĈYX f =
1

n

n∑
i=1

`(·,yi)f(xi), f ∈H .

Under Assumption 2 (i) that the kernels k and ` are bounded, these satisfy ‖ĈXX −CXX ‖=
Op(n

−1/2) and ‖ĈYX − CYX ‖= Op(n
−1/2) as n → ∞. Similarly, given an i.i.d. sample

(x′j)
m
j=1 from PX1 , the kernel mean µX1 :=

∫
k(·,x) dPX1(x) of PX1 can be estimated as

µ̂X1 := 1
m

∑m
i=1 k(·,xj), with the error rate ‖µX1 − µ̂X1‖H = Op(m

−1/2) as m → ∞ under
Assumption 2 (i).

Proposition 29 Let µ̂〈0|1〉 be the CME estimator in (18). Then we have

µ̂〈0|1〉 = ĈYX (ĈXX + εI)−1µ̂X1 . (58)

Proof Define g := (ĈXX +εI)−1µ̂X1 . Since µ̂X1 = (ĈXX +εI)g = 1
n

∑n
j=1 k(·,xj)g(xj)+εg,

we have µ̂X1(x`) = 1
n

∑n
j=1 k(x`,xj)g(xj) + εg(x`) = 1

n(Kg)` + εg` for all ` = 1, . . . , n,
where K ∈ Rn×n with Ki,j = k(xi,xj) and g = (g(x1), . . . , g(xn))> ∈ Rn. Therefore µ =
1
n(K + nεI)g, where µ := (µ̂X1(x1), . . . , µ̂X1(xn))> = K̃1m, where 1m = (1/m, . . . , 1/m)>

and K̃ ∈ Rn×m with K̃ij = k(xi,x
′
j). Thus g = n(K+nεI)−1µ. Lastly, the right hand side

of (58) can be expressed as 1
n

∑n
i=1 `(·,yi)g(xi) =

∑n
i=1 βi`(·,yi), where β = (β1, . . . , βn)> =

n−1g = (K + nεI)−1µ, which is the expression of the CME estimator µ̂〈0|1〉 in (18).

E.1 Convergence Rates of the Stochastic Error

The proofs of Theorems 8 and 13 rely on the following result, which characterizes the
“stochastic error” of the CME estimator. As stated in Assumption (iv), we assume m = n
in the following.

Theorem 30 Let X be a measurable space, k be a measurable kernel on X and PX0 be a
probability measure on X such that Assumption 2 (i), (iii) and (iv) are satisfied. Assume
that the Radon-Nikodym derivative g := dPX1/ dPX0 satisfies g ∈ Range(Tα) for a constant
α ≥ 0. Then for any εn > 0 such that εn → 0 as n→∞, we have

‖ĈYX (ĈXX+εnI)−1µ̂X1−CYX (CXX+εnI)−1µX1‖F = Op

(
n−1/2εmin(−1+α,−1/2)

n

)
(n→∞)

Proof As in the proof of Fukumizu et al. (2013, Theorem 11), the lhs can be bounded as

‖ĈYX (ĈXX + εnI)−1µ̂X1 − CYX (CXX + εnI)−1µX1‖F
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≤ ‖ĈYX (ĈXX + εnI)−1(µ̂X1 − µX1)‖F +‖(ĈYX − CYX )(CXX + εnI)−1µX1‖F
+‖ĈYX (ĈXX + εnI)−1(CXX − ĈXX )(CXX + εnI)−1µX1‖F (59)

By Baker (1973, Theorem 1), ĈYX can be decomposed as ĈYX = Ĉ1/2YY ŴYX Ĉ1/2XX for a bounded
linear operator ŴYX : H → F with ‖ŴYX ‖≤ 1, where Ĉ1/2YY : F → F and Ĉ1/2XX : H →H

are such that ĈYY = Ĉ1/2YY Ĉ
1/2
YY and ĈXX = Ĉ1/2XX Ĉ

1/2
XX . Therefore,

‖ĈYX (ĈXX + εnI)−1‖ = ‖Ĉ1/2YY ŴYX Ĉ1/2XX (ĈXX + εnI)−1‖
≤ ‖Ĉ1/2YY ‖ ‖(ĈXX + εnI)−1/2‖≤ ‖Ĉ1/2YY ‖ε−1/2n . (60)

Thus, the rate of the first term in (59) is

‖ĈYX (ĈXX + εnI)−1(µ̂X1 − µX1)‖F≤ ‖Ĉ1/2YY ‖ε−1/2‖µ̂X1 − µX1‖H = Op(ε
−1/2n−1/2).

Next, the rate of the second term in (59) is given by

‖(ĈYX − CYX )(CXX + εnI)−1µX1‖F ≤ ‖ĈYX − CYX ‖‖(CXX + εnI)−1µX1‖H
≤ ‖ĈYX − CYX ‖cαεmin(−1/2+α,0)

n (∵ Lemma 24)

= Op

(
n−1/2εmin(−1/2+α,0)

n

)
,

where cα is a constant depending only on α and g. Finally, for the third term in (59), the
rate is given as

‖ĈYX (ĈXX + εnI)−1(CXX − ĈXX )(CXX + εnI)−1µX1‖F
≤ ‖ĈYX (ĈXX + εnI)−1‖‖CXX − ĈXX ‖‖(CXX + εnI)−1µX1‖H
≤ ‖Ĉ1/2YY ‖ε−1/2n ‖CXX − ĈXX ‖cαεmin(−1/2+α,0)

n (∵ (60) and Lemma 24)

= Op

(
n−1/2εmin(−1+α,−1/2)

n

)
.

Since we will set εn so that εn → 0 as n → ∞, the rate of the third term is the slowest in
the three terms in (59). This completes the proof.

E.2 Proof of Theorem 8

Proof By the triangle inequality, we can bound the error of our estimator as∥∥∥ĈYX (ĈXX + εnI)−1µ̂X1 − µY 〈0|1〉
∥∥∥

F

≤
∥∥∥ĈYX (ĈXX + εnI)−1µ̂X1 − CYX (CXX + εnI)−1µX1

∥∥∥
F

(61)

+
∥∥CYX (CXX + εnI)−1µX1 − µY 〈0|1〉

∥∥
F
, (62)

where (61) can be interpreted as the stochastic error and (62) as the approximation error.
Note that the assumption g ∈ L2(PX0) enables the use of Theorem 30 with α = 0, which
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implies that the estimation error (61) converges to 0 at rate Op(n−1/2ε−1n ) as n → ∞,
provided that εn → 0 and n1/2εn →∞ as n→∞.

Here we aim to prove that the approximation error (62) goes to zero as εn → 0. Note
that to this end, we cannot apply the proof of Theorem 8 in Fukumizu et al. (2013), since
it relies on stronger assumptions than ours. We do this by using Lemma 28, which shows
that the approximation error can be written as∥∥CYX (CXX + εnI)−1µX1 − µY 〈0|1〉

∥∥2
F

= 〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) (63)

−2

〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

(64)

+

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃),

where gεn := (T + εnI)−1Tg with g = dPX1/dPX0 being the Radon-Nikodym derivative.
Below we show the convergence limits of (63) and (64) as εn → 0, which conclude the proof.

Convergence of (63). We will show that

〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) →
∫∫

θ(x, x̃) dPX1(x) dPX1(x̃) (εn → 0). (65)

Note that we have

〈g ⊗ g, θ〉L2(PX0
⊗PX0

) =

∫∫
g(x)g(x̃)θ(x, x̃) dPX0(x) dPX0(x̃) =

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃).

Therefore it suffices to show that

〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) → 〈g ⊗ g, θ〉L2(PX0
⊗PX0

) (εn → 0).

Note that by the Cauchy-Schwartz inequality, we have∣∣∣〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) − 〈g ⊗ g, θ〉L2(PX0
⊗PX0

)

∣∣∣
=

∣∣∣〈gεn ⊗ gεn − g ⊗ g, θ〉L2(PX0
⊗PX0

)

∣∣∣ ≤ ‖gεn ⊗ gεn − g ⊗ g‖L2(PX0
⊗PX0

) ‖θ‖L2(PX0
⊗PX0

) .

Thus we focus on showing that

‖gεn ⊗ gεn − g ⊗ g‖L2(PX0
⊗PX0

)→ 0 (εn → 0). (66)

By the triangle inequality we have

‖gεn ⊗ gεn − g ⊗ g‖L2(PX0
⊗PX0

)

≤ ‖gεn ⊗ gεn − g ⊗ gεn‖L2(PX0
⊗PX0

)+‖g ⊗ gεn − g ⊗ g‖L2(PX0
⊗PX0

). (67)

The first term of (67) can be written as

‖gεn ⊗ gεn − g ⊗ gεn‖L2(PX0
⊗PX0

)= ‖(gεn − g)⊗ gεn‖L2(PX0
⊗PX0

)

= ‖gεn − g‖L2(PX0
)‖gεn‖L2(PX0

)→ 0 (εn → 0) (∵ Lemma 25),

Similarly, the second term of (67) can be written as

‖g ⊗ gεn − g ⊗ g‖L2(PX0
⊗PX0

)= ‖g ⊗ (gεn − g)‖L2(PX0
⊗PX0

)

= ‖g‖L2(PX0
)‖gεn − g‖L2(PX0

)→ 0 (εn → 0) (∵ Lemma 25).

We have shown (66), which concludes (65).
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Convergence of (64). We show that as εn → 0,〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

→
∫∫

θ(x, x̃) dPX1(x) dPX1(x̃). (68)

From Lemma 25, as εn → 0, the lhs converges to〈
g,

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

=

∫∫
θ(x, x̃) dPX1(x̃)g(x) dPX0(x)

=

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃).

Thus we have shown (68). The proof completes by substituting (65) and (68) in (63) and
(64) respectively.

E.3 Proof of Theorem 13

Proof By the triangle inequality we can bound the error of our estimator as

‖ĈYX (ĈXX + εnI)−1µ̂X1 − µY 〈0|1〉‖F
≤ ‖ĈYX (ĈXX + εnI)−1µ̂X1 − CYX (CXX + εnI)−1µX1‖F (69)

+‖CYX (CXX + εnI)−1µX1 − µY 〈0|1〉‖F , (70)

where (69) is the estimation error, and (70) is the approximation error. By Theorem 30, the
estimation error decays at the rate

‖ĈYX (ĈXX + εnI)−1µ̂X1 − CYX (CXX + εnI)−1µX1‖F = Op

(
n−1/2εmin(−1+α,−1/2)

n

)
(71)

as n → ∞. Hence we focus below on deriving a convergence rate for the approximation
error. We then determine the optimal schedule for the decay of the regularization constant
εn as n→∞ in order to derive a convergence rate for the overall error.

Rate for the approximation error (70). We will show that the approximation error
decays at the rate

‖CYX (CXX + εnI)−1µX1 − µY 〈0|1〉‖F = O
(
ε(α+β)/2n

)
(εn → 0). (72)

First note that, by the definition of g = dPX1/dPX0 , we have∫∫
θ(x, x̃) dPX1(x) dPX1(x̃) =

∫∫
θ(x, x̃)g(x)g(x̃) dPX0(x) dPX0(x̃)

= 〈g ⊗ g, θ〉L2(PX0
⊗PX0

) . (73)

Therefore, using Lemma 28 and the notation gεn := (T+εnI)−1Tg, we can bound the square
of the approximation error (70) as

‖CYX (CXX + εnI)−1µX1 − µY 〈0|1〉‖2F
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= 〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) − 2

〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

+

∫∫
θ(x, x̃) dPX1(x) dPX1(x̃)

≤
∣∣∣〈gεn ⊗ gεn , θ〉L2(PX0

⊗PX0
) − 〈g ⊗ g, θ〉L2(PX0

⊗PX0
)

∣∣∣ (74)

+2

∣∣∣∣∣〈g ⊗ g, θ〉L2(PX0
⊗PX0

) −
〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

∣∣∣∣∣ ,
Bound on the first term in (74). By Corollary 20 (which follows from Assumption 4),
θ =

∑
i,j∈I ai,j(µ

β
i [ei]∼)⊗ (µβj [ej ]∼) with

∑
i,j∈I a

2
ij <∞. Using this, we have

〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) − 〈g ⊗ g, θ〉L2(PX0
⊗PX0

)

=

〈
gεn ⊗ gεn ,

∑
i,j∈I

ai,j(µ
β
i [ei]∼)⊗ (µβj [ej ]∼)

〉
L2(PX0

⊗PX0
)

−
〈
g ⊗ g,

∑
i,j∈I

ai,j(µ
β
i [ei]∼)⊗ (µβj [ej ]∼)

〉
L2(PX0

⊗PX0
)

=
∑
i,j∈I

ai,j

〈
gεn , µ

β
i [ei]∼

〉
L2(PX0

)

〈
gεn , µ

β
j [ej ]∼

〉
L2(PX0

)

−
∑
i,j∈I

ai,j

〈
g, µβi [ei]∼

〉
L2(PX0

)

〈
g, µβj [ej ]∼

〉
L2(PX0

)

=
∑
i,j∈I

ai,j

〈
gεn − g, µβi [ei]∼

〉
L2(PX0

)

〈
gεn , µ

β
j [ej ]∼

〉
L2(PX0

)

+
∑
i,j∈I

ai,j

〈
g, µβi [ei]∼

〉
L2(PX0

)

〈
gεn − g, µβj [ej ]∼

〉
L2(PX0

)
.

Therefore,∣∣∣〈gεn ⊗ gεn , θ〉L2(PX0
⊗PX0

) − 〈g ⊗ g, θ〉L2(PX0
⊗PX0

)

∣∣∣
≤

∣∣∣∣∣∣
∑
i,j∈I

ai,j

〈
gεn − g, µβi [ei]∼

〉
L2(PX0

)

〈
gεn , µ

β
j [ej ]∼

〉
L2(PX0

)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i,j∈I

ai,j

〈
g, µβi [ei]∼

〉
L2(PX0

)

〈
gεn − g, µβj [ej ]∼

〉
L2(PX0

)

∣∣∣∣∣∣
≤

√∑
i,j∈I

a2i,j

√∑
i∈I

〈
gεn − g, µβi [ei]∼

〉2
L2(PX0

)

∑
j∈I

〈
gεn , µ

β
j [ej ]∼

〉2
L2(PX0

)

+

√∑
i,j∈I

a2i,j

√∑
i∈I

〈
g, µβi [ei]∼

〉2
L2(PX0

)

∑
j∈I

〈
gεn − g, µβj [ej ]∼

〉2
L2(PX0

)
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=

√∑
i,j∈I

a2i,j

∥∥∥T β(gεn − g)
∥∥∥
L2(PX0

)

∥∥∥T βgεn∥∥∥
L2(PX0

)

+

√∑
i,j∈I

a2i,j

∥∥∥T βg∥∥∥
L2(PX0

)

∥∥∥T β(gεn − g)
∥∥∥
L2(PX0

)

=

√∑
i,j∈I

a2i,j

∥∥∥T β(gεn − g)
∥∥∥
L2(PX0

)

(∥∥∥T βgεn∥∥∥
L2(PX0

)
+
∥∥∥T βg∥∥∥

L2(PX0
)

)
(75)

Note that T βg ∈ Range(Tα+β) holds because of the assumption g ∈ Range(Tα). There-
fore by Lemma 26 (which can be used because α+ β ≤ 1), we have∥∥∥T βgεn − T βg∥∥∥

L2(PX0
)

=
∥∥∥(T + εnI)−1TT βg − T βg

∥∥∥
L2(PX0

)
≤ cα+βεα+βn , (76)

where cα+β is a constant depending only on α, β and g. We also have∥∥∥T βgεn∥∥∥
L2(PX0

)
≤

∥∥∥T βgεn − T βg∥∥∥
L2(PX0

)
+
∥∥∥T βg∥∥∥

L2(PX0
)

≤ cα+βε
α+β
n +

∥∥∥T βg∥∥∥
L2(PX0

)
(∵ (76))

Therefore (75), and thus the first term in (74), is bounded by√∑
i,j∈I

a2i,jcα+βε
α+β
n

(
cα+βε

α+β
n + 2‖T βg‖L2(PX0

)

)
. (77)

Bound on the second term in (74). From the equivalence (73), (the half of) the second
term in (74) can be written as∣∣∣∣∣

〈
g,

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

−
〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

∣∣∣∣∣ .(78)
Note that, using θ =

∑
i,j∈I ai,j(µ

β
i [ei]∼)⊗ (µβj [ej ]∼), we can write∫

θ(·, x̃) dPX1(x̃) =

∫ ∑
i,j∈I

ai,j(µ
β
i [ei]∼)⊗ (µβj [ej ]∼(x̃)) dPX1(x̃)

=
∑
i,j∈I

ai,j(µ
β
i [ei]∼)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃).

Therefore,〈
g,

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

=

〈
g,
∑
i,j∈I

ai,j(µ
β
i [ei]∼)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

〉
L2(PX0

)

=
∑
i,j∈I

ai,jµ
β
i 〈g, [ei]∼〉L2(PX0

)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃).
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Similarly,〈
g, (T + εnI)−1T

∫
θ(·, x̃) dPX1(x̃)

〉
L2(PX0

)

=

〈
(T + εnI)−1Tg,

∑
i,j∈I

ai,j(µ
β
i [ei]∼)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

〉
L2(PX0

)

=
∑
i,j∈I

ai,jµ
β
i

〈
(T + εnI)−1Tg, [ei]∼

〉
L2(PX0

)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

Because of the properties that µ1 ≥ µ2 ≥ · · · > 0, that ([ej ]∼)j∈I is an ONS in L2(PX0) and
that g ∈ L2(PX0), we have

∑
j∈I

(∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

)2

≤ µ2β1
∑
j∈I

(∫
[ej ]∼(x̃) dPX1(x̃)

)2

= µ2β1
∑
j∈I

(∫
[ej ]∼(x̃)g(x̃) dPX0(x̃)

)2

= µ2β1
∑
j∈I
〈[ej ]∼, g〉2L2(PX0

) ≤ µ
2β
1 ‖g‖2L2(PX0

)<∞.

Therefore, using the Cauchy-Schwartz, the above identities and inequality, we have

(78) =

∣∣∣∣∣∣
∑
i,j∈I

ai,jµ
β
i

〈
g − (T + εnI)−1Tg, [ei]∼

〉
L2(PX0

)

∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

∣∣∣∣∣∣
≤

√∑
i,j∈I

a2i,j

√√√√∑
i∈I

µ2βi 〈g − (T + εnI)−1Tg, [ei]∼〉2L2(PX0
)

∑
j∈I

(∫
(µβj [ej ]∼(x̃)) dPX1(x̃)

)2

≤
√∑
i,j∈I

a2i,jµ
β
1‖g‖L2(PX0

)

√∑
i∈I

µ2βi 〈g − (T + εnI)−1Tg, [ei]∼〉2L2(PX0
)

≤
√∑
i,j∈I

a2i,jµ
β
1‖g‖L2(PX0

)

∥∥∥T β (g − (T + εnI)−1Tg
)∥∥∥
L2(PX0

)
,

where the last inequality follows from ([ej ]∼)j∈I being an ONS in L2(PX0) and the definition
of T β . Note that we have T βg ∈ Range(Tα+β) from the assumption g ∈ Range(Tα).
Therefore by Lemma 26,∥∥∥T β (g − (T + εnI)−1Tg

)∥∥∥
L2(PX0

)
= ‖T βg − (T + εn)−1TT βg‖L2(PX0

)≤ cα+β εα+βn

where cα+β > 0 is a constant depending only on α, β and g. Thus, we finally obtain

(78) ≤
√∑
i,j∈I

a2i,jµ
β
1‖g‖L2(PX0

)cα+β ε
α+β
n . (79)
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Resulting approximation error rate. Using (77) and (79) in (74), the rate (72) is
finally obtained as

‖CYX (CXX + εnI)−1µX1 − µY 〈0|1〉‖2F
≤

√∑
i,j∈I

a2i,jcα+βε
α+β
n

(
cα+βε

α+β
n + 2‖T βg‖L2(PX0

)+µ
β
1‖g‖L2(PX0

)

)
= O(εα+βn ) (εn → 0).

Balancing the estimation and approximation error rates. For an arbitrary constant
c > 0 independent of n, let εn = cn−b for some constant b > 0. We determine b by balancing
the two rates (71) and (72). This yields b = 1/(2−α+β) for α ≤ 1/2, and b = 1/(1+α+β)
for α ≥ 1/2; equivalently, b = 1/(1 +β+ max(1−α, α)) for 0 ≤ α ≤ 1. The proof completes
by substituting the resulting εn = n−b in (71) and (72).
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