
Augmenting Multiple-Transmitter Coded Caching
using Popularity Knowledge at the Transmitters

Berksan Serbetci, Eleftherios Lampiris, Thrasyvoulos Spyropoulos, Petros Elia
serbetci@eurecom.fr, lampiris@tu-berlin.de, {spyropou, elia}@eurecom.fr

Abstract— The work presents a new way of exploiting non-
uniform file popularity in caching networks. Focusing on the
interference channel with cache-enabled transmitters and re-
ceivers, we show how non-uniform file popularity can be used
to accelerate the impact of transmitter-side data redundancy
in coded caching. This approach is motivated by the recent
discovery that under realistic file-size constraints, having content
appear in multiple transmitters can boost multiplicatively the
speed-up factor attributed to coded caching.

We formulate the problem through an optimization algorithm,
which seeks to optimize the number of transmitters each file is
cached at, as a function of that file’s popularity. Part of the
optimization effort involves a biconvex problem; such problems
are traditionally solved by heuristic Alternate Convex Search
methods that generally do not guarantee the global optimum. To
avoid this, we follow a more involved path which includes the
design of a new search algorithm that exploits the properties of
the caching problem itself. The overall optimization algorithm
provably achieves the globally optimal solution, and does so with
a complexity that scales as a polynomial function of the logarithm
of the size of the file catalog. In the end, the optimal transmitter-
side cache placement yields multiplicative speedup factors over
traditional multi-transmitter coded caching algorithms.

I. INTRODUCTION

In the context of cache-aided interference-limited commu-
nication networks, the work of Maddah-Ali and Niesen [1]
revealed how content that is properly placed at the receiver-
side caches, can serve as side information that cancels inter-
ference and accelerates delivery. Key to this was an ability
to employ multicasting even when delivering content that is
different from user to user.

In particular, the work in [1] considered a single-stream
broadcast (downlink) configuration, where a transmitter with
access to a library of N unit-sized files, serves – via a unit-
capacity bottleneck link – K receiving users, each endowed
with a cache of size equal to the size of M files, or equivalently
equal to a fraction γ , M

N of the library. In a setting that
involved a cache-placement phase and a subsequent delivery
phase that starts with the users concurrently requesting a file
each, the coded caching algorithm in [1] allowed for complete
delivery of any K independent files, at a rate of Kγ + 1 files
at a time, resulting in a worst-case delivery time of

T =
K(1− γ)

1 +Kγ
. (1)

The work is supported by the ANR-17-CE25-0001 Jeunes Chercheuses et
Jeunes Chercheurs project 5C-for-5G, by the ERC project DUALITY (grant
agreement no. 725929), and by the ERC project CARENET (grant agreement
no. 789190). A longer version of this work is posted on arXiv.

This rate of Kγ+1 – commonly referred to as the Degrees
of Freedom (DoF) performance – simply reflects the speed-
up factor due to caching, or equivalently the delivery rate,
in units of files per unit of time, after normalization by the
high-SNR link capacity. This performance – which suggests
that, in theory, one can serve an infinite number of files with
bounded delay – was shown to be within a multiplicative factor
of 2.01 from the information-theoretic optimal [2], and exactly
optimal over the class of schemes that employ uncoded cache
placement [3]. Key to this performance was a cached data
redundancy which guaranteed the proper placement of any
specific content at Kγ different caches. This meant that when
this specific content is served (as part of an XOR with other
contents) to a specific user, then Kγ other users (not interested
in it) can find that part of the XOR in their cache, and cancel
it out from that XOR.

A. Subpacketization and the redundancy constraint

While, in theory, the DoF Kγ+1 could increase indefinitely
with an increasing K, it soon became clear (see [4]) that
such gains could in practice not materialize, partly due to the
algorithm’s structural requirement that each file be split into an
exceedingly large number of subfiles. This number is equal to(
K
Kγ

)
, and it scales exponentially in K. To date, this constitutes

a prohibitive bottleneck which hard-bounds the DoF at modest
values, despite progress in interesting works such as [5]–[7].

The above bottleneck forces a dramatic reduction in perfor-
mance because, when each file size F is bounded, the coded
caching algorithm must apply coding over only a bounded
number, call it Λ, of users, in order to guarantee that(

Λ

Λγ

)
≤ F. (2)

As a result, delivery is repeated K/Λ times, yielding a reduced
DoF Λγ + 1, and an increased delivery time

TΛ =
K(1− γ)

1 + Λγ
. (3)

The above was proven in [8] to be optimal under the assump-
tion of uncoded cache placement.

B. Exploiting file popularity in caching networks

Taking advantage of non-uniform file popularity has been
a key concept for Content Centric and Information-Centric
Networks [9], [10], as well as in wireless edge caching works
[11] that followed the femto-caching ideas of [12]. Never-
theless, the majority of these works focus on very different

setups than the interference-limited scenarios in which coded
caching is commonly applied. Even works that attempt to take
into account somewhat more sophisticated PHY capabilities
like joint-beamforming or MU-MIMO, often implicitly or
explicitly assume that content requests are non-interfering
and/or asynchronous [13], [14].

On the other hand, early works using the coded caching
framework for receiver-side caching, focused on the worst-
case metric, in the expense of gains due to non-uniform
popularity distribution is lost. Recent efforts such as [15]–
[24], explored various ways of incorporating file popularity
with coded caching. In practice, due to subpacketization, the
overall speed-up factor of the single-stream coded caching
remains well below the original theoretic promises.

C. Multiplicative impact of transmitter-side cache redundancy

In an effort to overcome the above subpacketization limi-
tation, some research (see [25], [26], see also [27]–[31] and
many others) sought to apply coded caching in conjunction
with other network resources, such as multi-antenna arrays.

Some progress in this direction came with the work in [32]
and the subsequent work in [8], which revealed the surprising
finding that the aforementioned unavoidable reduction in Λ,
and the subsequent performance degradation could be com-
pensated, in a very accelerated manner, through increased data
redundancy at the transmitter side. As the works in [8], [32]
showed, in a setting where the transmitter has access to L
transmit antennas, under the assumption that L ≤ K/Λ, one
could achieve the worst-case delivery time

T =
K(1− γ)

L(1 + Λγ)
(4)

and the corresponding DoF of L (1 + Λγ) which was proven
in [8] to be exactly optimal under the assumption of uncoded
cache placement. Note that the above impact of L is multi-
plicative; this is in direct contrast to the additive effect that can
be found in the unconstrained case of Λ = K which enjoys
the maximal DoF of L+Kγ (cf. [25], [26]).

This same powerful multiplicative effect can be found in the
setting of interest here. This setting – first introduced in [26]
– involves KT transmitters, each with a cache of size equal to
a fraction γT of the library, which serve via a fully connected
channel, the K cache-aided receivers. In this configuration, the
transmitter-side cache redundancy KT γT now plays the role
of L, and again, as long as KT γT ≤ K/Λ, the delay of

T =
K(1− γ)

KT γT (1 + Λγ)
(5)

implies a multiplicatively boosted DoF of KT γT (1 + Λγ).

D. Current contributions: Boosting transmitter-side data re-
dundancy using file popularity

The above described how, the transmitter-side data redun-
dancy L = KT γT under limited subpacketization, which
forces Λ to be limited, has a powerful multiplicative impact.
Here, we seek to exploit file popularity in the transmitter-sided
placement, to further boost this impact.

While in a setting that is agnostic to file popularity, each file
appears at exactly KT γT transmitters, our aim here will be to
optimize this placement such that (generally but not always)
popular files experience higher redundancy by being cached
in more transmitters, while less popular files will inevitably
be cached in fewer transmitters. We solve an optimization
problem whose objective is to determine the redundancy for
each file, under a sum-cache constraint. As we will see later
on, the new placement provides substantially speed-up of the
delivery of popular files, in a manner that far outweighs the
increased delays for the unpopular files simply because these
increased delays appear much less often. Part of the effort in
our work is to guarantee convergence to the global optimum,
and to reduce the complexity of the optimization problem.
Both are achieved by designing a new search algorithm that
exploits the properties of the caching problem itself.

The approach in our work comes in contrast to existing
coded-caching efforts which place emphasis on adapting the
receiver-side placement in order to reflect the file popularity.

II. SYSTEM MODEL AND CACHING-DELIVERY POLICIES

A. System model

We consider the fully-connected, multi-transmitter coded
caching setting where KT single-antenna transmitters serve,
via a fully connected channel, K single-antenna re-
ceivers/users. Each transmitter and each receiver can store
fraction γT ∈ [1

KT
, 1] and fraction γ ∈ [0, 1] of the library,

respectively. We assume that the library is comprised of N
files W 1,W 2, . . . ,WN , and that each file – as stated before
– has size F bits1. We assume that a single transmitter-to-
receiver link has (normalized) capacity equal to one file per
unit of time, as well as that the channel between any set of
transmitters and receivers is of full rank with probability one2.

We assume that each user concurrently requests one file,
independently of each other, and further that the file popularity
follows a distribution known during cache placement. In
particular, the solution of the optimization problem itself will
assume a Zipf distribution [33] with parameter α, under which
the probability that file Wn is requested, takes the form

pn =
n−α∑N
n=1 n

−α
, ∀n ∈ [N]. (6)

Without loss of generality, we assume that files are indexed
with decreasing popularity such that pi ≥ pj for any i < j.

B. Caching and delivery policy

Below we describe the role of the parameters that define
the optimization problem, and which – once optimized –
define the optimal caching-and-delivery policy. We begin with
describing how to split the library into an arbitrary number
of sub-libraries, each consisting of a different number of
files. Then we define the transmitter-side cache redundancy

1This assumption is common, as non-equal sized files can be handled by
making a content chunk the basic caching unit, as in [12].

2This requirement holds true in many wireless settings as well as in wired
settings with network-coding capabilities at the intermediate network nodes.

that a file enjoys depending on the sub-library it belongs
to, and we show how such an arbitrary (not yet optimized)
redundancy can be achieved under the cache-size constraint.
These parameters (number of sub-libraries, size of each sub-
library, and redundancy attributed to each sub-library) are
mapped into an objective function that reflects their role in
the delivery time. The subsequent optimization (in the next
section) yields the optimizing solution for these parameters,
and thus defines the optimized caching and delivery policies.

1) Library segmentation policy: The first step segments the
file library into an arbitrary number of Q disjoint sub-libraries

Bq = [nq−1 + 1 : nq], q = 1, 2, . . . , Q (7)

where each sub-library Bq contains all the files that are
indexed3 from nq−1 + 1 to nq . Our segmentation policy thus
results in a first sub-library consisting of the most popular
files B1 = {1, 2, . . . , n1}, then a second sub-library B2 =
{n1 + 1, . . . , n2}, until the sub-library BQ = {nQ−1, . . . , N}
containing the least popular files. This segmentation — which
asks that each sub-library contains clusters of successively
indexed files — will be entirely defined by the Q-length vector

n , [n1, n2, . . . , nQ].

2) Redundancy assignment policy: Based on the above
division, our policy asks that each file from Bq be cached,
in its entirety, at Lq different transmitters. The vector

L , [L1, L2, . . . , LQ]

will thus fully define the redundancy attributed to each file of
the library. Naturally any such allocation must satisfy

Q∑
q=1

Lq|Bq| =
Q∑
q=1

Lq(nq − nq−1) ≤ KT γTN (8)

because of the cache-size constraint at the transmitter side.
3) Transmitter-side caching policy: To implement the

above redundancy allocation, for any Q,n,L, we extend the
approach in [32] to account for multiple sub-libraries with
different redundancies.

The placement is done sequentially. We start from the first
sub-library and we consecutively cache the whole first file
into the first L1 transmitters, then the second file (of the first
sub-library) into transmitters L1 + 1 through 1 + (2L1 − 1
mod KT), and so on. We note that the selection of the
transmitters is always done using the modulo operation, which
means that when we place a file at the last transmitter, we
continue the process with the first transmitter.

After storing each file of the first sub-library in a total
of L1 transmitters each, we proceed with the second sub-
library. Continuing from the transmitter after the one last
used, i.e. continuing from transmitter 1 + (n1 ·L1 mod KT),
we again sequentially fill the caches, starting from the first

3Note the small abuse of notation where Bq can interchangeably refer to a
set of files or the set of these files’ indices. Furthermore the notation omits
the dependence on Q, which will always be implied. For completeness of
notation, we will assume that n0 = 0, and we note that nQ = N .

file of the second sub-library, which we now store in L2

consecutive transmitters, and so on. The process is repeated
for each sub-library, with a new Lq , starting every time from
the transmitter after the one last used. Overall, the above
process which stores each file of sub-library Bq in exactly Lq
distinct transmitters, guarantees the size constraint that each
transmitter stores γTN files. Finally, it is easy to show that
we can allow for non-integer Lq’s by applying basic memory
sharing techniques [26], which can facilitate the continuous
relaxation proposed in Section III.

4) Receiver-side caching policy: The receivers will cache
using the algorithm of [1], modified to form Λ different caches.
Toward this, each file Wn, n ∈ [N], is split into

(
Λ

Λγ

)
equally-

sized subfiles {Wn
τ }τ⊂[Λ],|τ |=Λγ , such that each subfile Wn

τ is
indexed by a Λγ-tuple τ whose entries come from [Λ]. Then
the `th cache takes the form

Z` = {Wn
τ : ` ∈ τ,∀n ∈ [N]}, ∀` ∈ Λ (9)

which simply means that cache ` consists of all subfiles Wn
τ ,

whose index τ contains `. In the end, each user is assigned
one of the Λ caches, in a round-robin manner.

5) Content delivery policy: The delivery scheme will fol-
low exactly the algorithm of [32], and — as a function of
any given (Q,n,L) — it will concurrently serve multiple
files from one sub-library at a time. For further details on the
precoding structure that allows for this concurrent delivery, the
reader is referred to [32]. The transmission policy here will ask
that no coding is done across files from different sub-libraries.

The problem is naturally of a stochastic nature, as the
number of users requesting files from library Bq , changes
as a function of the file demand vector. Assuming that at
any particular instance of the problem (i.e., for any fixed file
demand vector), there are Kq users requesting files from each
library Bq , and assuming that Kq is sufficiently large, then the
algorithm in [32] can serve Lq(1 + Λγ) users at a time. This
in turn means that our policy, for this instance, requires delay

Tq =
Kq(1− γ)

Lq(1 + Λγ)
(10)

to complete delivery of the requested files from Bq .
The policy also asks that the files of the most popular sub-

library B1 are cached at only one transmitter each, and that
they are delivered one at a time, without employing coded
caching4. For sufficiently large K, this implies delay

T1 = n1. (11)

Our metric of performance will be the delay to deliver all
requested files, averaged over all possible demand K-tuples.

The following lemma, which holds for sufficiently large K,
identifies this average delay T (n,L, Q), for any given fixed
choice of (n,L, Q).

4Such policy compensates for the inability of the employed algorithm
in [32] to exploit the possibility that multiple users ask for the same file.
For the interested reader, we note that the problem of multi-transmitter coded
caching that exploits natural multicasting, remains an open problem.

Lemma 1. For any fixed n,L, Q, the average delay of our
caching and delivery policy, takes the form

T (n,L, Q) = n1 +

Q∑
q=2

K(1− γ)
∑nq
j=nq−1+1 pj

Lq(1 + Λγ)
. (12)

Proof. Directly from (10) and (11) we can see that, at any
given instance of the problem, the delay

T = n1 +

Q∑
q=2

Kq(1− γ)

Lq(1 + Λγ)
(13)

guarantees delivery of all requests, one sub-library at a time. In
averaging over all demand vectors, Kq becomes a random vari-
able whose average takes the form E[Kq] =

∑nq
j=nq−1+1Kpj .

Finally the proof is completed by noticing that n,L, Q are in-
dependent of the instance of the problem as they are naturally
independent of the demand vector.

III. OPTIMIZATION PROBLEM

We here seek to optimize the choice of n,L, Q, in order to
attain the optimal average delivery time

T ∗ , min
n,L,Q

T (n,L, Q). (14)

Under our policy and cache-size constraints, and using
directly the objective function from Lemma 1 (Eq. (12)), the
optimization problem takes the following form.

Problem 1.

min
n,L,Q

T (n,L, Q) (P1-a)

s.t. Lq ∈ [1,KT], ∀q ∈ {2, . . . , Q}, (P1-b)

Lq ≤ K
nq∑

j=nq−1+1

pj min

{
1

Λ
,

1− γ
1 + Λγ

}
, ∀q ∈ {2, . . . , Q},

(P1-c)

n1 +

Q∑
q=2

Lq(nq − nq−1) ≤ KT γTN, (P1-d)

nq ≥ nq−1, ∀q ∈ {2, . . . , Q}, (P1-e)
0 ≤ nq ≤ N, ∀q ∈ {1, . . . , Q}, (P1-f)
nq ∈ Z, ∀q ∈ {1, . . . , Q}, (P1-g)
Lq ≥ Lq+1, ∀q ∈ {2, . . . , Q− 1}, (P1-h)
1 ≤ Q ≤ KT , Q ∈ Z. (P1-i)

In the above, the constraint in (P1-b) forces each file to be
stored in at least one transmitter, the constraint in (P1-c)
is required for the objective function to hold (cf. (13), see
also [32]), the constraint in (P1-d) reflects the cache-size
constraint, the constraint in (P1-e) follows directly from the
construction as the sub-libraries must be divided into files
with consecutive ordering, the constraint in (P1-f) reflects
the boundaries of the file library, the constraint in (P1-g)
forces files to be clustered into sub-libraries without self-
segmentation, constraint (P1-h) follows from the idea of
allocating more antennas to sub-libraries consisting of more

popular files (except for the sub-library where the files will be
multicasted and L1 = 1 always holds.), and constraint (P1-i)
reflects that there can be at most KT sub-libraries because
there are only KT options for Lq .

Remark 1. Problem 1 is non-convex since the optimization
variables are discrete.

A. Overview of optimization steps

We proceed with an overview of the steps (and the notation)
that we follow to reach the optimal average delivery time T ∗ =
minn,L,Q T (n,L, Q), that solves Problem 1.
Step 1: In Section III-B we prove that, for fixed Q, and for

the continuous relaxation of n, finding the optimal

T ∗(Q) , min
n,L

T (n,L, Q). (15)

is a biconvex problem.
Step 2: Next, in Section III-C we show that for fixed Q and

fixed n, we can formulate a convex optimization prob-
lem and solve it using Karush-Kuhn-Tucker (KKT)
conditions (cf. [34]) to obtain the optimal redundancy
allocation L∗(n,Q) and the corresponding optimal
average delivery time

T ∗(n, Q) , min
L

T (n,L, Q). (16)

Step 3: Next in Section III-D — with the bi-convex nature of
the formulated problem in Step 1 at hand — we design
a new search algorithm that exploits the properties
of the caching problem itself by adjusting the search
space of n. Instead of searching for n ∈ [0, N]Q−1,
we identify a new smaller search space SQ for n that
guarantees optimality, such that

T ∗(Q) = min
n,L

T (n,L, Q)

= min
n∈[0,N]Q

min
L

T (n,L, Q)

= min
n∈[0,N]Q

T ∗(n, Q) (17)

= min
n∈SQ

T ∗(n, Q). (18)

We will prove the transition from Eq. (17) to Eq. (18)
in Theorem 2 in Section III-D.

Step 4: With each T ∗(Q) available from the previous step,
Section III-E presents an algorithm that iteratively
computes the optimal T ∗ = minQ∈[KT] T

∗(Q).

B. Step 1: Modified problem for fixed Q and biconvexity

We first seek to calculate, for a fixed Q and the continuous
relaxation of n, the optimal T ∗(Q) = minn,L T (n,L, Q)
from (15). For ease of reference, we declare the problem as
below.

Problem 2.

T ∗(Q) = min
n,L

T (n,L, Q) (19)

s.t. (P1-b)− (P1-f), (P1-h).

Lemma 2. Problem 2 is a biconvex problem.

Proof. Due to lack of space, the proof is relegated to the longer
version of this work.

Biconvex problems are traditionally solved by heuristic
Alternate Convex Search (ACS) methods which generally do
not guarantee finding the global optimum. Because of this, we
will – as outlined before – first compute in Step 2 the optimal
T ∗(n, Q) for fixed Q and fixed n, and then we will proceed
with Steps 3 and 4 to compute T ∗(Q) and then the overall
optimal T ∗.

C. Step 2: Optimal solution for fixed Q and fixed n

We present our modified optimization problem to find —
for fixed Q and n — the optimal redundancy L∗(n, Q) and
the corresponding optimal

T ∗ = min
n,L,Q

T (n,L, Q) = min
n,Q

{
min
L
T (n,L, Q)

}
︸ ︷︷ ︸

T∗(n,Q)

.

For simplicity, for this subsection only, we will use the
simplified notation L , L(n, Q) and L∗ , L∗(n, Q) that
assumes the dependence on the fixed Q and n.

Problem 3. Find the optimal

T ∗(n, Q) = min
L

T (n,L, Q) (20)

s.t. (P1-b)− (P1-e).

Lemma 3. Problem 3 is a convex optimization problem.

Proof. This follows from the bi-convexity5 of Lemma 2.

We now have the following.

Theorem 1. The optimal antenna allocation for Problem 3
satisfies

L∗i =

Ui, if ν∗ <

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

(ni−ni−1)(Ui)
2 ,

1, if ν∗ >
K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

ni−ni−1
,

φ (ν∗) , otherwise,

(21)

where

Ui = min

{
KT ,K

ni∑
j=ni−1+1

pj min

{
1

Λ
,

1− γ
1 + Λγ

}}
,

where φ (ν∗) is the solution over Li of

−
K(1−γ)
1+Λγ

∑ni
j=ni−1

pj

L∗i
+ ν∗ (ni − ni−1) = 0, (22)

and where ν∗ can be obtained as the unique solution to the
additional constraint

n1 +

Q∑
i=2

L∗i (ni − ni−1) = KT γTN. (23)

5The constraint in (P1-f) is not necessary for convexity of T ∗(n, Q) in L,
and thus it is omitted in the above formulation.

Proof. The Lagrangian function corresponding to Problem 3
is given by

L (L, ν, η, ω) , n1 +
K(1− γ)

(1 + Λγ)

Q∑
i=2

∑ni
j=ni−1+1 pj

Li
+

ν

(
n1 +

Q∑
i=2

Li(ni − ni−1)−KT γTN

)
−

Q∑
i=2

ηi (−Li + 1) +

Q∑
i=2

ωi (Li − Ui) , (24)

where L, η, ω ∈ RQ+ and ν ∈ R.
Let L∗, η∗, ω∗ and ν∗ be primal and dual optimal. The

KKT conditions for Problem 3 state that

n1 +

Q∑
i=2

L∗i (ni − ni−1) ≤ KT γTN, (25)

1 ≤ L∗i ≤ Ui, ∀i = 2, . . . , Q, (26)
η∗i ≥ 0, ∀i = 2, . . . , Q, (27)
ω∗i ≥ 0, ∀i = 2, . . . , Q, (28)

η∗i (−L∗i + 1) = 0, ∀i = 2, . . . , Q, (29)
ω∗i (L∗i − Ui) = 0, ∀i = 2, . . . , Q, (30)

−
K(1−γ)
1+Λγ

∑ni
j=ni−1

pj

(L∗i)
2

+ ν∗ (ni− ni−1)− η∗i + ω∗i = 0,

∀i = 2, . . . , Q, (31)

and thus from (29), (30) and (31), we have

ω∗i =
η∗i
Ui
− ν (ni − ni−1)L∗i

Ui
+

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

L∗i
, (32)

which, when inserted into (30), gives[
η∗i
Ui
− ν (ni − ni−1)L∗i

Ui
+

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

L∗i

]
×

(L∗i − Ui) = 0. (33)

From (33), we see that 0 < L∗i < Ui holds only if

ν∗ =

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

(ni − ni−1) (L∗i)
2 .

Since we know that 1 ≤ L∗i ≤ Ui, this implies that

ν∗ ∈

[
K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

(ni − ni−1) (Ui)
2 ,

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

ni − ni−1

]
.

If now

ν∗ <

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

(ni − ni−1) (Ui)
2 ,

then we have ω∗i > 0. Thus, from (30), we have that L∗i = Ui.
Similarly, if

ν∗ >

K(1−γ)
1+Λγ

∑ni
j=ni−1+1 pj

ni − ni−1
,

we have that η∗i > 0. Hence, from (29), we get that L∗i = 1.
Finally, since n1 +

∑Q
i=2 L

∗
i (ni − ni−1) = KT γTN is a

decreasing function in ν, solving Q − 1 equations of (22)
while satisfying (23), gives the unique solution ν∗.

Remark 2. It is easy to verify that the solution given in
Theorem 1 always satisfies the constraint in (P1-f).

D. Step 3: Search algorithm for n

With T ∗(n, Q) at hand from before, we will here design a
search algorithm that adjusts the search space of n to compute
T ∗(Q) in a non exhaustive manner. For fixed Q, let

T ∗(Q) = min
n∈[0,N]Q−1

T ∗(n, Q) (34)

be the optimal delay corresponding to the optimal

n∗(Q) = arg min
n∈[0,N]Q−1

T ∗(n, Q). (35)

Instead of searching for n ∈ [0, N]Q−1, which would
obviously have the worst case complexity, we consider a new
search space SQ ⊆ (RQ)Q−1 for n, for some RQ ⊆ [0, N] to
be designed. The detailed sketch of the algorithm that defines
SQ is given in Algorithm 1.

We briefly explain the intuition behind the algorithm. Since
Algorithm 2 — presented in Section III-E — is recursive,
it accepts as input Q as well as the optimal ‘cut-off points’
n∗(Q − 1) for the case of Q − 1 sub-libraries. The stopping
condition ensures finding the optimum T ∗(Q).

To compute the first T ∗(n, Q), we need an n. In the
loop given in step 5, we first define the search range S1 ∈
[0, n∗1(Q − 1)], and the reasoning behind the boundaries will
be explained in the proof of Theorem 2. We set n1 =

b 0+n∗
1(Q−1)
2 c, and fix it. Next, we define the search range

S2 ∈ [n1 + 1, n∗2(Q − 1)], we set n2 = bn1+1+n∗
2(Q−1)

2 c,
and fix it. We continue following steps 6 and 7 until fixing
nQ−1 (noting that nQ = N for any Q). Now since we have
the first n, we compute T ∗(n, Q) by solving Problem 3 in
step 8. We update the search space SQ−1 by moving to step 10
or 14 depending on the sign of the discrete derivative of
T ∗(n, Q) with respect to nQ−1, and continue updating its
search space until obtaining the optimal T ∗(n, Q) for fixed
n1, . . . , nQ−2. Having reached this point, we move to step 19,
set stop(Q − 1) = 1 and move to step 9 to take the discrete
derivative of T ∗(n, Q) with respect to nQ−2 and update the
search space SQ−2 accordingly. The algorithm continues by
setting a new nQ−2 as explained above, defining the new
search space SQ−1 and continuing with the same procedure
iteratively until finding the optimal n∗1, or equivalently finding
the optimal n∗, hence the optimal T ∗(n∗, Q), and thus the
optimal T ∗(Q).

Theorem 2. For any fixed Q, Algorithm 1 with the defined
search range of the cut-off points, yields the optimal

T ∗(Q) , min
n∈[0,N]Q

T ∗(n, Q)

= min
n∈SQ⊆(RQ)Q−1

T ∗(n, Q),

Algorithm 1: The search algorithm that defines SQ for
computing T ∗(Q)

input : Number of sub-libraries Q and all the prior
information for the optimal cut-off points
n∗(Q− 1) for the case of Q− 1 sub-libraries.

output: The optimal average delivery time T ∗(Q), the
optimal cut-off points n∗(Q), and the optimal
redundancy L∗(n∗(Q), Q).

1 Set stop = [0]Q−1;
2 while stop 6= [1]Q−1 do
3 Set i = 1;
4 Set n0 = −1;
5 for q ← i to Q− 1 do
6 Set Sq = [nq−1 + 1, n∗q(Q− 1)];

7 nq =
⌊
nq−1+1+n∗

q(Q−1)

2

⌋
;

8 Compute T ∗(n, Q) by solving Problem 3;
9 Set j = q;

10 if ∆njT
∗(n, Q) < 0 then

11 Update Sj = [nj + 1, n∗j (Q− 1)];
12 Set stop(k) = 0, ∀k ∈ [j + 1, Q− 1];
13 Set q = j and go back to step 7;
14 else if ∆njT

∗(n, Q) > 0 then
15 Update Sj = [nj−1 + 1, nj − 1];
16 Set stop(k) = 0, ∀k ∈ [j + 1, Q− 1];
17 Set q = j and go back to step 7;
18 else
19 Set stop(j) = 1;
20 if j = 1 then
21 Go back to step 2 of this algorithm;
22 else
23 Set q = j − 1 and go back to step 9;

where SQ is described in Algorithm 1.

Proof. For Q = 2, we can find the optimal n∗1(2),
L∗2(n∗1(2), 2) and T ∗(2) by searching for n1(2) ∈ [0, N], since
it is guaranteed that a unique solution exists due to biconvexity
of Problem 2. Moreover, we can do a logaritmic search
instead of an exhaustive search again due to biconvexity,
since n1(2) ∈ {0, . . . , N} ⊆ [0, N]. This will maximize the
redundancy L∗2(n∗1(2), 2) allocated to the second sub-library.
Now, with Q = 3 sub-libraries, the maximum redundancy
had already been allocated for all the files within the second
sub-library (the second sub-library for Q = 2). Thus, if
n1(3) ∈ [n∗1(2) + 1, N], it is guaranteed that T (3) > T ∗(2)
since the total capacity for the allocated antennas will be
reduced for the remaining files in the second and third sub-
libraries. This concludes that the optimal n∗1(3) ∈ [0, n∗1(2)].
Similar arguments hold for all elements in n∗(Q). Also, since
n ∈ {0, N}Q ⊆ [0, N]Q, we can perform a logaritmic search
within each speficied range due to biconvexity. Thus, we
conclude that it is sufficient to search for n ∈ SQ to obtain
T ∗(Q), where SQ is presented in Algorithm 1.

Theorem 3. The complexity of Algorithm 1 is
O
(
(log2N)Q−1

)
.

Proof. We update nq’s sequentially. For fixed Q, we search
for n∗Q−1(Q) for fixed [n1(Q), . . . , nQ−2(Q)] by updat-
ing SQ−1 using a binary search, which naturally has a
logarithmic complexity. After obtaining n∗Q−1(Q) for fixed
[n1(Q), . . . , nQ−2(Q)], we do a logarithmic search for
nQ−2(Q) by updating SQ−2, picking a new nQ−2(Q) and
finding the new n∗Q−1(Q) once again with a logarithmic
search. Once we find the optimum n∗Q−2(Q) and n∗Q−1(Q)
for fixed [n1(Q), . . . , nQ−3(Q)], we run a logarithmic search
for nQ−3(Q), and so forth. The algorithm stops when we find
the optimal n∗1(Q) (and hence the optimal n∗(Q)). Therefore,
we run a concatenated logarithmic search in Q−1 levels, hence
the complexity of Algorithm 1 is O

(
(log2N)Q−1

)
.

Remark 3. Obviously, this complexity is for the worst case.
In practice, the complexity of Algorithm 1 is much smaller,
because the upper boundary of Sq, ∀q ∈ {1, . . . , Q − 1}
is limited by n∗(Q − 1). In Section IV, we will numerically
illustrate this substantially reduced complexity.

E. Step 4: The Main Algorithm

In this subsection, we will give the details of our main
algorithm that yields the optimal Q∗,n∗,L∗, and eventually
the optimal delay by optimizing across Q to get T ∗ =
minQ∈[2,KT] T

∗(Q).

Theorem 4. For

Q∗ = arg min
Q∈[2,KT]

T ∗(Q), (36)

the globally optimum average delay takes the form T ∗ =
T (Q∗), and it is achieved with Q∗ sub-libraries, with bound-
aries n∗(Q∗) and redundancy L∗(n∗(Q∗), Q∗).

Proof. As Q increases, it is clear that the Lq values will
start decreasing at some point because of the constraint of
Eq. (P1-c), and in particular because the sum of the pj’s
decreases as Q increases. This in turn will increase T (n,L, Q).
Hence, there exists an optimal number of sub-libraries Q∗ that
will give the global minimum for the delay T (n,L, Q).

Finally, we will present our main algorithm (Algorithm 2)
that obtains the solution to the main Problem 1.

Algorithm 2: Main algorithm

1 Set T ∗(0) =∞;
2 Set Q = 1 and compute T ∗(1) = min{N,TL};
3 for Q← 2 to KT do
4 while T ∗(Q) < T ∗(Q− 1) do
5 Q = Q+ 1;
6 Compute T ∗(Q) by solving Problem 3 and

using Algorithm 1 for the search range of n;

7 Q∗ = Q− 1;
8 T ∗ = T ∗(Q∗);

0 0.5 1 1.5 2

Zipf parameter ()

1

2

3

4

5

6

P
e

rf
o

rm
a

n
ce

 b
o

o
s
t

K = 300

K = 500

K = 1000

K = 2000

Fig. 1. The multiplicative boost in the performance of a system compared to
the baseline with uniform file popularity. The comparison is displayed here
for various Zipf parameters and for different K.

In brief, starting at Q = 2, the algorithm finds the optimal
boundaries n∗(Q) and optimal redundancy L∗(n∗(Q), Q), for
each fixed Q, and then increases Q.

Theorem 5. The complexity of Algorithm 2 is
O
(
KT (log2N)KT−1

)
.

Proof. The above is direct from Theorem 3 and from the fact
that there can be at most KT many sub-libraries.

IV. NUMERICAL EVALUATION

We consider the scenario with γ = γT = 0.1, with
KT = 50 transmitters, with Λ = 40, and with catalog size
equal to N = 6000 files. We run the main algorithm given
in Algorithm 2 to find the optimal number of sub-libraries,
the optimal number of antennas allocated to each sub-library,
and in the end the optimal delivery time for different numbers
of users K and different Zipf parameters α. In Figure 1, we
see the performance boost (T ∗/TL) for K = 300, 500, 1000,
2000 for different values of α between 0 and 2. We see that
the performance boost increases with α (as expected), and we
also see that the boost increases with K.

For the above setting, Table I describes the optimal sub-
library boundaries n∗ and the optimal L∗. While an in-
creasing K implies an increase in the optimal Q∗, it was
the case that for all realistic scenarios that we have tested,
this never exceeded Q∗ = 4. Consequently the search
space of n remained small for the first elements, and the
complexity of Algorithm 1 was much smaller than the de-
scribed worst-case complexity of O

(
(log2N)Q−1

)
. In fact,

even without considering the acceleration effect of Algo-
rithm 1, the overall complexity for this example scenario was
equal to O

(
log2(6000) + (log2(6000))2 + (log2(6000))3

)
=

O(2147). This further reduced – after considering the effect
of Algorithm 1 – to 105 iterations in the worst case.

V. CONCLUSION

In this work we addressed the problem of optimizing the
number of transmitters each file is cached at, as a function of
that file’s popularity. By using the biconvexity property of the

K = 300 K = 500 K = 1000 K = 2000
α n∗ L∗ n∗ L∗ n∗ L∗ n∗ L∗

0.8 [0] [5.0000] [0, 1712] [9.2158, 3.2842] [0, 550] [13.7520, 4.1168] [0, 191, 1439] [20.4944, 7.1939, 3.7507]
1 [1] [5.0007] [0, 1827] [10.8980, 1.6020] [2, 656] [14.9947, 3.7783] [0, 157, 1278] [30.3803, 8.1446, 3.4096]
1.2 [1] [5.0007] [0, 22] [7.7143, 4.7857] [2, 663] [14.8124, 2.5757] [2, 345] [27.5842, 3.6314]
1.4 [1] [5.0007] [3] [5.0020] [0, 43] [21.0729, 3.9271] [0, 233] [46.6118, 3.3188]
2 [1] [2.9401] [1] [4.9001] [3] [4.3115] [5] [5.0033]

TABLE I
OPTIMAL SUB-LIBRARY BOUNDARIES n∗ AND OPTIMAL ANTENNA ALLOCATIONS L∗ FOR THE SIMULATED SETTING.

formulation, we designed a new search algorithm that obtains
the globally optimal solution, achieving the minimum average
delivery time, and doing so with a complexity that scales as
a polynomial function of the logarithm of the size of the file
catalog. In the end we showed that the optimal transmitter-side
cache placement yields multiplicative speedup factors over
traditional multi-transmitter coded caching algorithms. An
interesting extension of this work would be to simultaneously
optimize for both transmitter and receiver redundancy. Another
research direction whose need is highlighted here is on the
design of multi-transmitter coded caching algorithms that can
exploit natural multicasting opportunities.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. on Inf. Theory, vol. 60, pp. 2856–2867, May 2014.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Transactions on Information Theory, vol. 65, pp. 647–663, Jan 2019.

[3] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in IEEE Inf. Theory Workshop (ITW), Sep. 2016.

[4] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis.,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Transactions on Information Theory, vol. 62, pp. 5524–5537, Oct 2016.

[5] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, pp. 5821–5833, Sep. 2017.

[6] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Transactions on Infor-
mation Theory, vol. 64, pp. 3099–3120, April 2018.

[7] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Transactions on
Information Theory, vol. 64, pp. 5755–5766, Aug 2018.

[8] E. Parrinello, A. Unsal, and P. Elia, “Fundamental limits of coded
caching with multiple antennas, shared caches and uncoded prefetching,”
IEEE Transactions on Information Theory, pp. 1–1, 2019.

[9] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM,
pp. 1–9, March 2010.

[10] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128 – 3141, 2013.

[11] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The role
of caching in future communication systems and networks,” IEEE J. on
Sel. Areas in Comm., vol. 36, pp. 1111–1125, June 2018.

[12] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. on Inf. Theory, vol. 59, Dec 2013.

[13] A. Tuholukova, G. Neglia, and T. Spyropoulos, “Optimal cache allo-
cation for femto helpers with joint transmission capabilities,” in 2017
IEEE Int. Conference on Comm. (ICC), pp. 1–7, May 2017.

[14] W. C. Ao and K. Psounis, “Distributed caching and small cell coopera-
tion for fast content delivery,” in 16th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, MobiHoc ’15, (New York,
NY, USA), pp. 127–136, Association for Computing Machinery, 2015.

[15] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. on Inf. Theory, vol. 63, Feb 2017.

[16] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order optimal coded
caching-aided multicast under zipf demand distributions,” in The
Eleventh Int. Symp. on Wireless Comm. Systems (ISWCS), 2014.

[17] P. Quinton, S. Sahraei, and M. Gastpar, “A novel centralized strat-
egy for coded caching with non-uniform demands,” arXiv preprint
arXiv:1801.10563, 2018.

[18] E. Ozfatura and D. Gunduz, “Uncoded caching and cross-level coded
delivery for non-uniform file popularity,” in 2018 IEEE International
Conference on Communications (ICC), pp. 1–6, May 2018.

[19] H. Ding and L. Ong, “An improved caching scheme for nonuniform
demands and its optimal allocation,” in 2017 3rd IEEE Int. Conf. on
Comp. and Comm. (ICCC), pp. 389–393, Dec 2017.

[20] S. A. Saberali, L. Lampe, and I. Blake, “Full characterization of
optimal uncoded placement for the structured clique cover delivery of
nonuniform demands,” IEEE Trans. Inf. Theory, pp. 1–1, 2019.

[21] C. Chang and C. Wang, “Coded caching with heterogeneous file demand
sets — the insufficiency of selfish coded caching,” in 2019 Int. Symp.
on Inf. Theory (ISIT), pp. 1–5, July 2019.

[22] H. Al-Lawati, N. Ferdinandy, and S. C. Draperz, “Coded caching with
non-identical user demands,” in 2017 15th Canadian Workshop on
Information Theory (CWIT), pp. 1–5, June 2017.

[23] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” IEEE Transactions on Information Theory,
vol. 64, pp. 349–366, Jan 2018.

[24] Y. Deng and M. Dong, “Structure of optimal cache placement
for coded caching with heterogeneous demands,” arXiv preprint
arXiv:1912.01082, 2019.

[25] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, vol. 62,
pp. 7253–7271, Dec 2016.

[26] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Transac-
tions on Information Theory, vol. 63, pp. 3092–3107, May 2017.

[27] J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing csit-
feedback in wireless communications,” in 2015 53rd Annual Allerton
Conf. on Comm., Control, and Comp. (Allerton), Sep. 2015.

[28] E. Piovano, H. Joudeh, and B. Clerckx, “On coded caching in the
overloaded miso broadcast channel,” in IEEE International Symposium
on Information Theory (ISIT), pp. 2795–2799, June 2017.

[29] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless BC:
Interplay of coded-caching and CSIT feedback,” IEEE Transactions on
Information Theory, vol. 63, pp. 3142–3160, May 2017.

[30] E. Lampiris and P. Elia, “Resolving a feedback bottleneck of multi-
antenna coded caching,” arXiv preprint arXiv:1811.03935, 2018.

[31] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with no
CSIT,” in IEEE Int. Symp. on Inf. Theory (ISIT), June 2017.

[32] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 36, pp. 1176–1188, June 2018.

[33] M. E. J. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary Physics, vol. 46, pp. 323–351, 2019.

[34] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge
University Press, 2004.

