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BACKGROUND & MOTIVATION

e Google & Netflix can control both caching and
recommendation systems.
e Quality of Experience (QoE) depends on both

Quality of Service (QoS) and Quality of Recom-
mendations (QoR) [2].

Given the network topology and the content utilities,
what to cache (variable X) and what to recommend
to every user (variable Y)?

e Algorithms proposed in the literature [3, 4] do not
solve the problem jointly!
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number of recommended items (V).

Explanations:
® QoS =), Fyuisu(X,1) + (1 — ay)puisu(X, ).
i QOR = Zi Yui IOg(Tui)'

e 3 > 0 captures the importance of each factor.

— This problem is NP-hard!

METHOD

ma?r;nze Z QoE = max (m}gmx Z QOE)
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inner problem

outer problem: submodular!

e For any cache X, the inner problem can be solved optimally.

e The resulting function (of variable X) is submodular and
monotone increasing!

e Our (greedy) algorithm achieves a constant approximation
guarantee: 1/2 for equal-sized contents.

e Our algorithm: It starts with empty cache and in every
round of selection, it caches the content that maximizes the
marginal gain while it solves the inner problem (which gives
the recommendations Y).
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PERFORMANCE

o The theoretical approximation guarantees are validated.

o The trade-off (Pareto) curve of our algorithm dominates
other state-of-the-art algorithms (CAwR in [4]).

e Our algorithm outperforms baseline non-joint policies in
terms of achieved QoE.
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Baseline policies A and C cache the most popular contents. Policy A recom-
mends only cached contents while policy C recommends the contents with the
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highest utility per user.




