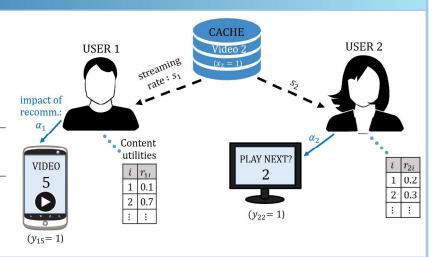


JOINT OPTIMIZATION OF CACHING & RECOMMENDATIONS

DIMITRA TSIGKARI AND THRASYVOULOS SPYROPOULOS


firstname.lastname@eurecom.fr

BACKGROUND & MOTIVATION

- Google & Netflix can control both caching and recommendation systems.
- Quality of Experience (QoE) depends on both Quality of Service (QoS) and Quality of Recommendations (QoR) [2].

Given the network topology and the content utilities, what to cache (variable X) and what to recommend to every user (variable Y)?

 Algorithms proposed in the literature [3, 4] do not solve the problem jointly!

PROBLEM

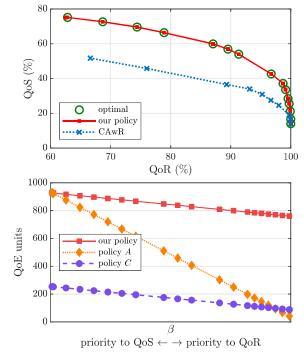
$$\underset{X,Y}{\text{maximize}} \sum_{\text{users}} \underbrace{\frac{\text{QoS}}{\text{QoS}} + \beta}_{\text{expected rate}} \underbrace{\frac{\text{QoE}}{\text{Pocomm. content utilities}}}_{\text{recomm. content utilities}}$$

subject to: cache capacity and number of recommended items (N).

Explanations:

- QoS = $\sum_i \frac{\alpha_u}{N} y_{ui} s_u(X, i) + (1 \alpha_u) p_{ui} s_u(X, i)$.
- QoR = $\sum_i y_{ui} \log(r_{ui})$.
- $\beta > 0$ captures the importance of each factor.
 - \rightarrow This problem is NP-hard!

METHOD


$$\underset{X,Y}{\operatorname{maximize}} \sum_{\operatorname{users}} \operatorname{QoE} = \underset{X}{\underbrace{\max}} \left(\underset{Y}{\underbrace{\max}} \sum_{\operatorname{users}} \operatorname{QoE} \right)$$

$$\underbrace{\underset{\operatorname{outer problem: submodular!}}{\underbrace{\max}} \left(\underset{X}{\underbrace{\max}} \sum_{\operatorname{users}} \operatorname{QoE} \right)$$

- For any cache *X*, the inner problem can be solved *optimally*.
- The resulting function (of variable *X*) is *submodular* and monotone increasing!
- Our (greedy) algorithm achieves a constant approximation guarantee: 1/2 for equal-sized contents.
- Our algorithm: It starts with empty cache and in every round of selection, it caches the content that maximizes the marginal gain while it solves the inner problem (which gives the recommendations *Y*).

PERFORMANCE

- The theoretical approximation guarantees are validated.
- The trade-off (Pareto) curve of our algorithm dominates other state-of-the-art algorithms (CAwR in [4]).
- Our algorithm outperforms baseline non-joint policies in terms of achieved QoE.

Baseline policies A and C cache the most popular contents. Policy A recommends only cached contents while policy C recommends the contents with the highest utility per user.

References

- [1] D. Tsigkari and T. Spyropoulos. User-centric optimization of caching and recommendations in edge cache networks Available at http://www.eurecom.fr/~spyropou/papers/QoE-joint-extended.pdf
- [2] P. Sermpezis et al. Towards QoS-Aware Recommendations. In Arxiv (2019)
- 3] T. Giannakas et al. Show me the Cache: Optimizing Cache-Friendly Recommendations for Sequential Content Access. In WoWMoM 2018
- cess. In WOWMOM 2018
 [4] L.E. Chatzieleftheriou et al. Jointly Optimizing Content Caching and Recommendations in Small Cell Networks. In IEEE Trans. Mob. Comput. (2019)

INTERESTED?

You can check out our article at

