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Abstract

We present a framework for iterative multiuser joint decoding based on the

application of the sum-product algorithm to the factor graph representation of the

a posteriori joint probability mass function of the users information bits. Several

low-complexity algorithms previously proposed based on parallel and serial hard

and soft interference cancellation are derived in a simple and uni�ed way. A wide

class of these algorithms is analyzed by using the approach of density evolution on

graphs combined with results from the theory of large random matrices. In the

case of parallel interference cancellation and equal power users we present a simple

approximated analysis able to explain qualitatively (and often quantitatively) the

behavior of iterative decoding via the study of the stable �xed points of a one-

dimensional non-linear dynamical system.

Keywords: Multiuser detection, interference cancellation, iterative decoding on graphi-

cal models.
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1 Introduction

Multiuser detection has been traditionally regarded as an ensemble of techniques to detect

uncoded data in a multiple-access waveform channel (see [49] and references therein).

More recently, research has been focused on the combination and interaction of channel

coding and multiuser detection. From an information-theoretic point of view, all points in

the capacity region of the Gaussian multiple-access channel are achievable by successive

single-user decoding and interference cancellation (stripping) [16, 7]. This generalizes

to the correlated-waveform channel (e.g., CDMA) as shown in [48], where the optimal

stripping decoder has the structure of a decision-feedback minimum mean-square error

detector where users are decoded in sequence and at each stage the decoded and re-

encoded user signals are subtracted from the received signal. The key to the optimality

of stripping is the use of capacity-achieving codes of rate arbitrarily close (but not larger)

than the capacity of the channel obtained by removing the already decoded users. In this

way, optimal spectral eÆciency is achieved by simple single-user coding and decoding,

with linear complexity in the number of users.

A di�erent and perhaps more practical approach to multiuser detection and decoding

considers a given class of �nite-complexity channel codes and investigates the achievable

spectral eÆciency at given target bit-error rate (BER). The number of works in this

direction is overwhelming. Without the ambition of being exhaustive, we refer to [1,

2, 8, 9, 10, 14, 15, 17, 24, 26, 33, 34, 35, 41, 44, 46, 53] and references therein. In

these works, joint decoding and its low-complexity iterative approximations based on

interference cancellation (IC) have been investigated, several di�erent algorithms have

been proposed and performance has been evaluated mainly via computer simulation.

This paper contributes to the above stream of work in two ways. First, we provide a

uni�ed framework where a large class of previously proposed algorithms can be elegantly

derived. Second, we provide an asymptotic performance analysis of IC-based iterative

decoding enabling the quantitative and qualitative evaluation of systems for which simu-

lation would be just impossible.

Our framework is based on the application of the sum-product algorithm [21] to the

factor (or dependency) graph representation [45, 38, 54, 32, 21] of the a posteriori joint

probability mass function (pmf) of the users information bits. The factor graph for the

problem at hand has cycles if the number of users is larger than 1. Therefore, the resulting

algorithms are intrinsically iterative. Depending on the algorithm execution scheduling

we obtain classical parallel and serial iterative decoding as special cases. By making some

simple approximations of the a posteriori pmf at the decoders output, we obtain in a direct
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way several previously proposed IC-based algorithms, which were motivated mainly by

heuristics (see Remark 4 of Section 3.3).

We discuss in the details some e�ects limiting the performance of IC-based algorithms,

namely: bias and mismatch. We show that the residual interference after IC is condition-

ally biased if the interfering symbol estimates are obtained from the decoder a posteriori

probability (APP) of the encoded symbols, while it is asymptotically unbiased (for large

interleaver size) if these estimates are obtained from the decoder \extrinsic information".

Remarkably, several algorithms derived from heuristics [1, 9, 33, 14, 46] make use of APPs,

while the straightforward application of the sum-product algorithm implies the use of ex-

trinsic information. We show also that the soft-in soft-out (SISO) decoders [4] su�er from

mismatch, since the variance of residual interference \assumed" by the decoders at any

given iteration does not coincide in general with the true variance.

Our performance analysis is asymptotic in two ways: we consider in�nite-size (ideal)

interleaving and CDMA in the large-system regime, i.e., when the number of users and

the spreading gain go to in�nity while their ratio stays constant [47, 51]. The analysis

holds (subject to mild conditions) because the IC-based decoders derived from the sum-

product algorithm provide asymptotically unbiased residual interference at each iteration

and because we are able to take the SISO mismatch into account. As a byproduct, we

provide a formula for the large-system regime asymptotic multiuser eÆciency (AME) [49]

of a linear minimum mean-square error (LMMSE) detector with mismatch of the user

received powers, which has interest in its own.

In general, all the algorithms considered in this paper can be analyzed via the proba-

bility density evolution (DE) of the coded symbols marginal pmf (equivalently, of symbols

likelihood-ratio) on the tree representing the local neighborhood of each encoded sym-

bol [42, 43, 52, 6, 20]. In the special case of parallel IC and equal-power users we provide

an approximated analysis describing the behavior of the iterative joint decoder by a one-

dimensional non-linear dynamical system. We show that this system has one or two stable

�xed points for channel load (number of users per chip) smaller or larger than a threshold

value. Under fairly general conditions, the single-user bound is practically achieved if the

system has a single stable �xed point while the BER is much larger than the single-user

bound if the system has two stable �xed points. In this respect, we say that the iterative

decoder has a threshold behavior with respect to the channel load.

We compute the spectral eÆciency achievable by parallel IC with random spreading

and equal-power users with simple binary convolutional codes and BPSK or QPSK mod-

ulation and we show that at target BER equal to 10�5 and Eb=N0 ranging from 4 to 6 dB

the achievable spectral eÆciency is between 1.2 to 1.8 bit/s/Hz away from the optimal
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spectral eÆciency achievable with random spreading and Gaussian codes.

The paper is organized as follows. Section 2 presents the system model and the main

assumptions. Section 3 deals with the factor graph and the sum-product algorithm and

derives iterative joint decoding schemes. In Section 3.3 we obtain low-complexity IC-

based decoders. Section 4 is dedicated to the asymptotic analysis of IC decoders. Results

are presented in Section 5 and in Section 6 we point out some suggestions for future work.

The proofs of the main propositions are given in Appendix A.

2 Synchronous CDMA system model

We consider a DS-CDMA system [39] with K users, spreading gain L, synchronous trans-

mission and frequency non-selective propagation channels. The complex baseband equiva-

lent received signal sampled at the chip rate is represented by the linear model [49, 51, 47]

y[n] = SWa[n] + �[n] (1)

where y[n] 2 C
L is the vector of chip-rate samples obtained in the n-th symbol inter-

val, �[n] � NC (0; I) is the corresponding vector of white Gaussian noise samples, 1

a[n] = (a1[n]; : : : ; aK[n])
T is the vector of users modulation symbols transmitted at time

n, S 2 C
L�K is the matrix containing the users spreading sequences by columns and

W = diag(w1; : : : ; wK) is the diagonal matrix of the users complex amplitudes.

All users modulation symbols belong to the same unit-energy M -PSK signal set A

(jaj = 1 for all a 2 A). The users spreading sequences sk = (sk;1; : : : ; sk;L)
T (where sk is

the k-th column of S) have binary antipodal components sk;` 2 f�1=
p
Lg. With these

normalizations, the k-th user received SNR is given by 
k = jwkj2.
Users send independently encoded information. For simplicity, we assume that all user

codes have the same code block length N and that users are frame-synchronous, i.e., their

code words are aligned in time. Let Ck be the code of user k, and xk = (xk[1]; : : : ; xk[N ])T

denote a code word in Ck. Users interleave their code words before transmission. User

k interleaver is de�ned by a permutation �k, randomly and independently chosen with

uniform probability in the set of all permutations of N elements. In the following, xk[i]

denotes the i-th code symbol of user k before interleaving (index i denotes time ordering at

the encoders output), and ak[n] denotes the n-th code symbol of user k after interleaving

(index n denotes time ordering at the channel output). Then, the vector a[n] is formed by

1
N
C
(�;R) denotes the circularly-symmetric complex multivariate Gaussian distribution [36] with

mean vector � and covariance matrix R.
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the encoded symbols fak[n] = xk[ik] : k = 1; : : : ; Kg for which n = �k(ik). For the sake

of notation simplicity, we shall write ak[n] � xk[i] where it is understood that n = �k(i).

Assuming that an ideal Nyquist pulse with zero excess bandwidth [39] is used for

modulating the chips, the system spectral eÆciency in bit/s/Hz is given by [51]

� =
1

L

KX
k=1

Rk (2)

where Rk is the coding rate (expressed in bit per complex symbol) of user k. If the coding

rate is equal to R for all users, we get � = �R, where � = K=L is the number of \users

per chip", referred to as the channel load [47].

3 Joint decoding: graph representation and iterative

algorithms

In this section we apply the factor graph representation [32, 21, 54, 45, 44] to the problem

of maximum a posteriori (MAP) joint decoding of the user information bits. By applying

the sum-product algorithm to the resulting factor graph we derive a class of iterative

decoding algorithms approximating optimal joint decoding. In the particular case of

parallel and serial scheduling, we obtain the algorithms proposed in several works (see for

example [35, 41, 9, 53, 10]). Finally, by making some simplifying assumptions we derive

in a uni�ed way low-complexity versions of parallel and serial IC-based iterative decoding

algorithms [46, 1, 33, 53, 15, 34, 40, 44, 8, 17, 26].

3.1 Factor graph representation

Throughout the paper we use the proportionality symbol / in order to indicate that the

quantity in the RHS is de�ned up to a multiplicative factor chosen in order to make it a

true probability density (or mass) function.

Let bk be the vector of log2 jCkj information bits of user k. The multiuser channel

with coding is fully described by the a posteriori pmf of the user information bits given

the received signal, denoted by 
(b1; : : : ;bKjy[1]; : : : ;y[N ]). By using the fact that the

vector channel (1) is memoryless, that users code words are independently generated and

that the user information bits have uniform a priori probability, we can write


(b1; : : : ;bKjy[1]; : : : ;y[N ]) /
NY
n=1

qn(a[n])

KY
k=1

pk(xk;bk) (3)
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where we de�ne the code constraint functions

pk(x;b) =

(
1 if x = �k(b)

0 otherwise
(4)

(�k : b 7! x is the (deterministic) encoding function of code Ck), and the channel transi-

tion functions

qn(a) = exp
�� jy[n]� SWaj2� (5)

The received signal y[n] appears as part of the function qn(a) and not as an argument be-

cause, from the decoder point of view, it is useful to stress only the functional dependence

of variables whose a posteriori pmf (or likelihood ratio) needs to be calculated [32, 21].

In general, the factor graph for a real-valued n-variate function g(v1; : : : ; vn) factored

in the product of m functions f1; : : : ; fm is a bipartite graph G(V;F) where variables are

represented by nodes v 2 V and functions by nodes f 2 F. Each node f is connected

to all nodes v for which the corresponding variables are arguments of the function f . In

our case, we choose the coded symbols xk[i] as variable nodes, taking into account that

ak[n] � xk[i], and the functions pk and qn as function nodes. Fig. 1 represents the factor

graph for 
(b1; : : : ;bK jy[1]; : : : ;y[N ]) induced by the factorization (3).

Remark 1. Each code constraint function block can also be represented as a factor

graph, depending on the code structure. For example, if code Ck is a trellis code,

turbo code [5], LDPC code [22] etc ..., the subgraph formed by the variable nodes

xk[1]; : : : ; xk[N ], by the function node pk and by the corresponding information bit nodes

can be expanded in the well-known forms [32, 21]. Since our treatment is fully general

and applies to any user code constructed on the complex alphabet A, we shall not expand

further the factor graph of Fig. 1.

In Tanner's terminology [45], when the factor graph represents a compound code, the

function nodes are called subcode nodes and the variable nodes are called bitnodes. In our

case, the bitnodes (x) have degree 2 and the subcode nodes (p and q) have degree N and

K, respectively. The graph representation is bipartite but irregular, as the subcode nodes

have not all the same degree. �

3.2 The sum-product algorithm

Let bk;j denote the j-th information bit of user k. The optimal MAP detection rule

minimizing the average BER for each user is given bybbk;j = arg max
b2f0;1g

APPk;j(b) for all k; j (6)
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where APPk;j(b) denotes the marginal APP of bit bk;j, given by

APPk;j(b) =
X

b1;:::;bK
b
k;j

=b


(b1; : : : ;bKjy[1]; : : : ;y[N ]) (7)

In general, computing the APP of information symbols by brute-force (i.e., by applying

(7) directly) has complexity of the order of
QK

k=1 jCkj. Even for smallK, this is intractable

for practical user code sizes. Even in the case where all user codes are trellis codes, the

complexity of joint decoding applied to the Cartesian-product trellis of C1 � � � � � CK is

prohibitive in practice [24, 2].

A general method for approximating (7) consists of applying the sum-product algo-

rithm [32, 21] to the factor graph. In the sum-product algorithm the factor graph nodes

exchange \messages" along the graph edges. In our case, messages are in the form of

real-valued functions. If v 2 V and f 2 F are connected by the edge (v; f), the messages

passed along (v; f) in either directions are functions of v. Following [21], we let �v!f(v)

and �f!v(v) indicate the messages passed in directions v ! f and f ! v, respectively.

The sum-product message-passing rules are given by [21]:

� Variable node to function node. Let L(v) � F be the local neighborhood of the

variable node v, i.e., the set of function nodes connected to v. The message passed

along the edge (v; f) in direction v ! f is 2

�v!f(v) /
Y

h2L(v)�ffg

�h!v(v) (8)

� Function node to variable node. Let L(f) � V be the local neighborhood of the

function node f , i.e., the set of variable nodes connected to f . The message passed

along the edge (v; f) in direction f ! v is3

�f!v(v) /
X

u : u2L(f)�fvg

f (u 2 L(f))
Y

u2L(f)�fvg

�u!f(u) (9)

For the sake of notation simplicity, we let Qk;n(a) = �qn!a
k
[n](ak[n] = a) and Pk;i(a) =

�p
k
!x

k
[i](xk[i] = a) denote the messages calculated at the n-th channel transition function

2For a set S and s 2 S, we denote by S� fsg the set of all elements in S except s.
3The short-hand notation

P
u : u2L(f)�fvg indicates the sum over all variables u in L(f) ex-

cluding v, where each variable is summed over its domain. In the language of [21], the

function f (u 2 L(f))
Q

u2L(f)�fvg �u!f (u) is \summarized" with respect to the variable v. If

f (u 2 L(f))
Q

u2L(f)�fvg �u!f (u) is proportional to a joint pmf (resp. pdf), the result of the summation

is proportional to the marginal pmf (resp. pdf) of the variable v alone.
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node qn and at the k-th code constraint function node pk, respectively, and sent to the

variable node xk[i] � ak[n] (a denotes a dummy variable taking on values in the symbol

alphabetA). It is understood that bothQk;n(a) and Pk;i(a) are pmf de�ned overA. There-

fore, the proportionality factor in (9) is chosen so that
P

a2AQk;n(a) =
P

a2A Pk;i(a) = 1.

Computation at the variable nodes. The local neighborhood of xk[i] � ak[n] is the

set fpk; qng. Hence, the computation at the variable nodes is trivial and consists of passing
to pk the message coming from qn and passing to qn the message coming from pk, i.e.,

�x
k
[i]!p

k

(xk[i] = a) = Qk;i(a)

�a
k
[n]!qn(ak[n] = a) = Pk;n(a) (10)

Computation at the channel transition function nodes. The local neighborhood

of qn is the set fa1[n]; : : : ; aK [n]g. The message output in the direction of node ak[n] is

given by

Qk;n(a) /
X
a2AK

a
k
=a

exp
�� jy[n]� SWaj2�Y

j 6=k

Pj;n(aj) for a 2 A (11)

Computation at the code constraint function nodes. The local neighborhood of

pk is the set fxk[1]; : : : ; xk[N ]g. The message output in the direction of node xk[i] is given
by

Pk;i(a) /
X
x2C

k

x[i]=a

Y
j 6=i

Qk;j(x[j]) for a 2 A (12)

In some works [5, 25, 4], the quantities de�ned in (12) is referred to as the \extrinsic

information" of the decoder. Since Pk;i(a) is a pmf, it will be referred to in the following

as the extrinsic pmf for symbol xk[i]. It should be noticed that Pk;i(a) is not the APP of

symbol xk[i] given a priori marginal pmfs fQk;n(a) : n = 1; : : : ; Ng of the coded symbols

and the code constraint of Ck. The coded symbol APPs are proportional to the product

Qk;i(a)Pk;i(a) [5, 4]. In \turbo coding" terminology, the calculation of the extrinsic pmfs

(12) is often referred to as soft-in soft-out (SISO) decoding [4].

APP of information bits. For the sake of MAP detection, the k-th code constraint

function node computes also the APP of the information bits bk;j as follows

APPk;j(b) /
X

x=�
k
(b)

b
k;j

=b

NY
i=1

Qk;i(x[i]) for b 2 f0; 1g (13)
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The information bit detection is obtained by using the above APP in (6).

Remark 2. If the user codes admit an eÆcient trellis representation (e.g., they are

trellis-terminated convolutional codes), the SISO computation (12) can be carried out by

the forward-backward BCJR algorithm [3] with linear complexity in N . On the contrary,

the CDMA vector channel (1) has no particular structure enabling eÆcient evaluation of

(11) and the computation at the channel transition function nodes has complexity of the

order of MK , i.e., exponential in K. For large K, the iterative sum-product algorithm is

still too complex for a practical implementation. �

Scheduling. It can be shown that the sum-product algorithm is able to compute exactly

the marginals of the underlying multivariate function in a �nite number of steps if the

corresponding factor graph is cycle-free, i.e., it is a tree (see [38, 32, 21] and reference

therein). Unfortunately, it is apparent from direct inspection of Fig. 1 that our problem

yields a factor graph with cycles unless K = 1. The consequences of cycles are: 1)

detection based on (13) is in general suboptimal; 2) the result is sensitive to the order in

which computation is carried out through the nodes (scheduling); 3) di�erent scheduling

yields generally non-equivalent sum-product algorithms; 4) these algorithms are iterative.

A scheduling is generally de�ned by a sequence of sets of nodes (either function or variable)

to be activated. Nodes in the same set can be activated in any arbitrary order, as the

value of their output messages does not depend on the activation order within the set.

It is understood that when a node is activated all its output messages are calculated by

using the current value of its input messages.

In our case, the simplest and most intuitive schedulings are parallel and serial. In

parallel scheduling, one iteration is given by the sequence

fqn : n = 1; : : : ; Ng ! fxk[i] : k = 1; : : : ; K; i = 1; : : : ; Ng !
! fpk : k = 1; : : : ; Kg ! fxk[i] : k = 1; : : : ; K; i = 1; : : : ; Ng

In serial scheduling users are considered in a given cyclic order (without loss of generality

we consider the natural ordering k = 1; 2; : : : ; K). One iteration is given by the sequence

fqn : n = 1; : : : ; Ng ! fx1[i] : i = 1; : : : ; Ng ! fp1g ! fx1[i] : i = 1; : : : ; Ng !
! fqn : n = 1; : : : ; Ng ! fx2[i] : i = 1; : : : ; Ng ! fp2g ! fx2[i] : i = 1; : : : ; Ng !

...

! fqn : n = 1; : : : ; Ng ! fxK[i] : i = 1; : : : ; Ng ! fpKg ! fxK [i] : i = 1; : : : ; Ng
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In both cases, the algorithm is initialized by the uniform pmf Pk;i(a) = 1=M for all a 2 A,
k = 1; : : : ; K and i = 1; : : : ; N .

3.3 Low-complexity approximations: IC schemes

We notice that (11) consists of computing the a posteriori pmf of ak[n] given the ob-

servation y[n], assuming that the interfering symbols aj[n] are statistically independent

with marginal pmf Pj;n(a). The exponential complexity of (11) is due to the fact that the

symbols aj[n] take on values in the discrete set A. By arti�cially modifying the marginal

pmfs of the interfering symbols several low-complexity algorithms can be derived in a

uni�ed way.

Hard IC. By replacing Pj;n(a) with its single mass point approximation

bPj;n(a) =
(

1 for a = arg maxa2A Pj;n(a)

0 otherwise

(11) reduces to

Qk;n(a) / exp
��
k jzk;n � aj2� (14)

(recall that 
k = jwkj2), where

zk;n =
1

wk

sHk (y[n]� SkWkbak;n) (15)

Sk is obtained from S by striking out the k-th column,Wk is obtained fromW by striking

out the k-th column and row, and the vector

bak;n = (ba1;n; : : : ;bak�1;n;bak+1;n; : : : ;baK;n)T
has components given by the symbol-by-symbol hard decisions baj;n = arg maxa2A Pj;n(a).

The variable zk;n in (15) is the result of subtracting from the output of the single-user

matched �lter (SUMF) 1
w
k

sHk y[n] the estimated contribution of the interfering symbolsP
j 6=k

w
j

w
k

sHk sjbaj;n based on hard symbol-by-symbol detection made at the output of the

SISO decoders. Depending on whether parallel or serial scheduling is adopted, we refer

to this scheme as hard Parallel IC (h-PIC) or hard Serial IC (h-SIC).

SUMF-based soft IC. By replacing Pj;n(a) with the complex circularly-symmetric

Gaussian pdf with the same mean and variance [14], given by

ePj;n(a) = NC (eaj;n; �j;n)
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where

eaj;n =
X
a2A

aPj;n(a)

�j;n =
X
a2A

ja� eaj;nj2 Pj;n(a) = 1� jeaj;nj2 (16)

y[n] can be treated as a Gaussian vector conditionally on ak[n]. With the additional

simplifying assumption that y[n] is conditionally white, after some trivial algebra (11)

reduces to

Qk;n(a) / exp
��Æk;n jzk;n � aj2� (17)

where we let

Æk;n =

k

1 + 1
L

P
j 6=k 
j�j;n

and

zk;n =
1

wk

sHk (y[n]� SkWkeak;n) (18)

and where the vector

eak;n = (ea1;n; : : : ;eak�1;n;eak+1;n; : : : ;eaK;n)T
has components given by soft symbol estimates de�ned in (16).

The variable zk;n in (18) is the result of subtracting from the output of the SUMF the

estimated contribution of the interfering symbols
P

j 6=k
w
j

w
k

sHk sjeaj;n based on soft symbol-

by-symbol estimates provided by the SISO decoders. Depending on whether parallel or

serial scheduling is adopted, we refer to this scheme as SUMF-based soft Parallel IC

(s-PIC-SUMF) or soft Serial IC (s-SIC-SUMF).

LMMSE-based soft IC. We make the same conditional Gaussian approximation of

y[n] as for the SUMF-based schemes, but instead of treating y[n] as conditionally white,

we take into account its covariance matrix resulting from the assumption that the symbols

aj[n] are circularly-symmetric complex Gaussian and independent, with marginal pdfePj;n(a). The resulting covariance matrix is given by

e�k;n = SkWk�k;nW
H
k S

H
k + I (19)

where

�k;n = diag (�1;n; : : : ; �k�1;n; �k+1;n; : : : ; �K;n) (20)
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With the above assumption, after some simple algebra (11) reduces to

Qk;n(a) / exp
���k;n jzk;n � aj2� (21)

where we let

�k;n = 
ks
H
k
e��1

k;nsk

and

zk;n =
w�
k

�k;n
sHk
e��1

k;n (y[n]� SkWkeak;n) (22)

The variable zk;n in (22) is the result of subtracting from the received signal vector y[n]

the estimated interference vector
P

j 6=k wjsjeaj;n based on soft symbol-by-symbol estimates
provided by the SISO decoders, and then �ltering the resulting di�erence vector by the

estimated unbiased LMMSE �lter de�ned by the �lter coeÆcients vector

hk;n =
wk

�k;n

e��1

k;nsk (23)

Depending on whether parallel or serial scheduling is adopted, we refer to this scheme as

LMMSE-based soft Parallel IC (s-PIC-LMMSE) or soft Serial IC (s-SIC-LMMSE).

Remark 3: on the use of APPs versus extrinsic pmfs. In several papers (e.g.,

[1, 9, 33, 46, 15, 14]), eaj;n in (16) is calculated by from the APP at the SISO output and

not from the exstrinsic pmf Pj;n(a). As a consequence, the residual interference plus noise

at the decoder input, �k;n = zk;n � ak[n], where zk;n is given either by (18) or by (22)), is

biased conditionally on ak[n] [11, 18]. In order to illustrate the bias problem we consider

the simple case of s-PIC-SUMF with BPSK modulation. In this case, eaj;n can be written

as eaj;n = tanh(Lj;n=2) (24)

where Lj;n = log
P
j;n

(+1)

P
j;n

(�1)
is the extrinsic log-likelhood ratio (LLR) of symbol aj[n]. Recall-

ing that the APP at the SISO output is proportional to the product Qj;n(a)Pj;n(a) and

by using (17), the a posteriori LLR of symbol aj[n] is given by 4Æj;nRefzj;ng + Lj;n and

the soft symbol estimate calculated from the APP is given by

eaj;n = tanh (2Æj;nRefzj;ng+ Lj;n=2) (25)

Now, we focus on the real part of the residual interference variable for the n-th input of

the k-th decoder at iteration m (superscripts are used for the iteration index). We let
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�k;n = RefsH�[n]=wkg, rk;j = sHk sj (this is real since the spreading sequences are real)

and Ak;j cos(�k;j) = Refwj=wkg and, by using (18) and (25), we can write

Re
n
�
(m)

k;n

o
=

X
j 6=k

Ak;jrk;j cos(�k;j)
�
aj[n]� ea(m)

j;n

�
+ �k;n

=
X
j 6=k

Ak;jrk;j cos(�k;j)
�
aj[n]� tanh

�
2Æ

(m�1)
j;n Refz(m�1)

j;n g+ L(m)
j;n =2

��
+ �k;n

(a)�
X
j 6=k

Ak;jrk;j cos(�k;j)
�
aj[n]� 2Æ

(m�1)
j;n Refz(m�1)

j;n g � L(m)
j;n =2

�
+ �k;n

(b)
=

X
j 6=k

Ak;jrk;j cos(�k;j)
�
aj[n]� 2Æ

(m�1)
j;n

�
Aj;krj;k cos(�j;k)ak[n] + v

(m�1)
j;n

�
� L(m)

j;n =2
�

+�k;n

(c)
= �2

 X
j 6=k

Æ
(m�1)

j;n r
2
k;j cos

2(�k;j)

!
ak[n] + v

(m)

k;n (26)

where (a) follows by assuming that the signal-to-interference plus noise ratio (SINR) at

the SISO decoders inputs of iteration (m � 1) is small, so that both jL(m)
j;n j and Æ

(m�1)
j;n

are small and we can approximate tanh(x) � x, where (b) follows by collecting the terms

proportional to ak[n] in z
(m�1)
j;n (v

(m�1)
j;n denotes the rest), and (c) follows by collecting the

terms proportional to ak[n] (v
(m)

k;n denotes the rest). From (26) we observe that, by using

APPs instead of extrinsic pmfs, �
(m)

k;n is conditionally biased given ak[n], and the bias has

always sign opposite to ak[n] (i.e., it decreases the useful signal term). As a matter of

fact, v
(m)

k;n in the last line of (26) depends on ak[n] as well (unless m = 1 [11]) and tends

to compensate for the bias if the reliability of the SISO decoders outputs increase with

m. In fact, in the limit for perfect decisions the interference is totally removed and �
(m)

k;n

is obviously unbiased, as it contains only noise. However, for large load the SISO decoder

output in the �rst iterations is very unreliable and the bias might cause the iterative

decoder to get stuck.

From the derivation of Section 3 we notice that the bias problem is naturally avoided

by the rigorous application of the sum-product algorithm. 4 As an example, Fig. 2 shows

the conditional cumulative distribution function (cdf) of Ref�(m)

k;n g for m = 1 (i.e., after

one IC stage) given ak[n] = +1 and ak[n] = �1 when ea(m)
j;n are calculated from the APPs or

from exstrinsic pmfs. The cdfs are obtained by simulating the s-PIC-SUMF with L = 20,

K = 40, randomly generated spreading sequences and interleavers, Eb=N0 = 6 dB, BPSK

modulation and convolutional code with 4 states, rate 1=2 and generators (5; 7) (octal

4Strictly speaking, this statement is correct only for block length N ! 1 and by using ideal inter-

leaving. This is precisely the assumption made in the analysis of next section.
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notation [39]) and block length N = 1000 for all users. The bias of the cdfs resulting

from the use of APP is clearly visible, while if extrinsic pmf is used the bias is practically

absent already for such a small �nite-dimensional system.

Interestingly, since IC schemes are obtained from the sum-product algorithm by quite

crude approximations, using APPs instead of exstrinsic pmfs might provide better results

despite the bias problem, especially for small load. In fact, as it is evident from the

example of Fig. 2, APPs provide a generally smaller variance of residual interference. The

trade-o� between residual interference variance and bias can be optimized by using partial

IC, i.e., by introducing iteration-dependent coeÆcients in order to weight optimally the

estimated interference (see [11, 18] and references therein). Optimizing particular partial

IC schemes is out of the scope of this paper. In the following, we shall focus on the basic

algorithms obtained directly by the application of the sum-product algorithm (i.e., making

use of extrinsic pmfs), without any claim about their optimality.

Remark 4: relation to previous work. The h-PIC and h-SIC schemes have been

proposed by several authors (see [49] and references therein).

The s-PIC-SUMF has been proposed in [1], where it is motivated as an application

of the EM algorithm. Unfortunately, the rigorous application of the EM algorithm does

not yield the term Æk;n in (17) and would involve hard symbol-by-symbol decisions in the

maximization step (missing in the SUMF-based s-PIC/s-SIC). As a matter of fact, the

EM method is applied rigorously to multiuser detection in [37] and the resulting algorithm

is not equivalent to the s-PIC-SUMF of [1].

The s-PIC-LMMSE has been proposed in [53], where the algorithm is motivated by

an heuristic argument. Our uni�ed treatment puts in evidence the relations among all

these algorithms. In particular, the LMMSE-based s-PIC/s-SIC follow from the same

Gaussian approximation yielding the SUMF-based s-PIC/s-SIC by taking into account

that the residual interference vector is not white. In the case of L = 1 (no spreading),

the SUMF-based and LMMSE-based algorithms obviously coincide, yielding the soft IC

schemes of [46, 14, 15]. �

Remark 5: complexity issues. Both the h-PIC/h-SIC and the SUMF-based s-PIC/s-

SIC algorithms perform IC after SUMF �ltering. Then, the SUMF outputs for all users

can be calculated before iterative decoding and no re-spreading and �ltering is needed dur-

ing the iterations. On the contrary, the LMMSE-based s-PIC/s-SIC algorithms perform

IC before LMMSE �ltering, since the �lter vector given by (23) must be recalculated for

all symbols at every iteration. Therefore, the LMMSE-based algorithms are much more
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complex than the SUMF-based (or hard-decision based) algorithms. As an alternative,

the LMMSE �lters can be calculated adaptively, as proposed in [34]. �

Remark 6: some important warnings. It is worthwhile to point out that Pj;n(a)

is not the true APP of aj[n], even after an arbitrarily large number of iterations.5 This

simple observation has some important consequences:

1) The soft symbol estimates eaj;n are not the non-linear MMSE symbol estimates given

by the conditional mean E[aj[n]jy[1]; : : : ;y[N ]].

2) The estimated SINRs 
k;n, Æk;n and �k;n in (14), (17) and (21), respectively, are not

the true SINR at the SISO decoder input. Actually, they are the SINRs \assumed" by

the iterative decoder at the current iteration, based on the a priori information provided

by the previous iteration. The true SINRs are unknown to the decoder since they depend

on the joint statistics of aj[n] and eaj;n (or baj;n, in the case of h-PIC/h-SIC). We shall

refer to 
k, Æk;n and �k;n as the nominal SINR at the SISO decoder input. Treating the

nominal SINRs as the true SINRs (as in [53]) provides optimistic results. In order to see

this, notice that �j;n 2 [0; 1] while E[jaj[n]� eaj;nj2] 2 [0; 4].

3) The �lter hk;n given by (23) is not the true solution of the minimum MSE problem

min
h

E

h��ak[n]� hH (y[n]� SkWkeak;n)��2i
On the contrary, it is the LMMSE �lter subject to the assumption E[jaj[n]�eaj;nj2] = �j;n,

which does not hold in general. We refer to hk;n as the nominal LMMSE �lter at the

current iteration, based on the a priori information provided by the previous iteration. �

From the above discussion we observe that the IC-based decoders previously derived

are a�ected by mismatch. Namely, the SISO decoders works with a nominal input SINR

di�erent from the true input SINR. Moreover, the s-PIC/s-SIC LMMSE-based algorithms

are mismatched also because the estimated LMMSE �lters used at each IC stage do not

coincide with the true LMMSE �lters. These two types of mismatch can be reduced by

suitably modifying the basic algorithms. For example, the true decoder input SINR can

be estimated at each iteration and used to weight the SISO decoder metrics [1], and the

true value of the residual interference symbol variances E[jak[n]�eak;nj2] can be estimated
at each iteration and used to compute the �lters hk;n.

5This is true even if the SISO output APPs instead of the extrinsic pmfs are used, since the factor

graph has cycles.
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4 Asymptotic performance analysis

There are two main obstacles to the performance analysis of the IC algorithms derived

in the previous section: 1) The factor graph contains cycles; 2) The output statistics of

zk;n produced by IC and �ltering depends in a complicated way on the interferers residual

power and spreading sequences. The �rst obstacle is removed by assuming N ! 1 [8].

This approach is common in the analysis of coding with iterative decoding [42, 43, 52].

The basic idea is that in the in�nite factor graph representing the system for N ! 1
the local neighborhood of any variable up to an arbitrary depth looks like a tree, and the

sum-product algorithm provides locally exact marginal computation. The second obstacle

is removed by assuming random spreading and a large system regime, i.e., K !1 while

the load K=L converges to a given value � [47, 51, 31, 28, 50].

Our analysis technique is based on the probability density evolution (DE) [42, 43].

Brie
y, the messages fPk;i(a) : a 2 Ag and fQk;n(a) : a 2 Ag are random vectors 6

and their pdfs evolve with the iterations by propagating along the factor graph. The

probability measure on the messages is induced by the conditional probability measure of

the received signals y[1]; : : : ;y[N ] given the transmitted code words x1; : : : ;xK. The DE

can be obtained by iterating the pdf transformation corresponding to a single iteration step

of the iterative decoding algorithm. Computation takes place at the channel transition

function nodes (corresponding to the IC stage) and at the code constraint function nodes

(corresponding to SISO decoding). Next, we use large-system analysis to characterize

the IC stage. Then, we give some results characterizing the SISO stage. Finally, as an

example, we provide the complete DE algorithm for the s-PIC-LMMSE decoder.

4.1 Interference cancellation stage

We assume thatK=L = �, and that the user spreading waveforms are generated with i.i.d.

random entries. In the case of hard IC, we de�ne Vk;n = 
kE[jak[n]�bak;nj2] and Uk;n = 0.

In the case of soft IC, we de�ne Vk;n = 
kE[jak[n]�eak;nj2] and Uk;n = 
k(1�jeak;nj2) = 
k�k;n

(see (16)). At any given iteration of the iterative decoding algorithm, we assume that the

following conditions hold:

C.1 The empirical joint cdf of the pairs f(Uk;n; Vk;n) : k = 1; : : : ; Kg, for all n, converges
weakly as K !1 to a given non-random cdf FU;V (u; v), dependent on the iteration

step but independent of n.

6In general, aM -valued pmf fp(a) : a 2 Ag is aM -dimensional vector lying in the (M�1)-dimensional

simplex de�ned by the equality
P

a2A
p(a) = 1 and by the inequalities p(a) � 0 for all a 2 A.
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C.2 The Vk;n's are uniformly bounded above and, in the case of soft IC, the Uk;n are

uniformly bounded below by a positive number.

C.3 The empirical cdf of the phase of wk converges weakly as K ! 1 to the uniform

distribution over [0; 2�].

Notice that Vk;n and Uk;n are the residual and nominal interference power provided by user

k at time n, respectively. Intuitively, it is reasonable to expect that the performance of

IC schemes depends on the joint cdf of the true and nominal residual interference power,

and that this is required to converge to some �xed deterministic cdf at every iteration

when the number of users gets large.

Since the pmf/pdf of the estimated symbols depends on the pdf of the SISO output

messages, the validity of condition C.1 will be addressed later (see Proposition 6). Condi-

tion C.2 is somewhat technical (see [28]). The assumption that 
k is uniformly bounded

above and below is not very restrictive in any practical power controlled system. Then,

C.2 reduces to assuming that E[jak[n]�eak;nj2] (or E[jak[n]�bak;nj2]) is uniformly bounded
above and (1�jeak;nj2) is uniformly bounded below. The �rst statement is always veri�ed,

since E[jak[n]j2] = E[jbak;nj2] = 1 and E[jeak;nj2] � 1. The second statement is more criti-

cal, since (1� jeak;nj2) might be smaller than any given constant with positive probability.

However, since by de�nition of eak;n (see (16)) we have jeak;nj � 1 with probability 1, we

can multiply eak;n by (1� �) for a given small � 2 (0; 1) and use (1� �)eak;n instead of eak;n
in the IC stage. For suÆciently small � this incurs in negligible performance loss and C.2

is veri�ed since 1� (1� �)2jeak;nj2 > � with probability 1. Condition C.3 ensures that the

statistics of the received signal has circular symmetry (i.e., it is invariant with respect

to phase rotations [36]). It is not particularly restrictive since in the uplink of practical

systems no phase coherence among the users is assumed. Subject to conditions C.1, C.2

and C.3 we have the following results:

Proposition 1. The nominal SINRs Æk;n and �k;n converge as K !1 almost surely to

the values 
k�
sumf and 
k�

mmse, respectively, where

�
sumf =

1

1 + �
R
u dFU;V (u; v)

(27)

and �mmse is the unique non-negative solution of the equation

� =
1

1 + �
R

u
1+�u

dFU;V (u; v)
(28)
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Sketch of proof. This proposition follows immediately from the de�nition of Æk;n and

�k;n by applying Theorem 3.1 and Proposition 3.3 of [47] with the strengthening made

in [28]. �

Proposition 2. The true SINR at the SISO decoder input of the h-PIC/h-SIC and

of the SUMF-based s-PIC/s-SIC algorithms converges as K ! 1 almost surely to the

values 
k�
h and 
k�

sumf, respectively, where both �h and �sumf are given by

� =
1

1 + �
R
v dFU;V (u; v)

(29)

(Notice that, in general, �h and �sumf are di�erent since the underlying limiting distribu-

tion FU;V (u; v) is di�erent in the two cases, as the variables Vk;n are de�ned di�erently for

hard and soft IC).

Sketch of proof. This proposition follows immediately by writing the SINR at the

output of the hard or SUMF-based soft IC stage as

SINRk;n =

k

1 +
P

j 6=k Vj;njsHk sjj2

and by applying Proposition 3.3 of [47] with the strengthening made in [28]. �

Proposition 3. The true SINR at the SISO decoder input of LMMSE-based s-PIC/s-

SIC converges as K !1 almost surely to the value 
k�
mmse, where

�
mmse =

1� �j�mmsej2 R u2

(1+u�mmse)2
dFU;V (u; v)

1 + �
R

v
(1+u�mmse)2

dFU;V (u; v)
(30)

Proof. See Appendix A. �

Proposition 4. The residual interference variable �k;n = zk;n � ak[n], where zk;n is

de�ned in (15), (18) and (22), is asymptotically circularly symmetric complex Gaussian

with mean zero and variance given by 1=(
k�
h), 1=(
k�

sumf) and 1=(
k�
mmse), in the case

of h-PIC/h-SIC, SUMF-based s-PIC/s-SIC and LMMSE-based s-PIC/s-SIC, respectively.

Sketch of proof. This proposition follows immediately from Proposition IV.1 of [51]

and Theorem 3.2 of [28], after noticing that since the hard and soft symbol estimatesbaj;n and eaj;n are calculated from the extrinsic pmf Pj;n(a) and interleaving is ideal they

are independent of ak[n] (i.e., the residual interference after IC is conditionally unbiased

given ak[n]). �
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Remark 7. The true SINR of user k in the absence of the other users is equal to its

SNR 
k. Therefore, �h, �sumf and �mmse are the AME of hard IC, SUMF-based and

LMMSE-based soft IC at the current iteration step, in the large system regime. Also,

�sumf and �mmse are the nominal AME of SUMF-based and LMMSE-based soft IC. From

(14) we see that the nominal AME of hard IC is equal to 1 (corresponding to error-free

IC). �

Remark 8. Proposition 3 has some interest on its own. Namely, it provides the AME

of a mismatched LMMSE receiver with imperfect knowledge of the interferers powers, in

the large system regime. �

4.2 SISO decoding stage

In this section we de�ne a class of codes for which the evaluation of the pdf of the

SISO output messages fPk;i(a) : a 2 Ag from a given pdf of the SISO input messages

fQk;j(a) : a 2 Ag is particularly simple. Consider a code C over a complex signal set A,

with transmission in AWGN. Then, we have the following de�nitions: 7

De�nition: Uniformity. Let fP
i
jx(p1; : : : ; pM) denote the M -variate pdf of the SISO

output message fPi(a) : a 2 Ag corresponding to the i-th coded symbol, induced by

the conditional probability measure of the received signal y given the transmitted sig-

nal x. The code C is said to be uniform if, for all i = 1; : : : ; N , fP
i
jx(p1; : : : ; pM) =

fP
i
jx0(p1; : : : ; pM) for all x

0 2 C such that x0i = xi. In words, fP
i
jx(p1; : : : ; pM) depends

only on the symbol xi transmitted in position i and not on the whole code word x. �

For uniform codes, we shall write fP
i
jx(p1; : : : ; pM) for fP

i
jx(p1; : : : ; pM) where xi = x

is the symbol transmitted in position i.

De�nition: symbol-by-symbol symmetry. The code C is said to be symbol-by-

symbol symmetric if it is uniform and, for all i = 1; : : : ; N and any two symbols x; x0 2 A
there exists a permutation � of the integers 1; : : : ;M such that

fP
i
jx0(p1; : : : ; pM) = fP

i
jx(p�(1); : : : ; p�(M))

�

7These de�nitions are stated as properties of the code alone, since the channel here is �xed to be

complex circularly-symmetric AWGN. In a more general setting, these are properties of the code and the

channel together.
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De�nition: Isotropy. A code C is said to have unisotropy degree d if it is symbol-by-

symbol symmetric and if as i ranges from 1 to N the pdf fP
i
jx(p1; : : : ; pM) ranges in a set

of d possible pdfs. If d = 1, the code is said to be isotropic. �

The symmetry conditions given here are related to those given in [43] (and references

therein) for binary-input symmetric-output channels. Code isotropy is discussed in [52].

In particularly, it is shown that linear cyclic block codes are isotropic and that time-

invariant trellis codes with s symbols per trellis branch have unisotropy degree d � s.

The following proposition establishes symbol-by-symbol symmetry for a wide class of

codes.

Proposition 5. Let C be a group code with Abelian generating group [29, 27], then C

is symbol-by-symbol symmetric.

Proof. See Appendix A. �

In particular, linear codes mapped onto BPSK modulation and geometrically uniform

M -PSK codes constructed from cyclic groups [12] satisfy Proposition 5.

4.3 Density evolution

The following proposition provides a suÆcient condition (met in several cases of interest)

for which conditions C.1 holds at every iteration step of the iterative decoding algorithm.

Proposition 6. Assume that the users are partitioned into a �nite number c of classes.

Users belonging to the same class have the same SNR and use the same channel code.

Moreover, user codes are symbol-by-symbol symmetric and have bounded unisotropy

degree � d. Then, condition C.1 holds.

Sketch of proof. This proposition follows by noticing that at each iteration the SISO

output messages are distributed in at mostD = cd <1 possible ways. Therefore, for each

symbol interval n, there are K=D ! 1 SISO output messages distributed according to

the same pdf. This implies that the empirical cdf of the SISO output messages converges

to a convex combination of the D possible message cdfs (see [28] for a similar argument).

�

Subject to the assumptions of propositions 1 { 6, we are now ready to consider DE.

Fig. 3 shows the local neighborhood of nodes qn and pk connected through the variable

node xk[i]. The basic DE step is as follows: from the pdf of the \P" messages (SISO
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decoding output), determine the pdf of the \Q" messages (IC stage output). Then, from

the pdf of the \Q" messages determines the pdf of the \P" messages at next iteration.

From propositions 1{4 it follows that the BER for user k at the current iteration is a

one-to-one function of the true SINR 
k� (where the AME � is equal to �h, �sumf or �mmse

depending on the algorithm). Therefore, for all algorithms considered here the DE is

described by the evolution of the single real non-negative parameter � versus the number

of iterations. If � ! 1 as the number of iterations increases, the so called \single-user

bound" is achieved, i.e., each user is able to achieve the same BER as if it was alone in

the system.

In the following, we give explicitly the DE recursion for the case of s-PIC-LMMSE.

Analogous DEs can be easily obtained for the other iterative decoding algorithms consid-

ered in this paper, and are not included because of space limitations. Throughout this

section we denote by c the number of user classes, we let �` for ` = 1; : : : ; c denote the

fraction of users per chip in class `, such that
Pc

`=1 �` = �, and we let g` for ` = 1; : : : ; c

denote the values of received SNR for class ` (i.e., 
k = g` for all users k belonging to

class `).

DE for the s-PIC-LMMSE. Before any interference cancellation, we have that Uk;n =

Vk;n = 
k. Hence, FU;V (u; v) must be initialized to the cdf of the received SNRs

FU;V (u; v) =
1

�

cX
`=1

�`1fg` � u; g` � vg (31)

Let �0 and �0 be the nominal and true AME of s-PIC-LMMSE computed according to

Proposition 1 and Proposition 3, respectively, from the cdf FU;V (u; v) given above (notice

that �0 = �0). Let m denote the iteration index. At each iteration m = 0; 1; 2; : : : the DE

algorithm must evaluate the new empirical joint cdf of Uk;n and Vk;n, and compute the

new nominal and true AMEs according to the following recipe:

1. For ` = 1; : : : ; c, repeat a suÆciently large number of times the steps:

� Generate the SISO input signal z = x + � where x is selected with uniform

probability over the code words of class ` code and � is random with i.i.d.

components � NC (0; 1=(g`�m)).

� Calculate the corresponding sequence of SISO input messages

Qi(a) / exp
��g`�mjz[i]� aj2� a 2 A (32)
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� Apply the SISO decoder to the sequence of messages (32), calculate the encoded

symbol soft estimates eai according to (16) and store the values u`;i = g`(1�jeaij2)
and v`;i = g`jxi � eaij2 in a bu�er.

2. For ` = 1; : : : ; c, compute the empirical mean V` =
1
B

PB
i=1 v`;i, where B is the size

of the random sample generated above.

3. Obtain the new empirical cdf FU;V (u; v) as

FU;V (u; v) =
1

�

cX
`=1

�`

B

BX
i=1

1fu`;i � u; V` � vg (33)

4. Compute �m+1 and �m+1 according to Proposition 1 and 3, respectively, from the

cdf FU;V (u; v) given in (33) and go to the next iteration step.

Ideally matched SISO decoding can be taken into account by replacing �m with �m

in (32). Also, ideally matched LMMSE �lters can be taken into account by calculating

�mmse as the unique non-negative solution of

� =
1

1 + �
R

v
1+�v

dFU;V (u; v)
(34)

instead of using Proposition 3.

Remark 9. Our asymptotic analysis is based on the claim that as N ! 1 the per-

formance of systems with �nite-length random interleavers \concentrates" around the

performance of the in�nite-dimensional system whose factor graph is cycle-free. This

claim holds for trellis codes and SISO decoders operating on a �nite sliding window [43].

Since the sliding-window BCJR algorithm provides practically the same performance of

the BCJR algorithm applied to the whole code block length [4], the DE performance in

the examples of Section 5 (based on convolutional codes) is actually approached with

arbitrarily large probability by �nite-dimensional random systems as N ! 1. This

conclusions is supported by the simulation results of Section 5. Establishing rigorous

concentration theorems (see [43] and reference therein) for more general classes of codes

is of great theoretical and practical interest. �

4.4 Approximated analysis of iterative PIC

In this section we present an approximated analysis allowing the description of PIC al-

gorithms in terms of a one-dimensional non-linear dynamical system. Throughout this
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section we assume that all users are received with the same SNR 
 and use the same

channel code. Subject to these assumptions, with PIC decoding the system is completely

symmetric with respect to any user. Therefore, at any iteration all users have the same

AME at their SISO decoder input and symbol error rate (SER) at their SISO decoder

output. Let � = �(
) denote the SER (of the encoded symbols) at the output of the SISO

decoder as a function of the input SNR 
 and suppose that we are able to �nd a function

� = �(�) relating the true AME at the input of any SISO decoder at iteration m + 1 to

the SER � at the output of the SISO decoders at iteration m. Then, evolution of the

AME vs. the number iterations is described by the dynamical system

�m = �(�m
)

�m+1 = �(�m) (35)

for m = 0; 1; 2; : : :, with the initial condition

�0 =

(
1=(1 + �
) h-PIC and s-PIC-SUMF


(1��)�1+
p

(�
+1)2+2
+(1�2�)
2

2

s-PIC-LMMSE

(36)

(the expression of �0 for the s-PIC-LMMSE follows since at the �rst iteration the nominal

and the true AMEs are equal to the AME of the standard linear MMSE detector, and

the closed-form result of [51, 47] applies).

The SER function � = �(
) must be obtained by simulation, since it is the SER of

symbol-by-symbol decisions based on the extrinsic pmf only, and the usual union bounding

techniques developed for ML decoding do not apply. However, this is much simpler than

DE and (above all) than simulation of the whole iterative decoder.

In the case of h-PIC, the AME function is obtained by writing

Vk;n = 
E[jak[n]� bak;nj2]
= 2


�
1� RefE[ak[n]ba�k;n]g�

� 2


 
1� (1� �)� �

M � 1
Re

(
M�1X
i=1

e
j2�i=M

)!

= 2
�
M

M � 1
(37)

where we assumed that, if a symbol is in error, any other symbol appears with uniform

probability �=(M � 1), and we used the fact that
PM�1

i=1 ej2�i=M = �1. By using (37) in

(29) we obtain

�
h(�) =

1

1 + �2
� M
M�1

(38)
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In order to obtain the AME function in the case of soft IC we use a Gaussian approxi-

mation (GA) of the SISO output [23, 55]. We restrict to BPSK and Gray-labeled QPSK

modulations and consider the real binary-input AWGN channel y = a+�, where a 2 f�1g
and � � N(0; 1=�). The LLR for the ML detection of a from the observation y is given

by

L(y) = log
p(yja = +1)

p(yja = �1) = 2�y

The conditional distribution of L(y) given a is N(2�a; 4�), and the error probability is

� = Pr(L(y) < 0ja = +1) = Q(
p
�)

where Q(x) =
R1
x

1p
2�
e�z

2=2dz is the Gaussian tail function.

We approximate the output of the SISO decoder with SER � by the output of a

\virtual" uncoded binary-input AWGN channel with SNR

�(�) = [Q�1(�)]2 (39)

Therefore, the a posteriori LLR at the SISO decoder output corresponding to the (coded)

symbol a is approximated by a Gaussian random variable � N(2�(�)a; 4�(�)). Without

loss of generality, we assume ak[n] = +1. Then, the corresponding SISO output messages

are approximated by

Pk;n(+1) =
eLk;n

eLk;n + 1

Pk;n(�1) =
1

eLk;n + 1
(40)

where Lk;n � N(2�(�); 4�(�)). The soft symbol estimate eak;n is given by

eak;n = Pk;n(+1)� Pk;n(�1) = eLk;n � 1

eLk;n + 1

By using this in the expression for Vk;n and Uk;n we obtain

Vk;n = 
E

�
4

(eLk;n + 1)2

�
Uk;n = 


 
1�

����eLk;n � 1

eLk;n + 1

����2
!

(41)

The Vk;n's are again constant (as in (37)) and the cdf of the Uk;n's is easily found in closed

form as

FU (u) =

8>>>><>>>>:
0 u < 0

Q

 
log

�
1+
p
1�u=


1�
p
1�u=


�
�2�

p
4�

!
+Q

 
log

�
1+
p
1�u=


1�
p
1�u=


�
+2�

p
4�

!
u 2 [0; 
]

1 u > 


(42)
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where � = �(�) is given by (39). Although it is not possible to express � = �(�) in closed

form as in the case of hard IC (see (38)), the AME function can be obtained numerically

by using (42) in Propositions 1, 2 and 3 and letting � vary in the interval [0; 1=2].

For Gray-labeled QPSK modulation we assume that each user encodes the in-phase

and quadrature symbols independently by using the same binary linear code. The same

approach followed for BPSK carries through immediately (we omit the details for the sake

of space limitation).

Remark 10. Since the analysis based on GA derives the approximated SISO output

statistics from its output SER only, this type of analysis is not able to catch the e�ect of

the SISO decoding SINR mismatch. Hence, the GA-based analysis describes the behavior

of iterative soft IC with ideally matched SISO, aware of the true SINR at its input. We

can also modify the GA-based analysis to describe a s-PIC-LMMSE with ideally matched

LMMSE �lters by using (34) instead of Proposition 3 to calculate the AME function. �

5 Results for PIC with equal-power users

In this section we present some results for PIC with equal-power users. First, we compare

the DE of in�nite-dimensional systems with the performance of �nite-dimensional systems.

Then, we compare the GA-based approximated analysis with DE and we discuss the

threshold behavior of the decoder with respect to the channel load. Finally, we use the

GA-based analysis to determine the system spectral eÆciency for simple convolutional

codes and PSK/QPSK modulation.

Finite-dimensional vs. asymptotic systems. Fig. 4 shows the AME vs. the num-

ber of iterations of a �nite-dimensional system with L = 32 and K = 64 and 80 users

(corresponding to points \+" and \o", respectively), with s-PIC-SUMF decoding, ran-

domly generated spreading sequences, (5; 7) convolutional code, BPSK and Eb=N0 = 6

db. Decoding is implemented by the BCJR algorithm with mismatched input (17). For

each iteration step a cloud of points corresponding to the AMEs of all K users is plot-

ted. The AME is calculated by averaging the residual interference plus noise power

over the code word block length. In this example, the block length is N = 1000. The

AME of DE (in�nite-dimensional system) with the same load � = 2:0 and 2:5 is shown

for comparison. The random �nite-dimensional system shows good agreement with its

in�nite-dimensional limit. Unfortunately, we could not simulate systems with larger L

and K or with LMMSE-based decoders since the complexity is just too large.
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Comparison of DE and GA-based analysis. Since the GA-based analysis is not able

to take into account the SISO mismatch, from now on we consider only algorithms making

use of ideally matched SISO. As observed before, these algorithms can be approximated

in practice by estimating the true SINR at the SISO decoder inputs for each iteration.

Fig. 5 shows the true AME vs. the number of iterations of h-PIC where all users

have Eb=N0 = 6 dB and use the (5,7) convolutional code with BPSK modulation. Points

refer to DE and lines to GA. Curves for � = 1:5; 1:8 and 2:5 are shown. GA shows good

agreement with DE for � = 1:5 and � = 2:5, while for � = 1:8 it is still able to predict

exactly the limiting AME value but not exactly the whole trajectory.

When the AME converges to 0 dB, the single-user bound is attained. The decoder

shows a sort of threshold e�ect with respect to �. For small � it converges to the single-

user performance, while for large � it does not improve with iterations and remains far

from the single-user bound. The threshold e�ect is explained by looking at the trajectory

of system (35). Figs. 6, 7 and 8 show the functions SER= �(
) and SINR= 
�h(�) in

the (SER,SINR) plane (log-log scale), and the trajectory of (35) for � = 1:5; 1:8 and 2:5,

respectively, in the same conditions of Fig. 5. For � = 1:5 and 1:8 the two curves intersect

in a single point, which is the unique (stable) �xed point of (35). Notice that for � = 1:8

the curves are closer than for � = 1:5, and more iterations are needed to converge. For

� = 2:5 the two curves intersect in three points. The leftmost and the rightmost are

stable �xed points and the middle is an unstable �xed point. It turns out that with initial

condition (36) the iterative decoder converges to the leftmost �xed point, characterized

by a very large SER. We refer to this behavior as \above threshold" (the threshold in this

case is � = 2:01).

The behavior observed in the example holds in general for all the IC-based decoders

considered in this paper provided that the operating Eb=N0 is suÆciently large. The SINR

curve has a very steep \waterfall" behavior and has a vertical asymptote for SINR= 
. In

fact, for SER equal to zero the interference can be completely removed and the channel

behaves as a single-user AWGN channel with SINR=SNR= 
 for all users. The SER

curve of usual convolutional codes has a much less steep waterfall behavior. Therefore

the SINR and SER curves intersect either in one or in three points. The limiting case,

determining the threshold of �, is when the curves intersect in one point and are tangent

in another point. Because of the steepness of the SINR curve, for Eb=N0 large enough

(i.e., such that the corresponding single-user BER is small), when the decoder converges

to the rightmost �xed point the single-user performance is almost achieved (this behavior

has been shown experimentally by simulation of �nite-dimensional systems in several

works [8, 15, 33, 1, 46, 35, 53]). On the contrary, if the system has two stable �xed
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point, the initial condition (36), which is also a function of the load �, is such that the

decoder coverges to the leftmost �xed point and its performance is very far from the single-

user bound. Fig. 9 shows the SER curve of the (5; 7) convolutional code and the SINR

curves for Eb=N0 = 6 dB for h-PIC, s-PIC-SUMF, s-PIC-LMMSE and s-PIC-LMMSE

with ideally matched MMSE �lter, for � = 1:8.

Fig. 10 shows the true AME vs. the number of iterations of s-PIC-SUMF in the

same conditions as before with � = 2:5; 2:8; 3:5, and Fig. 11 shows analogous curves for

s-PIC-LMMSE with � = 3:0; 3:3; 3:7. Curves for the s-PIC-LMMSE with ideally matched

LMMSE �lters (denoted by \id.") are also shown for � = 3:7; 4:0. This can be regarded

as an upper bound on the performance of a decoder that calculates an approximation of

the LMMSE �lters by estimating the residual interference variance at every iteration.

In order to illustrate the SISO mismatch problem, in Fig. 12 we plot true and nominal

AME of s-PIC-LMMSE with mismatched SISO decoders in the same conditions of Fig. 11

for � = 2:5 and 3:0. For � = 2:5 the true and nominal AME are very close and both

converge rapidly to 1. For � = 3:0 the nominal AME grows and converges to a large

value, while the true AME converges to a small value. Thus, the SISO decoder works

assuming an input SINR much larger than the true SINR. This makes the decoder give

large reliability weights to wrong decisions, and the bene�t of soft interference cancellation

is reduced. In passing, we notice that analyzing these detectors on the basis of the nominal

SINR (as done in [53]) is very dangerous and provides accurate results only for small load

�, i.e., far from threshold.

System spectral eÆciency. We use the GA-based analysis as a rule of thumb for a

quick evaluation of the spectral eÆciency achievable with given codes and PIC iterative

decoders. Spectral eÆciency is calculated as follows. We �x the target BER to be achieved

by all users and we compute Eb=N0 necessary to achieve the target BER in the single-user

case. If the target BER is suÆciently small, because of the threshold behavior explained

above, it can be achieved only if the decoder works below threshold, i.e., if the single-user

bound is attained. Then, the resulting spectral eÆciency is given by � = ��R, where ��

is the threshold load for the value of Eb=N0 obtained and R is the coding rate.

Figs. 13, 14 and 15 show the spectral eÆciency for target BER equal to 10�5 achieved

by convolutional codes of rate 1=2, 1=3 and 1=4, respectively, with BPSK and Gray-labeled

QPSK modulation with h-PIC, s-PIC-SUMF and s-PIC-LMMSE with ideally matched

SISO. We considered also s-PIC-LMMSE with ideally matched LMMSE �lters (curves

denoted by \id."). For each coding rate we considered the optimal binary convolutional

codes with 4, 8, 16, 32 and 64 states given in [39]. In all �gures coded systems are
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represented by points in the (Eb=N0; �) plane. For each set of results the number of trellis

states increases from right to left (i.e., the rightmost point corresponds to the 4-state

code and the leftmost point to the 64-state code). Larger spectral eÆciency is achieved

by simpler codes, at the price of a larger required Eb=N0 to achieve the target BER.

The QPSK system is obtained by independently encoding the in-phase and quadrature

symbols. Therefore, QPSK yields exactly the same spectral eÆciency of BPSK with h-PIC

and s-PIC-SUMF (the user coding rate is doubled, but the threshold load �� is halved with

respect to the corresponding BPSK system, analogously to what observed for uncoded

linear detectors [13]). With s-PIC-LMMSE things are di�erent. In fact, the LMMSE

performance is sensitive to the dimensionality of the space spanned by interference and

better performance is achieved for the QPSK system (less users with larger coding rate), in

agreement with what found for uncoded linear detection [13]. For the sake of comparison,

the spectral eÆciency with random spreading in a large-system regime achieved by linear

detectors (SUMF and LMMSE) with single-user decoding and by the optimal joint decoder

with ideal Gaussian random codes is also shown (adapted from [51]).

6 Open issues

We would like to conclude this work by pointing out some suggestions for future work.

1. The framework developed in this paper can be extended to more general CDMA

models, involving asynchronous transmission, multipath propagation and joint data

and channel estimation. From the analysis point of view, the DE approach may be

extended by using the results of [31] to include asynchronous CDMA and the results

of [19] to include multipath propagation and the e�ect of channel estimation errors.

2. If compound codes suitable for iterative decoding are used (e.g., turbo-codes or,

more in general, Tanner codes [45]), each code constraint function in the basic

factor graph of Fig. 1 can be expanded into the factor graph for the corresponding

user code. Then, di�erent scheduling options in addition to the plain parallel and

serial ones considered in this work might prove to be useful. In particular, partial

decoding of each user might yield better results than full decoding. For example,

in [14, 15] a system based on s-PIC-SUMF and turbo codes is proposed where at

each iteration of the joint decoder only one iteration of the user turbo decoders is

performed.

3. The convergence speed and threshold load of the various algorithms might be im-
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proved by allocating non-uniform user powers (e.g., in [14, 15] a soft \onion-peeling"

structure is created by a geometrically increasing power allocation).

4. The GA-based analysis should be extended to the case of unequal received powers

and to SIC algorithms. In both cases, the SER at the decoder outputs is not the

same for all users and the AME is a function of all di�erent SERs. Then, the system

behavior is described by a multidimensional non-linear dynamical system.

5. Better IC-based multiuser joint decoders could be obtained by seeking an optimal

trade-o� between the bias and the variance of residual interference (especially at the

�rst iteration steps, which dominate the threshold load). Our asymptotic analysis

might provide a useful tool for the optimization of the weights of partial IC.
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Appendix

A Proofs

A.1 Proof of Proposition 3

At any given iteration of the LMMSE-based s-PIC/s-SIC, for given k and n, let

yk;n = SkWk(ak[n]� eak;n) + �[n] (43)

denote the residual interference plus noise vector after IC, where we de�ne ak[n] =

(a1[n]; : : : ; ak�1[n]; ak+1[n]; : : : ; aK[n])
T . Subject to the assumption of in�nite interleaving,

the true covariance matrix of yk;n is given by

�k;n = SkVk;nS
H
k + I (44)

while the nominal covariance matrix (i.e., the matrix used by the decoder to construct

the approximated LMMSE �lter hk;n in (23)) is given by (see (19))

e�k;n = SkUk;nS
H
k + I (45)

where we have de�ned

Vk;n = diag(V1;n; : : : ; Vk�1;n; Vk+1;n; : : : ; VK;n)

Uk;n = diag(U1;n; : : : ; Uk�1;n; Uk+1;n; : : : ; UK;n)

The SINR at the SISO input is given by

SINRk;n = 
k
jsHk e��1

k;nskj2

sHk
e��1

k;n�k;n
e��1

k;nsk

(46)

By noticing that �k;n = 
ks
H
k
e��1

k;nsk and by applying Proposition 1 we get immediately

that the numerator of the fraction in the RHS of (46) converges almost surely to j�mmsej2.
By following the same steps of the proof of Theorem 3.2 in [28] we obtain that the

denominator of the fraction in the RHS of (46) converges almost surely to the quantity

� = �EU;V

"
V
R

1
(�+1)2

dG(�)�
1 + U

R
1

�+1
dG(�)

�2
#
+

Z
1

(�+ 1)2
dG(�) (47)

where EU;V [�] denotes expectation with respect to the limiting joint statistics of Uk;n and

Vk;n (which is well-de�ned by condition C.1) and where G(�) is the limiting eigenvalue cdf
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of the covariance matrix e�k;n, which is guaranteed to converge (see [47, 28] and references

therein). Let mG(z) be the Stjelties transform of G(�), given by

mG(z) =

Z
1

�� z
dG(�) (Imfzg > 0)

Then, mG(z) satis�es the equation [47]

mG(z) =
1

�z + �
R

u
1+um

G
(z)

dFU;V (u; v)
(48)

By comparing this with (28), we get that �mmse = mG(�1) and thatZ
1

(�+ 1)2
dG(�) =

d

dz
mG(z)

����
z=�1

= m
0
G(�1)

By using this into (47) we obtain

� = m
0
G(�1)

�
1 + �

Z
v

(1 + u�mmse)2
dFU;V (u; v)

�
(49)

Finally, we apply the implicit function derivative theorem (see [30, Sect. 2.10]) to (48)

and get explicitly

m
0
G(�1) =

"�
1 + �

Z
u

1 + u�mmse
dFU;V (u; v)

�2

� �

Z
u2

(1 + u�mmse)2
dFU;V (u; v)

#�1

By using this and (49) into (46) we obtain (30), as desired. �

A.2 Proof of Proposition 5

Let C � C
N be a group code generated by an abstract �nite Abelian group G [29]. Then,

there exist a representation G of G in terms of unitary matrices such that C is the orbit

of any of its code words under the action of G, i.e., for any x0 2 C we have

C = fx 2 C
N : x = Ux0;U 2 Gg

As a consequence of the general structure of Abelian groups, there exists a system of

coordinates in which the projection of C in any of its components is a PSK constella-

tion [27] (possibly of di�erent sizes and amplitudes) and the elements of G are diagonal

matrices. For an arbitrary 1 � i � N let A be the projection of C on the i-th component

(we let M = jAj). Let bx denote the transmitted reference code word and y = bx + � be

the corresponding received signal after transmission on a complex circularly-symmetric
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AWGN channel with SNR 
. The output pmf for symbol i produced by the SISO decoder

with input y is given by

Pi(a) /
X
x2C
x
i
=a

Y
j 6=i

exp(�
jyj � xjj2) (50)

Let fP
i
jbx(p1; : : : ; pM) be the joint density of the vector fPi(a) : a 2 Ag induced by

the conditional probability measure of y given bx. In order to show symbol-by-symbol

symmetry we have to show that fP
i
jbx(p1; : : : ; pM) depends only on the i-th transmitted

symbol bxi (uniformity), and that for all b; b0 2 A there exists a permutation � of the

arguments p1; : : : ; pM such that

fP
i
jb0(p1; : : : ; pM) = fP

i
jb(p�(1); : : : ; p�(M)) (51)

Without loss of generality we can assume that 1 2 A, since because of the circular

symmetry of the noise the channel is invariant with respect to a scaling and rotation of

the output. Consider the subgroup H � G of all matrices U having 1 as i-th element

of the diagonal. This induces the coset partition G = [a2AUaH, where Ua is the \coset

leader" for the coset of matrices having a as i-th diagonal element. De�ne the subcode

Cia = fx 2 C : xi = ag. Then, Cia = fx = UaUx0 : U 2 Hg. We can rewrite (50) as

Pi(a) /
X
U2H

exp
��
 �jy �UaUx0j2 � jyi � aj2�� (52)

Let bx = bUx0 and assume that bU 2 UbH, for some b 2 A where bxi = b is the symbol

transmitted in position i. For any arbitrary eU 2 H we have

jy�UaUx0j2 = j� + bx�UaUx0j2

=
���� + bUeU�1 eUx0 �UaUx0

���2
=

��� eU�1
�e� + bUeUx0 �Ua

eUUx0

����2
=

���e� + bUex�UaUex���2
where ex = eUx0 and where e� = eU� has the same statistics of � since eU is unitary. As U

varies inH, x = UaUex varies in the subcode Cia. Moreover, the term jyi�aj2 = j�i+b�aj2
in the exponent of (52) depends only on b and not on the whole bx. Since eU is arbitrary,

then bUex is an arbitrary code word in the subcode Cib . We conclude that fP
i
jbx(p1; : : : ; pM)

depends only on b and not on the particular transmitted code word bx 2 Cib, so that C is

uniform.
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Now, for any b0 2 A consider the matrix Ub0
bU�1 belonging to the coset of H of all

matrices having the element b0b� in the i-th diagonal position. We have

jy �UaUx0j2 =
���� 0 +Ub0

bU�1bx�Ub0
bU�1UaUx0

���2
where � 0 = Ub0

bU�1
� has the same statistics of �, and j�i+b�aj2 = j� 0i+b0�(b0b�)aj2. The

ordered sequences of symbols fa : a 2 Ag and fb0b�a : a 2 Ag di�er only by a cyclic shift,
namely, by the rotation that brings b into b0 (an isomorphism of the generating group of

A [29]). Also the ordered sequences of cosets fUaH : a 2 Ag and fUb0
bU�1UaH : a 2 Ag

di�er by the same cyclic shift. Therefore, by letting � be the permutation corresponding

to that cyclic shift we have immediately that (51) is veri�ed. �
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Figure 1: Factor graph for the input-output joint pdf of the multiuser coded channel. The

received signal vectors y[n] are \hidden" in the channel transition function nodes qn.
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Figure 2: Conditional cdf of the residual interference Ref�k;ng given ak[n] = +1 and

ak[n] = �1 after one iteration of the s-PIC-SUMF with BPSK, (5,7) binary convolutional

code and Eb=N0 = 6 dB for all users, for a system randomly generated spreading sequences

of length L = 20 and K = 40 users, and for symbol estimates obtained by APPs or by

extrinsic pmfs.
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Figure 4: AME vs. number of iterations for s-PIC-SUMF, BPSK, (5,7) binary convolu-

tional code and Eb=N0 = 6 dB. Points \+" and \o" refer to �nite-dimensional systems

with L = 32 and K = 64 and 80 users, respectively. The AME trajectory of the corre-

sponding in�nite-dimensional systems for � = 2:0 and 2:5 obtained by DE are indicated

by the solid and the dashed lines, respectively.
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Figure 5: AME vs. number of iterations for h-PIC (with matched SISO) with BPSK,

(5,7) binary convolutional code and Eb=N0 = 6 dB, obtained by DE and by GA.
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Figure 6: Trajectory of the h-PIC (obtained by GA) in the SINR-SER plane, for � = 1:5

and the same conditions of Fig. 5. The upper and lower dashed lines indicate the code

SER and the hard IC SINR curves, respectively.
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Figure 7: Trajectory of the h-PIC (obtained by GA) in the SINR-SER plane, for � = 1:8

and the same conditions of Fig. 5. The upper and lower dashed lines indicate the code

SER and the hard IC SINR curves, respectively.
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Figure 8: Trajectory of the h-PIC (obtained by GA) in the SINR-SER plane, for � = 2:5

and the same conditions of Fig. 5. The upper and lower dashed lines indicate the code

SER and the hard IC SINR curves, respectively.
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Figure 9: SER curve of the (5,7) convolutional code (lower solid line) and SINR curves for

h-PIC (dash-dotted line), s-PIC-SUMF (dashed line), s-PIC-LMMSE (upper solid line)

and s-PIC-LMMSE with ideally matched LMMSE �lters (dotted line) for Eb=N0 = 6 dB

and � = 1:8. All the SINR curves are obtained by the GA.
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Figure 10: AME vs. number of iterations for s-PIC-SUMF (with matched SISO) with

BPSK, (5,7) binary convolutional code and Eb=N0 = 6 dB, obtained by DE and by GA.
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Figure 11: AME vs. number of iterations for s-PIC-LMMSE (with matched SISO) and

s-PIC-LMMSE with ideally matched LMMSE �lters (denoted by \id.") with BPSK, (5,7)

binary convolutional code and Eb=N0 = 6 dB, obtained by DE and by GA.
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Figure 12: True and nominal AME vs. number of iterations for s-PIC-MMSE (mismatched

SISO), BPSK, (5,7) binary convolutional code and Eb=N0 = 6 dB.
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Figure 13: Spectral eÆciency of iterative PIC decoders with equal power users and con-

volutional codes of rate 1=2, BPSK and QPSK modulation.



J. Boutros and G. Caire: submitted to IEEE IT Trans., August 2000 51

0

1

2

3

4

5

-1 0 1 2 3 4 5 6 7

ρ 
(b

it
/s

/H
z)

Eb/N0 (dB)

PIC with equal powers, random spreading, CC rate 1/3

Optimal
LMMSE
SUMF
h-PIC,BPSK-QPSK
s-PIC-SUMF,BPSK-QPSK
s-PIC-LMMSE,BPSK
s-PIC-LMMSE,QPSK
id.s-PIC-LMMSE,BPSK
id.s-PIC-LMMSE,QPSK

Figure 14: Spectral eÆciency of iterative PIC decoders with equal power users and con-

volutional codes of rate 1=3, BPSK and QPSK modulation.
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Figure 15: Spectral eÆciency of iterative PIC decoders with equal power users and con-

volutional codes of rate 1=4, BPSK and QPSK modulation.


