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Abstract—This paper considers a bidirectional full-duplex
Multi-Input Multi-Output (MIMO) OFDM system. The limited
dynamic range (LDR) noise model takes into account the hard-
ware impairments in the radio frequency (RF) chain and is thus
more practical. Hence we propose a beamforming (BF) design
which takes into account the LDR noise characteristics and also is
robust to imperfections in the estimated channel. At the transmit
side, we introduce a two stage beamformer (BF) with an inner
BF of lower dimension and an outer BF of higher dimension,
both BFs being at the digital (baseband) side. The inner BF in
OFDM domain handles directive transmission, while the outer
BF in time domain handles self interference (SI). At the receive
side, we propose a hybrid combiner which involves an analog
phase shifter based BF, with fewer RF chains compared to the
number of receive antennas and a digital (baseband) BF in
OFDM domain. The analog BF helps reduce SI before analog-
to-digital conversion (ADC). All the BFs are optimized using
maximization of the expected weighted sum rate (WSR) which is
solved using an alternating minorization approach. The proposed
multi-stage BF architecture has multiple advantages including
SI reduction during OFDM cyclic prefixes, with uplink (UL)
or downlink (DL) possibly using different numerology or being
asynchronous, allowing proper ADC operation.

I. INTRODUCTION

In this paper1, Tx and Rx may denote trans-
mit/transmitter/transmission and receive/receiver/reception.
In-band full-duplex (FD) wireless allows each node to
transmit and receive simultaneously, hence doubling the
spectral efficiency and is one of the prominent technologies
foreseen for 5G+. It avoids the use of two independent
channels for bi-directional communication, by allowing more
flexibility in spectrum utilization, improving data security and
reduces the air interface latency and delay issue. However,
since the wireless signals attenuate quickly with distance, the
self interference (SI) signal can be 100 dB higher than the
desired signal received at a FD node. Canceling this SI signal
is not a trivial task due to the nonlinearities and imperfections
in the transmit chain, as identified in [1].

In self interference cancellation (SIC) techniques, the ob-
jective is to reduce the SI to near the noise floor which makes
signal reception possible. The first design and implementation

1Notation: In this paper, boldface lower-case and upper-case characters denote vectors and matrices respectively. the
operators E{·}, tr{·} , (·)H , (·)T and (·)∗ represent expectation, trace, conjugate transpose, transpose and complex
conjugate respectively. A circularly complex Gaussian random vector x with mean µ and covariance matrix Θ is distributed
as x ∼ CN(µ, Θ). V1:dk

(A, B) represents the matrix formed by the (normalized) dk dominant generalized
eigenvectors of A and B. x = vec(X) represents the vector obtained by stacking each of the columns of X and
unvec(x) represents the inverse operation of vec(.). The operator ⊗ represents the Kronecker product.

of FD WiFi radio was introduced in [2]. In [3], SIC in FD
is investigated experimentally and a practical FD system is
proposed. The authors in [4] combine analog and digital SIC
techniques and study the effect of residual SI together with
clipping plus-quantization noise due to the limited dynamic
range (LDR) of analog-to-digital conversion units (ADCs).
With massive multi-input multi-output (MIMO), the analog
cancellation stage may become infeasible due to the large com-
plexity associated [5]. Also the cost of hardware components
required to mimic the SI signal may become unattractive.

The use of separate Tx/Rx antenna arrays combined with
various spatial precoding techniques has also been proposed
to mitigate SI, see for e.g. [5]. Recent studies on fully digital
beamforming (BF) schemes under LDR using weighted sum
rate (WSR) criteria for FD systems can be found in [6], [7].
Hybrid BF (HBF) is a two-stage architecture which provides
BF gains by the use of a phase shifting network in the analog
domain and spatial multiplexing by digital precoders in the
baseband.

A. Contributions of this paper
• We propose a two stage BF design under imperfect

channel state information at the transmitter (CSIT) for
a bidirectional FD MIMO OFDM system based on the
ergodic capacity, expected weighted sum rate (EWSR)
criterion which is solved using the alternating minoriza-
tion approach. The minorization approach also involves
user stream power optimization which implicitly selects
the number of supportable streams for each user. To the
authors’ best knowledge, this is the first work to look at
a multi-stage/HBF design under partial CSIT using the
more practical LDR noise model.

• This paper contrasts with our previous work [8] which
deals with multi-stage BF design under perfect CSIT
for a single but bidirectional MIMO link, which hence
involves perfect SI cancellation using a digital SIC stage.
So, the main purpose of the BF design in [8] is LDR
noise reduction at Tx and Rx. However, in this paper a
portion of the SI signal remains after digital SIC stage
due to imperfect CSI. Hence, apart from LDR noise
reduction, the BF design under partial CSIT also has
to help nulling the SI that will be left by the digital
SIC. Also, we consider the EWSR minorization approach
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Fig. 1. Bidirectional FD MIMO OFDM System with Multi-Stage/Hybrid BF.
Only a single node is shown for simplicity in the figure.

here as opposed to exploiting the rate-Mean-Squared-
Error (MSE) relation in [8] which is suboptimal in the
partial CSI case.

• Through Monte Carlo simulations, we validate the per-
formance of the proposed multi-stage/HBF design. Sim-
ulations demonstrate that using an analog combiner stage
at the Rx (which operates before the Rx side LDR noise)
has better sum rate performance compared to using a two-
stage digital BF at the Tx side for SI nulling.

II. FD BIDIRECTIONAL MIMO SYSTEM MODEL

In this paper we shall consider a multi-stream approach
with dj streams transmitted from base station (BS) j. So,
consider a bidirectional full-duplex system as depicted in
Figure 1, with N1

t or N2
t transmit antennas at the node 1 or

node 2, respectively. This represents a backhaul link between
two BSs. Furthermore we consider an OFDM system with
Ns subcarriers. Node 1 or node 2 is equipped with N1

r or
N2
r receive antennas respectively. Hi,j , i 6= j represents the

N i
r × N

j
t MIMO direct channel between node i and node j.

Let Hi,i represent the self interference (SI) channel from the
Tx of node i to the receiver of node i. At the baseband side,
node i receives

yi[n]=FRF,iHi,j [n](V
j Gj [n]dj [n] + cj [n])+

FRF,iHi,i[n](V
i Gi[n]di[n] + ci[n]) + ei[n] + FRF,ini[n],

(1)
where dj [n], of size dj × 1, is the intended signal stream
vector (all entries are white, unit variance) to node i. We
denote the Tx signal as xj [n] = Vj Gj [n]dj [n]. At the Tx
side, we have a two stage beamformer (inner BF, Gj of lower
dimension and an outer BF, Vj of higher dimension), both
the beamformers being at the digital (baseband) side. The
outer BF will be applied to the time domain signal at the
Tx side, so after the IFFT and addition of cyclic prefix. Vj

will be common to all the subcarriers. The inner BF will be
different for different subcarriers. We are considering a noise
whitened signal representation so that we get for the noise
ni ∼ CN (0, INi

r
). The higher dimensional outer precoder Vj

at Tx of node j is of dimension N j
t × M j

t . The M j
t × dj

digital beamformer is Gj , where Gj =
[
g
(1)
j ... g

(dj)
j

]
and

g
(s)
j represents the beamformer for stream s. cj , ei represents

the noise at the transmitter or receiver antennas of node j or i,
respectively which models the effect of LDR. LDR noise at Tx
or Rx closely approximates the effects of non-ideal amplifiers,

oscillators and ADCs/DACs. The covariance matrix of ci is
given by ki (ki << 1) times the energy of the transmitted
signal at each antenna. cj is approximated as the Gaussian

model, cj [n] ∼ CN (0,
kj
Ns

diag (
Ns∑
n=1

Qj [n])), where Qj [n]

is the transmit signal covariance matrix at subcarrier n of
node i and can be written as Qj [n] = VjGj [n]G

H
j [n]Vj H

and cj [n] is statistically independent of xj [n]. ei[n] is the
LDR noise at the receive side and can be approximated as
ei[n] ∼ CN (0, liNs

diag (Z)), where Z is sum of the covariance
matrix of the undistorted receive signal across all subcar-
riers [9] assuming the subcarrier signals are decorrelated,

Z =
Ns∑
n=1

E(zi[n]zHi [n]), zi[n] = yi[n] − ei[n] and ei[n] is

statistically independent of zi[n]. The transmit power (sum of
all subcarrier powers) constraint at node j can be written as
Ns∑
n=1

tr{Vj HVj Gj [n]G
H
j [n] } ≤ Pj . We introduce a digital

self interference canceller at the base band which subtracts the
residual interference signal Ĥi,ixi from the received signal.
Note that Ĥi,i is the estimated SI channel at the baseband
and since xi is already known to node i, we can rewrite the
received signal at the baseband as

y′i[n]=yi[n]−FRF,iĤi,i[n]xi[n]=FRF,iHi,j [n]xj [n]+vi[n],
(2)

where vi[n] = FRF,i(Hi,j [n]cj [n] + Hi,i[n]ci[n]) + ei[n] +

FRF,iH̃i,i[n]xi[n] + FRF,ini[n] is the unknown interference
plus noise component after SI cancellation. In this paper,
for our BF design, we assume that all the channel matrices
and scaling factors in (1) are known. Note that our HBF
design which follows, is applicable for general MIMO channel
models. Considering the SI channel, as the distance between
the transmit and receive arrays doesn’t satisfy the far-field
range condition, we need to employ the near-field model which
has spherical wavefront, see e.g. [8].

A. Partial CSIT Model
Further, we assume that at both nodes, we have available a

deterministic least squares (LS) channel estimate, which can
be parameterized as follows

ĤLS = H + H̃LS , H = C
1/2
r HvC

1/2
t . (3)

where each element of the estimation error matrix, H̃LS is
distributed as circularly symmetric complex Gaussian random
variable, H̃LS ∼ CN (0, σ̃2I) and also the each element of Hv

is distributed as ∼ CN (0, 1). Also, H̃LS is independent of H.
The positive semidefinite matrices Cr,Ct represent the Rx
and Tx side covariance matrices respectively. Assuming that
the full covariance information is known at both the nodes,
we can construct an MMSE channel estimate for vec(H) =

(C
1/2
t ⊗C

1/2
r )vec(Hv) as follows (Ĥ representing the MMSE

estimate)

(Ct ⊗Cr)(Ct ⊗Cr + σ̃2I)−1vec(ĤLS) = vec(Ĥ). (4)

To simplify further, we consider the eigen decomposition of
Ct = UtΛtU

H
t ,Cr = UrΛrU

H
r . It is straightforward to



show that (Ct ⊗ Cr + σ̃2I)−1 = (Ut ⊗ Ur)[Λt ⊗ Λr +
σ̃2INt⊗INr ]

−1(UH
t ⊗UH

r ). It follows from using the identity
(A ⊗ B)−1 = A−1 ⊗ B−1, if A−1,B−1 exists. Further,
we can simplify (Ct ⊗ Cr)(Ct ⊗ Cr + σ̃2I)−1 = (Ut ⊗
Ur)(Λtr)(U

H
t ⊗UH

r ), where Λtr = (Λt⊗Λr)[(Λt⊗Λr)+
σ̃2INrNt

]−1. We define Λ′tr = [(Λt ⊗ Λr) + σ̃2INrNt
]−1.

Λtr =
Nt∑
i=1

(Λt)i,i(eie
H
i )⊗(ΛrΛ

′
tr,i). We denote Λ′tr,i or Λtr,i

as the diagonal matrix which forms ith Nr×Nr block of Λ′tr
or Λtr. Here (A)i,i represents the ith diagonal element of any
matrix A. Further we can write

Ĥ =
Nt∑
i=1

Ĉr,iHLSĈt,i, Ĉt,i = UtΛ̂t,iU
H
t ,

Ĉr,i = UrΛ̂r,iU
H
r , Λ̂t,i = (Λt)i,i(eie

H
i ), Λ̂r,i = ΛrΛ

′
tr,i.

(5)
The estimation error can be obtained as, (Ct ⊗Cr)− (Ct ⊗
Cr)(Ct ⊗ Cr + σ̃2I)−1(Ct ⊗ Cr) which gets simplified as
Nt∑
i=1

C̃t,i ⊗ C̃r,i, where C̃t,i = (Λt)i,iUt(eie
H
i )UH

t , C̃r =

Ur(Λr(INr
− Λtr,i))U

H
r . Thus we finally obtain the esti-

mation error as, H̃ =
Nt∑
i=1

C̃r,iH̃vC̃t,i and H = Ĥ + H̃.

In the massive MIMO limit, where Nr, Nt → ∞, we get
convergence for any terms of the form HQHH as below [10].
This result gets used extensively in the following sections.

HQHH M→∞−−−−→
a.s

EH|ĤHQHH=ĤQĤH+tr{QC̃t}C̃r. (6)

III. EWSR MAXIMIZATION THROUGH ALTERNATING
MINORIZATION

In this section, consider the optimization of the two-stage
BF/hybrid combiner design using WSR maximization of the
Multi-cell MU-MIMO system. Since the CSIT is imperfect, we
consider here the optimization of the ergodic capacity. First the
WSR is averaged over the channels given a particular channel
estimate, which leads to a cost function in the MaMIMO limit
and it is denoted as Expected Signal and Interference Power
WSR (ESIP-WSR). ESIP-WSR is optimized to compute the
BFs and then it is again averaged over the channel estimates,
to evaluate the final ergodic WSR.

[V G FRF FBB ] = arg max
V,G,

FRF ,FBB

EWSR(G,V,FRF ,FBB)

= argmax
V,G

2∑
i=1

Ns∑
n=1

EH|Ĥ(ui ln det(R
−1
i

[n]Ri[n])) =

argmax
V,G

2∑
i=1

Ns∑
n=1

(ui[ln det(EH|ĤRi[n]))−

ln det(EH|ĤRi[n]))] = ESIP−WSR(G,V,FRF ,FBB),
(7)

where the ui are the rate weights, G represents the collection
of digital BFs Gi[n], V the collection of analog BFs Vi. We
remark that in the massive MIMO limit, the ESIP-WSR repre-
sents an upper bound as is shown in [11], where the channels
are MISO. However, to extend the same for the MIMO case
is straightforward and the corresponding discussion we skip
due to space limitations. At the receiver, we apply a hybrid
combiner with analog BF denoted by FRF,i of size M i

r×N i
r,

where M i
r represents the number of RF chains at the Rx side.

FBB,i represent the baseband digital combiner of size dj×M i
r.

The covariance matrix of vi[n], Ri[n] can be approximated
under ki � 1, li � 1 as follows [12]

Ri[n] = kjFRF,iHi,j [n] diag (Qj [n])H
H
i,j [n]F

H
RF,i+

kiFRF,iHi,i[n] diag (Qi[n])H
H
i,i[n]F

H
RF,i+

li diag (FRF,iHi,j [n]Qj [n]H
H
i,j [n]F

H
RF,i)

+li diag (FRF,iHi,i[n]Qi[n]H
H
i,i[n]F

H
RF,i)

+FRF,iH̃i,i[n]Qi[n]H̃i,i[n]
HFH

RF,i + FRF,iF
H
RF,i,

Also, Ri[n] = Ri[n] + FRF,iHi,j [n]Qj [n]H
H
i,j [n]F

H
RF,i,

(8)

where Ri[n] is the signal plus interference plus
noise covariance matrix. For notational simplicity, we
define Ĥi,j [n]Qj [n]Ĥ

H
i,j [n] = Θ̂i,j [n], which can

be interpreted as the effective Rx signal covariance
matrix before the analog combiner given a particular
channel estimate. Ĥi,j [n] diag (Qj [n])Ĥ

H
i,j [n] =

Ψ̂i,j [n], Θ̂i,j [n] + tr{Qj [n]C̃t,i,j}C̃r,i,j = Θi,j [n], Ψ̂i,j [n] +

tr{ diag (Qj)C̃t,i,j}C̃r,i,j = Ψi,j [n]. Further, we obtain the
expected signal and interference plus noise power (Ri[n])
and expected interference plus noise power (Ri[n]) as

Ri[n] = kjFRF,iΨi,j [n]F
H
RF,i + kiFRF,iΨi,i[n]F

H
RF,i+

li diag (FRF,iΘi,j [n]F
H
RF,i) + li diag (FRF,iΘi,i[n]F

H
RF,i)

+tr{Qi[n]C̃t,i,i}FRF,iC̃r,i,iF
H
RF,i + FRF,iF

H
RF,i,

Also, Ri[n] = Ri[n] + FRF,iΘi,j [n]F
H
RF,i.

(9)

Direct maximization of (7), however, requires a joint opti-
mization over the four matrix variables (V,G,FRF ,FBB).
Unfortunately, finding a global optimum solution for similar
constrained optimization is found to be intractable. So we
decouple the joint transmitter-receiver optimization and focus
on the design of the Rx combiners first. We assume that
the node i applies the frequency selective hybrid combiner
FBB,i[n] at the output of the Rx RF chains and after the IFFT,
to estimate the signal transmitted from node j. The analog
combiner FRF,i serves to reduce the SI component from the
received signal, while the digital combiner FBB,i decouples
the streams (dj) intended for user i from j.

d̂j [n] = FBB,i[n]yi[n] + FBB,i[n]vi[n]. (10)

At the Rx side, maximizing the WSR is equivalent to mini-
mizing the weighted MSE with the MSE weights being chosen
as Wi[n] =

ui

ln 2Rd̃j d̃j
[n]−1 [6], [13]. However, with partial

CSIT, we chose to minimize the expected weighted MSE
(EWSMSE) for the Rx side digital combiner. We can write
the error covariance matrix for the detection of dj at node i
as
Rd̃j d̃j

[n] = EH|Ĥ{(d̂j [n]− dj [n])(d̂j [n]− dj [n])
H} =

(Fi[n]Ĥi,j [n]Qj [n]Ĥi,j [n]
HFi[n]

H

+tr{Qj [n]C̃t,i,j}Fi[n]C̃r,i,jFi[n]
H − Fi[n]Ĥi,j [n]V

jGj [n]

−Gj [n]
HVjĤi,j [n]

HFi[n]
H + Σi[n].

(11)
The MMSE receive combiner at the baseband side can be
alternatively optimized, ∀n, as follows

FBB,i[n] = arg min
FBB,i[n]

tr{Rd̃id̃i
[n]},

= GH
j [n]Vj HĤH

i,j [n]F
H
RF,iRi[n]

−1 .
(12)



Optimizing the digital BF in (12) above can be done in-
dependently across different subcarriers, obviously. Further,
to optimize the analog combiner, we directly optimize the
ESIP-WSR. We make use of certain results on matrix dif-
ferentiation. It was shown in [14] that ∂ ln det(A+BXC)

∂X =
[C(A+BXC)−1B]T . Taking the gradient of (7) w.r.t. FRF,i

Ns∑
n=1

R−1
i [n]FRF,i(Θi,j [n]) =

Ns∑
n=1

(R−1

i
[n]−R−1

i [n])FRF,i

(
kjΨi,j [n] + kiΨi,i[n]

)
+li diag (R−1

i
[n]−R−1

i [n])FRF,i

(
Θi,j [n] + Θi,i[n])

+tr{Qi[n]C̃t,i,i}(R−1

i
[n]−R−1

i [n])FRF,i(C̃r,i,i)+

(R−1

i
[n]−R−1

i [n])FRF,i

)
,

(13)

Vectorizing both sides, we obtain
Ns∑
n=1

(
(Θi,j [n])

T ⊗R−1
i [n]

)
vec(FRF,i)

(a)
=

Ns∑
n=1

[(
kjΨi,j [n] + kiΨi,i[n]

)T
⊗ (R−1

i
[n]−R−1

i [n])+

li(Θi,j [n] + Θi,i[n])
T⊗ diag (R−1

i
[n]−R−1

i [n])

+tr{Qi[n]C̃t,i,i}[C̃r,i,i ⊗ (R−1

i
[n]−R−1

i [n])]+

INi
r
⊗(R−1

i
[n]−R−1

i [n])
]
vec(FRF,i)

(14)

In (a), we use the result vec(AXB) = (BT ⊗A)vec(X) from
[15]. Further this leads to a generalized eigen vector solution
for the analog combiner

vec(FRF,i) = Vmax(B̂i,Ai),

B̂i =
Ns∑
n=1

(Θi,j [n])
T ⊗R−1i [n],

Âi =
Ns∑
n=1

[(
kjΨi,j [n] + kiΨi,i[n]

)T
⊗ (R−1

i
[n]−R−1i [n])

+li

(
Θi,j [n] + Θi,i[n]

)T
⊗ diag (R−1

i
[n]−R−1i [n]+

tr{Qi[n]C̃t,i,i}[C̃r,i,i ⊗ (R−1
i

[n]−R−1i [n])]+

INi
r
⊗(R−1

i
[n]−R−1i [n]))

]
(15)

A. Two stage transmit BF design

We define the following Lemma below which proves the
concavity of a part of the EWSR (7).
Lemma 1. For each i ∈ 1, 2, n ∈ 1, .., Ns,
fi(Qj [n],Qj [n]) = ln det(R

−1
i [n]Ri[n]) is concave

w.r.t Qj [n], where Qj [n] is a positive semidefinite matrix.

Proof: Using the technique from [14, Th. 2], the concavity
of fi(Qj [n],Qj [n]) w.r.t Qj [n] can be proved by showing
that f̃i(t) = fi(Xj + tYj ,Qj [n]) is concave w.r.t t ∈ [0, 1],
where Xi is positive semidefinite and Yi being Hermitian.
The derivative of f̃i(t) w.r.t t can be written as

∂
∂t f̃i(t) = tr{R−1i [n](

∂Ri[n]
∂t + FRF,iĤi,j [n]YjĤ

H
i,j [n]F

H
RF,i)

+tr{YjC̃t,i,j}FRF,iC̃r,i,jF
H
RF,i)−R

−1
i [n]

∂Ri

∂t }
(16)

where ∂Ri[n]
∂t = kjFRF,iĤi,j [n] diag (Yj [n])Ĥ

H
i,j [n]F

H
RF,i +

kj tr{ diag (Yj [n])C̃t,i,j}FRF,iC̃r,i,jF
H
RF,i +

li diag (FRF,iĤi,j [n]Yj [n]Ĥ
H
i,j [n]F

H
RF,i) +

litr{Yj [n]C̃t,i,j} diag (FRF,iC̃i,jF
H
RF,i) does not depend on

t. Further

∂2

∂t2 f̃i(t) = tr{−R
−1
i [n](

∂Ri[n]
∂t + Ni)R

−1
i [n](

∂Ri[n]
∂t + Ni)

+R
−1
i [n]

∂Ri[n]
∂t R

−1
i [n]

∂Ri[n]
∂t }

(17)
where Ni = FRF,iĤi,jYjĤ

H
i,j [n]F

H
RF,i +

tr{YjC̃t,i,j}FRF,iC̃r,i,jF
H
RF,i. Since we assume that

ki, li � 1, the second term inside the trace in (17) will
contain quadratic terms in ki or li and thus becomes
negligible. Further we can show similar as in [14, Th. 2] that
the first term in (17) is negative and thus we can conclude
that f̃i(t) is concave.

Consider the dependence of EWSR on Qj [n] alone.

EWSR = ui ln det(R
−1
i [n]Ri[n]) + EWSRi[n]+

Ns∑
m=1,m6=n

EWSRi[m], where

EWSRi[n] = uj ln det(R
−1
j [n]Rj [n]), j 6= i

(18)

From Lemma 1, we can see that the first term in the above
summation is a concave function in Qj [n]. However, the rest
of terms are convex due to the dependency of Qj [n] through
the interference terms. In order to solve this non-convex
problem, we further consider a difference of convex (DC)
function approach [16]. DC approach linearizes the convex
part through a first order Taylor series expansion (around
Q̂j [n] and R̂i[n] represents the corresponding Ri[n]) as below

EWSRi(Qj [n], Q̂[n]) = EWSRi(Q̂j [n], Q̂[n])− tr{(Qj [n]−

Q̂j [n])Âj [n]}, Âj [n] =−
∂EWSRi(Qj [n],Q̂[n])

∂Qj [n]

∣∣∣∣
Q̂j [n]

(a)
=

ujkj diag (ĤH
j,j [n]F

H
RF,j(R̂

−1

j
[n]−R̂−1

j [n])FRF,jĤj,j [n])

+ljujĤ
H
j,j [n]F

H
RF,jdiag (R̂−1

j
[n]−R̂−1

j [n])FRF,jĤj,j [n]

+uj lj tr{ diag (FRF,jC̃r,j,jF
H
RF,j)(R̂

−1

j
[n]−R̂−1

j [n]}C̃t,j,j

+ujkj tr{(FRF,jC̃r,j,jF
H
RF,j)(R̂

−1

j
[n]−R̂−1

j [n])} diag (C̃t,j,j)+

uj tr{FRF,jC̃r,j,jF
H
RF,j(R̂

−1

j
[n]−R̂−1

j [n])}C̃t,j,j . (19)
In the above equation, for the trace term, we made use
of the gradient result derived in Appendix, ∂ ln detY

∂X =
[DT tr{BTY−1}], where, Y = tr{XD}B. The Taylor series
expansion is done around the point Q̂j [n] (which represent
the computed previous iteration values) and the corresponding
Ri[n] is R̂i[n]. Then, dropping constant terms, reparameter-
izing the Qj [n] as in (9), performing this linearization for
all users, and augmenting the EWSR cost function with the
Tx power constraints, we get the Lagrangian (20) which gets
maximized alternatingly [17] between digital and analog BF.

L(V,G,Λ)=
2∑
i=1

λiPi+
2∑
i=1

Ns∑
n=1

ui ln det(R
−1
i [n]Ri[n])

−tr{GH
i [n](ViH(Âi[n] + λbkI)Vi)Gi[n]} .

(20)
In the Appendix A, we derive the gradient expressions when
there are terms of the form ln det(Y + F(X)) where Y =



A diag (CXD)B + F(X). Using this result, we take the
derivative of (20) w.r.t the digital BF Gj which leads to

Vj HĤi,j [n]
HFH

RF,i(R̂
−1
i [n] + li diag (R̂−1

i [n]− R̂−1

i
[n]))

FRF,iĤi,j [n]V
jGj [n] + kjV

j H diag (Ĥi,j [n]
HFH

RF,i

(R̂−1
i [n]− R̂−1

i
[n])FRF,iĤi,j [n])V

jGj [n]+

Vj H(tr{FH
RF,iR̂

−1
i [n]C̃r,i,j}C̃t,i,j+

litr{ diag (FRF,iC̃r,i,jF
H
RF,i)(R̂

−1

i
[n]−R̂−1

i [n])}C̃t,i,j+

kj tr{(FRF,iC̃r,i,jF
H
RF,i)(R̂

−1

i
[n]−R̂−1

i [n])} diag (C̃t,i,j))

Vj HGj [n] = Vj HÂj [n]V
jGj [n]

(21)
This can be interpreted as the dominant generalized eigen
vectors solution for the digital BF

Gj [n] =

V1:dj (V
j HB̂j [n]V

j ,Vj H(Âj [n] + Ĉj [n] + λjI)V
j),

(22)
where B̂j [n] = Ĥi,j [n]

HFHRF,iR̂
−1
i [n]FRF,iĤi,j [n] +

tr{FHRF,iR̂
−1
i [n]C̃r,i,j}C̃t,i,j . Ĉj [n] =

−Ĥi,j [n]
HFHRF,i(li diag (R̂−1i − R̂−1

i
))FRF,iĤi,j +

kj diag (Ĥi,j [n]
HFHRF,i(R̂

−1
i [n] − R̂−1

i
[n])FRF,iĤi,j [n]) +

litr{ diag (FRF,iC̃r,i,jF
H
RF,i)(R̂

−1
i

[n] − R̂−1i [n])}C̃t,i,j +

kj tr{(FRF,iC̃r,i,jF
H
RF,i)(R̂

−1
i

[n] − R̂−1i [n])} diag (C̃t,i,j).
Further considering the derivative of (20) w.r.t the analog BF
Vj , we get

(B̂j [n]− Ĉj [n])V
jGj [n]G

H
j [n] =

(Âj [n] + λjI)V
jGj [n]G

H
j [n].

(23)

Further utilizing the result vec(AXB) = (BT ⊗A)vec(X)
[15], we get

Ns∑
n=1

((Gj [n]G
H
j [n])T ⊗ B̂j [n])vec(V

j) =

Ns∑
n=1

((Gj [n]G
H
j [n])T ⊗ Êj [n])vec(V

j).

(24)

where we define Êj [n] = Âj [n] + Ĉj [n] + λjI. This
leads to the generalized eigen vector solution and can

be written as vec(Vj) = Vmax((
Ns∑
n=1

(Gj [n]G
H
j [n])T ⊗

B̂j [n]),
Ns∑
n=1

((Gj [n]G
H
j [n])T ⊗ Êj [n])).

B. Optimization of stream powers

One advantage of the Largangian formulation (20) is that it
allows to introduce stream powers for each BS, so Gj [n] =

G′j [n]P
1/2
j [n], where the diagonal matrix Pj [n] represents the

power allocated to an unknown number of supportable streams
for BS j. In order to render a feasible solution for the stream
powers, we approximate the concave part of the EWSR by a
first order local minorizer function.
ln det(I + GH

j [n]Vj HB̂j [n]V
jGj [n]) =

ln det(I + Pj [n]Ŝj [n]) + tr{(Pj [n]− P̂j [n])T̂j},where, T̂j [n] =

GH
j [n]Vj HÊj [n]V

jGj [n], Ŝj [n] = GH
j [n]Vj HB̂j [n]V

jGj [n]
(25)

For the concave local minorization considered above, this
works well as long as the next optimum is within the minoriza-
tion range. Note that Ŝj [n], T̂j [n] are diagonal since Gj [n]

diagonalizes the matrices Vj HB̂j [n]V
j and Vj HÊj [n]V

j .
Further optimizing w.r.t Pj [n] leads to the self interference and
LDR aware water filling (SILA-WF) solution for the stream
powers

Pj [n] = (ujT̂
−1
j [n]− Ŝ−1j [n])+ (26)

where (x)+ = max(0, x) is applied to all diagonal elements
and the Lagrange multipliers are adjusted to satisfy the power
constraints. This can be done by bisection and gets executed
per BS.

1) Analog Phase Shifter Design: For the constrained analog
BF case, where the BF coefficients are chosen to be phasors,
we utilize the DA based approach proposed earlier in our
own work [18], [19]. We refer the reader for a more detailed
discussion on this to our own paper [19, Algorithm 3]. We

Algorithm 1 Minorization based multi-stage/HBF design
Given: Pj ,Hi,j [n], ui,Hi,i[n] ∀i, j, n.
Initialization: Vj is selected as the eigen vectors of the direct channel covariance matrix,
The G

(0)
j [n] are initialized to be ZF precoders for the effective channels Hi,j [n]V

j ,
with uniform power distribution across the streams. Iteration (t) :

1) Compute the Rx side digital combiner F(t)
BB,i from (12).

2) Update the Rx side analog combiner F(t)
RF,i using (15).

3) Compute B̂j [n], Âj [n],from (19) and Ĉj [n] ∀j, n.
4) Update G

′(t)
j [n] from (22), and Pj [n] from (26), ∀k, n. Compute λj using

bisection.
5) Update (Vj)(t), ∀j, using DA (phasor constrained) or from (24) (uncon-

strained).
6) If the algorithm is converged, exit the loop, otherwise go to step 1).

remark here that in this paper, we consider only a case of two
backhaul nodes for simplicity. The extension to the multi-user
case with multiple FD or half duplex nodes, for e.g. [7] (which
is fully digital), is quite straightforward and left as future work.

IV. SIMULATION RESULTS

Simulations to validate the performance of the proposed
hybrid BF algorithms are presented for a bidirectional FD
system under LDR noise model. We follow the partial CSIT
model Hi,j as in Section II.A. For the SI channel, we ignore
the near field effect of amplitude variation with distance and
the near field effects in the phase variation. In the Uniform
Linear Array (ULA), the AoD or AoA φ, θ are assumed to be
uniformly distributed in the interval [0o, 30o].
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In Figure 2, Eigen BF corresponds to the sub-optimal BF
(fully digital) with the BFs at both sides selected as the right



or left signular vectors of the direct channel which is projected
onto the orthogonal complement of SI channel, respectively.
The superior performance of our proposed approach is due to
the fact that our BFs are optimized to take into account the
LDR noise at both sides. In Figure 2, we look at ergodic
capacity analysis with the proposed ESIP-WSR based BF
design here. Notations: “paCSIT” corresponds to partial CSIT
and “iCSIT” corresponds to perfect or instantaneous CSIT.
Naive BFs in the case of partial CSIT corresponds to the
case when we treat the estimated channel as true channel and
the BFs being optimized using the WSR. So error covariance
information is not exploited for the naive BFs. So the Figure 2
clearly shows the advantage in exploiting the error covariance
information which the proposed ESIP-WSR does. Also, the
curve “Naive Fully Digital BF:iCSIT” is the scenario where
we ignore the presence of LDR noise in the design of BFs.
It is clearly evident that ignoring the LDR noises results in
a significant reduction in sum rate. The dimensions of the
two-stage BF and hybrid BF are such that the zero forcing
capabilities at both sides are comparable. However, the number
of LDR noises is the number of antennas at the Tx side,
whereas for the analog Rx stage, the number of LDR noises is
the number of analog BF outputs, which is less. We conjecture
that this would explain the better performance of the analog
stage at Rx (in both figures) compared to the two-stage
architecture at Tx for SI nulling.

V. CONCLUSION
In this paper, we looked at BF solutions to null the SI

power under a more practical noise model termed limited
dynamic range. We proposed a multi-stage BF design (whose
performance is validated through simulations), with a fre-
quency flat analog or time domain combiner/BF stage and
a frequency dependent baseband precoder/combiner. We opti-
mized the EWSR using an alternating minorization approach
which converges to a local optimum. We considered a Massive
MIMO limit approximation of the EWSR termed as ESIP-
WSR which has significant performance gains compared to an
Expected Weighted Sum MSE (EWSMSE) based BF design
(which represents a lower bound to the ergodic capacity) [11].

APPENDIX A
GRADIENT DERIVATION

In this section we derive an expression for the gradient for
the terms of the form,

Y = A diag (CXD)B + F(X), R = CXD, (27)

where F(X) represents any matrix function in X. Each
element of Y can be written as,

Yi,j =
∑
m,n

Ai,mRm,nBn,jδm−n + F(X)i,j ,

Rm,n =
∑
p,q

Cm,pXp,qDq,n,

Yi,j=
∑
m,n

Ai,m(
∑
p,q

Cm,pXp,qDq,n)Bn,jδm−n + F(X)i,j ,

(28)
where δk represents the Kronecker delta function. We define
Vr,s as zero-valued matrix except for a unity element at row
r and column s and we obtain,

∂ det(Y)
∂X

=
∑
r,s

Vr,s
∂ det(Y)
∂Xr,s

=
∑
r,s

Vr,s

∑
i,j

∂ det(Y)
∂Yi,j

det(Yi,j)

∂Xr,s
=∑

r,s

Vr,s

∑
i,j

∂ det(Y)
∂Yi,j

[
∑
m,n

Ai,mCm,rDs,nBn,jδm−n+
det(F(X)i,j)

∂Xr,s
]

=
∑
r,s

Vr,s(
∑
m,n

Cm,rDs,n(
∑
i,j

∂ det(Y)
∂Yi,j

Ai,mBn,j)δm−n+∑
i,j

∂ det(Y)
∂Yi,j

det(F(X)i,j)

∂Xr,s
)=[D diag (B( ∂ det(Y)

∂Y
)TA)C]T + F′

(29)
For simplicity we call the second term in the summation F′

since that is not of interest here or the required gradients
(needed forms of F(X)) are derived in [12]. Further using
the result, ∂ det(Y)

∂X = det(Y)(Y−1)T we can simplify it as ,
∂ det(Y)
∂X = det(Y)[D diag (BY−1A)C]T + F′. (30)
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