
A Comprehensive Architecture for Continuous Media E-Mail

on the Internet

David A. Turner and Keith W. Ross

Institut Eur�ecom

Sophia Antipolis, France

fturner,rossg@eurecom.fr

March 10, 2000

Abstract

Continuous media (CM) email is email that contains media that is rendered over time,

such as audio and video, and sender-stored delivery of CM email is when the sender stores the

CM message content and streams it to the recipient upon request. In this paper we propose

solutions to the key problems resulting from sender-stored delivery of CM email. We begin by

reviewing the sender-stored delivery model and its bene�ts; then we identify its weaknesses and

propose solutions to them. First, there is the QoS problem, which we address by proposing a

combination of sender-side and recipient-side storage. Second, there is the issue of managing

the sender's storage, which now contains CM data that the recipient may wish to access at

unknown points in time. We outline several solutions to the problem of message deletion.

Third, new approaches are needed for forwarding and replying when sender-side storage is

used|we propose a new set of techniques and discuss their advantages.

1 Introduction

Although CM may not completely replace text in email, there are many situations where the sole

or additional use of audio or video in messages is more desirable than only text. However, there

are inherent problems in the existing Internet email storage and delivery model for supporting CM.

We review these problems and explain how they are surmountable with current Web technology.

1

Given user interest in CM email, and the existing Web technology to provide it, we predict the

rapid emergence of CM as a popular alternative to traditional text email. However, a new Web-

based storage and streaming delivery model for email raises a number of issues related to QoS,

message deletion, forwarding and replying. We identify these problems and provide solutions to

them. Before we begin this analysis, we �rst motivate our work by identifying the most important

bene�ts of adding CM to the present email system.

Adding CM to email solves several accessibility problems. Email with audio content is particu-

larly appropriate for the seeing-impaired. It also provides increased accessibility to persons su�ering

from ailments that inhibit their use of a keyboard, such as paralysis of the limbs, carpal tunnel syn-

drome, etc. Many other potential users of asynchronous messaging, such as young children and

other persons who can not read or write their native language, would gain access to email if audio

and video were more widely supported.

CM email is well suited for small portable devices, because these devices lack adequate space

for a keyboard, while the space required for a microphone or video capture device is relatively

small. Certainly, in environments where the user has limited use of his or her hands, CM email

would be easier to compose and render than text email. For all users, CM email reduces eyestrain

resulting from prolonged exposure to a monitor. Additionally, the shift from keyboard input to

a more natural speaking mode would provide the user greater freedom of movement, and reduce

physical stress resulting from keyboard usage.

Another advantage to CM messaging is that audio and video messages are inherently more

personal than text messages. Incorporating this personal e�ect in email is certainly desirable for

communication between family and friends, and also in many business correspondences. Addi-

tionally, audio and video messages are inherently easier to comprehend than plain text. Compare

watching television to reading a book|most would agree that watching TV requires less e�ort.

In face-to-face communication, people use their bodies and the sound of their voices to commu-

nicate more than what they can accomplish with only the literal content of their words. For this

reason, it is easier and more natural for people to communicate with CM messages. Additionally,

people speak at a rate of about 180 words per minute, whereas the average person types less than

30 words per minute. Thus, it is easier and more e�cient to create messages with CM content

rather than text.

If the bene�ts of CM email are so numerous and compelling, then why is it not more widely used?

2

One of the reasons has been the absence of audio and video capture and playback hardware at user

terminals. But this hardware barrier is starting to disappear; most computer systems now come

equipped with sound cards, speakers and microphones. Also, video capture hardware is available

for about $100 US, which is well within the budget of the average user. Another reason for the

absence of CM email is the lack of audio and video capture and playback functionality within the

user agents (mail readers). However, a more fundamental barrier to the development of CM email

is the manner in which Internet email is currently stored and delivered, which we describe in the

next section.

The remainder of this paper is organized as follows. In Sec. 2, we review the �ndings in [2],

which identify the aspects of the current delivery model that act as barriers to the development

of CM email. Sec. 3 reviews the sender-stored delivery model proposed in [2] that solves these

problems, and describes a Web-based solution that can be implemented incrementally in individual

sender systems. We conclude Sec. 3 by identifying the bene�ts and problems with sender-stored

delivery. The �nal sections of the paper present our solutions to these problems. Sec. 4 describes

our integrated recipient/sender-stored delivery solution to the QoS problem. Sec. 5 details our

proposals for the problem of message deletion. In Sec. 6 we provide methods for message forwarding

and replying. We conclude the paper in Sec. 7.

2 Barriers to the Development of CM Email

There are four main problems in the underlying infrastructure of Internet email:

� Message delivery is not universally possible, because of storage limitations in the message

store of the recipient system.

� There are long delays when retrieving CM messages in low bandwidth environments.

� Email su�ers from a faulty cost model.

� Resources are wasted for the storage and transport of non-rendered media.

To understand these problems, let's �rst review the basic delivery model of Internet email with

the aid of the illustration in Fig. 1. First, user A creates an email message in her1 user agent (UA).

1Throughout this paper we assume that the sender is a \she," and the recipient a \he." In the examples, we often

call the sender Alice and the recipient Bob.

3

UA A transfers the message data by Simple Mail Transport Protocol (SMTP) to an outgoing mail

transfer agent (MTA) in A's mail system. This MTA then transfers the message to the recipient's

incoming MTA, which stores the message data in it's message store. The message remains in the

store until the user connects to it and requests retrieval of the message.

Figure 1: The Current Email Delivery Model

Incoming MTAs generally limit the size of incoming messages that they allow into their message

stores. Frequently, a user is allocated a �xed amount of storage, which in general is adequate to store

incoming text messages, but inadequate for the storage of messages with CM content, which tends

to be quite large in comparison to text and images. For this reason, it is frequently not possible to

deliver email that contains CM. Typically, the incoming MTA cuts o� receipt of incoming message

data, and responds with a notice that the message size has either exceeded the maximum allowable

size or has exceeded the capacity of the recipient's inbox storage.

Even if the email with CM has been accepted by the recipient mail system, there is the problem

of bandwidth between the recipient and the message store. If the recipient is behind a slow network

connection (either because he is always behind a slow connection, or because he intermittently

accesses his mail from behind a slow connection), then he will be subjected to a long wait before

the entire CM message is transferred from his mail system to his UA. For example, a short video

message could easily consume 1 MB of storage. With a 28.8 kbps modem, this would take more

than half an hour to download. The problem is that the video data is being treated as if it were a

loss-intolerant static object, such as text, rather a loss-tolerant, adaptive continuous video stream.

Mail service providers are under little incentive to begin allowing large-sized audio and video

objects into their message stores, because this would increase storage and bandwidth costs, which

would be translated into higher usage fees for their clients. At this point, we see that the delivery

model of Internet email is contrary to the message delivery model one would expect, because the

recipient is actually responsible for paying more for message delivery than the sender. Both sender

4

and recipient pay approximately equal amounts for bandwidth, but the recipient has the extra

expense of providing temporary storage for messages in the message store.

As a �nal rebuke to the current Internet email delivery model, observe the waste encountered

when sending a single message to multiple recipients. For large distribution lists, typically most of

the message content will go unread, or partially read. When transporting CM, this would amount

to a great waste of network resources for the transport of non-rendered content.

Now that we have established the basic aws in the current Internet email delivery model, which

is designed for static media, we will explain in the next section how the Web's content storage

and delivery model, in combination with the adaptive streaming media capabilities of servers and

browsers, solves these fundamental problems, and thus provides a way for the development of CM

email.

3 The Sender-Stored Delivery Model

To resolve the infrastructural inadequacies identi�ed in the previous section, we proposed a storage

and delivery model called sender-stored email [2] that relies on current Web technology, and that

takes into account the needs and heterogeneity of CM email users while only requiring incremental

changes in the existing email infrastructure. In this scheme, the mail system is responsible for the

storage of the CM content of its outgoing messages, which are streamed to recipient UAs (or media

players) in the moment message rendering is desired. The entire data stream need not be sent:

only those portions of the stream that are requested by the recipient, which he controls through the

playback controls of his interface. To accommodate di�erent access rates, the CM server should have

the ability to transmit a compressed version of the CM data that matches the available bandwidth.

We use the term streaming to describe a client-server system of CM delivery in which the client

initiates rendering of a stream of CM data while it is in the process of retrieving the stream from the

server. Streaming delivery of CM reduces start up latency, and allows the user to make temporal

jumps within the stream and change the stream's playback rate. Adaptive streaming is a form of

streaming in which the server adjusts the compression rate of the CM data to match the bandwidth

available between server and client. Adaptive streaming is used to deliver CM with the highest

possible quality under existing bandwidth constraints. In this paper, we always mean adaptive

streaming whenever we use the word streaming.

5

Under the sender-stored delivery model for CM email, the CM portion of the message is placed

in a CM server in the sender's mail system, and a base message containing a reference to this data

is sent to the recipient in the form of a small text message. (This is di�erent from the traditional

delivery mechanism, which we refer to as bulk delivery, in which the data comprising the entire

message is sent in a single transaction.) The recipient's UA uses the base message to instantiate an

appropriate media player to stream the CM from the sender's CM media server.

Fig. 2 illustrates the sender-stored delivery process. To better understand this process, suppose

Alice (A) sends Bob (B) a video message. Alice's UA transfers the message in bulk to her outgoing

mail transfer agent (MTA). This MTA then places the CM data with its CM server, and constructs

a referencing base message, which it transfers to Bob's incoming MTA. Bob retrieves the base

message from the message store of his mail system, and uses it to stream the video message from

the CM server of Alice's mail system.

Figure 2: Sender-Stored CM email

Several other research teams have also considered forms of distributed storage for CM email

similar to our sender-stored scheme. The multimediamessaging system prototypes of the BERKOM

Multimedia Mail Teleservice [6], VistaMail [5], and MHEGAM [7] have all considered some form

of a distributed storage architecture to solve the problem of large media �les. However, these

earlier contributions either propose architectures for non-Internet mail (such as X.400) or propose

entirely new mail systems. Our contribution is to frame the concept of a distributed storage

architecture in terms of current Internet email systems. Rather than designing a new system of

conformant mail agents, we are proposing an evolutionary step that can be applied in a piecemeal

manner to individual systems as they exist in today's environment. Our sender-side proposal

6

is backward compatible with existing recipient systems, because it requires only changes at the

sender. Furthermore, our sender-stored email proposals explicitly address CM message forwarding,

replying and annotation.

In recent years, email user agents have become MIME [9] compatible, and are therefore capable

to a limited degree of creating and rendering email messages with multimedia content. Paralleling

the MIME developments, there has been increased integration of the email user agent and the

Web browser. For example, mail readers now parse text messages for URLs, and render them as

hyperlinks which, when clicked upon, launch a companion Web browser that retrieves and displays

the referenced page. These developments allow a form of sender-stored delivery of CM email in

which the sender delivers a hyperlink to remotely stored CM message data. When the hyperlink is

clicked upon, the recipient's UA delegates processing to the browser. The browser in turn delegates

rendering to a media player when it recognizes the multimedia content. In fact, such schemes are

already appearing in the marketplace ([12] and [13]). As CM messaging becomes more widely used,

we expect that UAs will be able to render sender-stored CM messages within their own window in

order to present the message as an integrated part of the user's messaging system.

3.1 Implementation of Sender-Stored CM email

We now describe by way of example how sender-stored CM email can be implemented by requiring

changes only to the sender's system. In the example, Alice is sending a video message to Bob.

After Alice creates the message and issues the command to send, her UA transfers the message

data to her outgoing MTA. The MTA then stores the CM portion of the message with its CM

server, and formats a base message with a reference to this �le, which it sends along the normal

route taken by a traditional email message during the push phase of email transport. When the

recipient checks for new messages in his mailbox (his allocated portion of the message store), the

pull phase of transport for this message begins. His UA will build a list of messages that are in his

mailbox, comprised of senders' names, subject headings, message dates, etc. When he selects the

new message, he will have the option to render the CM.

Presently, in order to deliver sender-stored CM email with adaptive streaming to an arbitrary

recipient, the base message needs to be processed by a media player outside the recipient's UA.

With current UAs, the only way to accomplish this is by formatting the base message as an HTML

document that links to a secondary object in the sender's mail system. When the recipient clicks

7

on the link, his UA will instantiate its companion Web browser and have it process the hyperlink

request to the secondary object, which ultimately leads to the instantiation of a media player and

the commencement of the media stream.

There are several methods to implement streaming playback for the recipient; we will describe

two examples that illustrate two di�erent approaches. In the �rst example, the recipient is using

Internet Explorer to process the hyperlink to the secondary object. The secondary object is an

HTML �le that contains a reference to an ActiveX control that functions as the media player. If

the control is not already in the client's system, it is downloaded automatically. The control is

then initialized to stream the CM stored with the sender's CM server. In the second example, the

recipient is using Netscape to process the hyperlink to the secondary object, which is also an HTML

document. But rather than containing a reference to an ActiveX control, this HTML �le contains a

reference to a Java applet. The applet is loaded by the browser and run in its Java virtual machine.

The applet contacts the sender's CM server to stream and render the CM.

In both examples, the base message would look something like that in Fig. 3 below.

From: "Alice Adams" <alice@aaa.com>

To: "Bob Brown" <bob@bbb.com>

Subject: meeting announcement

Date: Tue, 9 Feb 1999 13:18:45 +0100

MIME-Version: 1.0

Content-Type: text/plain;

charset="iso-8859-1"

Content-Transfer-Encoding: 7bit

Video message: http://mail.aaa.com/12345.html

Figure 3: Base Message Referencing Secondary Object

Most likely, Bob's UA will display the URL in Fig. 3 as a hyperlink, which he can activate

to instantiate his browser to retrieve the secondary object (12345.html). If his mail reader does

not support this function, then Bob would have to manually start his browser and point it to the

secondary object. When Alice's Web server receives the request for the secondary object, it detects

the operating system and browser that Bob is using by reading the appropriate headers from the

browser's HTTP request. With this information, Alice's system returns an appropriate secondary

object. For instance, if Bob's browser were a version of Netscape that provides a Java API that

supports the streaming playback of Alice's video, then the Web server would return an HTML

8

document with a reference to the Java applet, including a PARAM tag to initialize the applet with

the URL that locates the streamable video data. Fig. 4 is one such possibility for a response.

<HTML><BODY>

<APPLET code="cmail.class">

<PARAM name="URL">rtsp://mail.aaa.com/12345.mpg</PARAM>

</APPLET>

</BODY></HTML>

Figure 4: Secondary Object with Applet

If Bob's browser doesn't support the Java environment needed by the applet, he may be

prompted to allow the automatic installation of the enabling software.

In this example, we used short URLs such as 12345.html and 12345.mpg. But in a real imple-

mentation, these URLs would need to be long strings of random sequences of characters. Such a

scheme would provide a level of privacy equivalent to sending passwords in plain text, and would

allow recipients to access their messages from arbitrary hosts at arbitrary IP addresses. Additional

security would require the use of encryption and certi�cate-based recipient identi�cation.

3.2 Bene�ts of Sender-Stored Delivery of CM email

Sender-side storage combined with streaming solve the four basic problems summarized in Sec. 2.

First, note that the problem of universal message delivery is solved. Because the sender stores the

CM data, and only sends a small referencing base message, it is unlikely that the base message

will be rejected due to storage limitations in the recipient's message store. Additionally, most mail

readers today delegate processing of hyperlinks to a companion Web browser, so when the base

message is in the form of an HTML document or contains a hyperlink, the UA will pass control

to the browser. In turn, the browser|by virtue of its Java API, plug-in architecture or ActiveX

control support|is con�gurable to support the streaming delivery of the remotely stored media.

Because the CM is adaptively streamed, senders can deliver CM messages that render without

signi�cant startup delays, regardless of the recipients' access rates. Recipients behind slow network

connections are not encumbered with excessive retrieval delays, because the streaming mechanism

will increase the compression rate of the media stream to match the available bandwidth. Addi-

tionally, streaming message content from a remote store enables a thin client with relatively small

local memory to render CM messages.

9

Sender-stored email delivery follows a more intelligent economic model, because the sender now

bears the cost of message storage, and the recipient only pays for the bandwidth used in transmitting

that portion of the message data that he chooses to render.

Finally, sender-stored email conserves bandwidth in the case when recipients do not choose to

render the message, or choose only to render part of the message.

With sender-storage mechanisms in place, recipient systems may opt to accept only small-sized

messages into their message stores, thereby forcing senders to resort to sender-stored delivery. The

primary motivation for mail service providers to do so will be to reduce their storage and bandwidth

costs, especially those related to audio and video spam.

3.3 Problems with Sender-Stored Delivery of CM email

Sender-stored email is a major paradigm shift for existing email, and thus engenders several new

problems. First, there is a QoS problem, which results from the streaming delivery of CM across

a bandwidth-limited network path. We address this problem in the next section on integrated

recipient/sender-stored email, where the sender �rst attempts to deliver the CM data to the recipi-

ent's MTA in the usual manner, and then the recipient streams the CM data from his mail system,

which is presumably closer to him than the sender's media server.

Another problem arising from the use of sender-side storage includes deciding when to delete

CM message data from the sender's storage, which the recipient may wish to access at an unknown

point in time. (We will sometimes refer to this storage as the sender's outbox.) Deletion of CM from

the sender's outbox storage can be done manually or automatically. In manual deletion, the sender

is responsible for managing the contents of her outbox in the same manner in which she manages

the contents of her inbox. In automatic deletion, we propose several solutions in increasing degrees

of complexity. For both deletion approaches, we show how the use of CM access statistics can be

used to avoid both the premature deletion of message data and the retention of stale data.

Also, new approaches are needed for forwarding when sender-side storage is used. When for-

warding, one must decide between two types of forwarding, which we refer to as reliable forwarding

and unreliable forwarding. In unreliable forwarding, the forwarder sends a copy of his referencing

message, so that the forward recipient will stream the CM data from the origin sender's CM server.

We consider the problems this engenders, and then describe how these problems can be avoided

with the more expensive reliable forwarding procedure, where the forwarder copies the CM data

10

into the storage of his own CM server, and sends a reference to this copy rather than a reference

to the CM that resides in the origin sender's system.

Replying to sender-stored email also introduces new complexities. When replying, a person

frequently sends an annotated response, that is, a response that contains the whole or pieces of the

sender's original message. In the case of sender-stored email, the annotated data already resides

in the original sender's storage, and so it doesn't need to be delivered; instead, a reference to it is

used.

4 Integrated Recipient/Sender-Stored email

4.1 Pure Recipient-Stored Delivery

Streaming CM message content from the sender's CM delivery system raises a QoS issue, because

the network path between the sender's CM server and the recipient may be congested. Under

congestion, the server will only be able to transmit a highly compressed version of the CM, or may

be forced to introduce rendering delays to build up a large playback bu�er. Therefore, we would

like to move the message data closer to the recipient to improve quality. To solve this problem,

we introduce recipient-stored delivery of CM email, where the CM is transferred into the recipient

system's message store in the normal manner using SMTP, but streamed to the recipient from

his message store in the moment that he chooses to render the message. After we describe this

concept in more detail, we then propose integrated recipient/sender-stored email as a more exible

mechanism, which will better serve the interests of the majority of email users.

The process of recipient-stored delivery is depicted in Fig. 5, where the message is transferred in

bulk from Alice's UA to her MTA, which then transfers the bulk message to the recipient's MTA.

Once the message data arrives at the recipient's MTA, the CM data can be extracted from the

message and given to a CM server under the control of the recipient's mail system. The message

that is retrieved by the recipient's UA via POP, IMAP or HTTP will be the base message referencing

the separately stored CM data. By moving the message data into the recipient's storage, the media

can be streamed to the recipient from a location that is most likely closer to him, and thus there will

be more available bandwidth that can be used to provide higher quality playback. An additional

bene�t is that message deletion is now under the control of the recipient.

Our proposed design for pure recipient-stored delivery introduces a �lter within the recipient

11

Figure 5: Recipient-Stored CM email

MTA that modi�es the push phase of message transport. All incoming messages are �rst passed

through the �lter before entering the message store. When the �lter �nds a MIME body part that

contains CM, it extracts the CM data, removes any base-64 encoding, and then stores the resulting

CM data in storage accessible by the system's CM server. To create the base message, the �lter

replaces the CM data in the original message with a reference to the CM data. The MTA then

places this base message in the recipient's mailbox within the message store for retrieval by the

recipient's UA. When the recipient chooses to render the CM message, the message is streamed

from the CM server of the recipient's mail system to a media player on the recipient's machine.

Recipient-stored delivery can be wholly implemented within the recipient's mail system, without

making changes at the sender or at the recipient UA. Thus a mail service provider can implement the

system without requiring any changes to client software, except possibly the automatic installation

of media player software, as mentioned in the section on sender-stored delivery.

In addition to improving the QoS, recipient-stored delivery also solves the deletion problem by

placing the CM data in storage under the control of the recipient.

4.2 Integrated Recipient/Sender-Stored Delivery

Although QoS can in general be improved with recipient-stored delivery, there are three situations

in which it is desirable to use a pure sender-stored delivery approach. The �rst situation is when

the recipient's mail system is not capable of streaming CM content to the recipient. In this case, if

the recipient of a large message is behind a slow connection, he will su�er a long delay when his UA

retrieves the entire message before commencing playback. The second situation is when mailing to

a large distribution list, where most recipients are expected to render very little of the CM content.

12

In this case, a large amount of bandwidth is conserved by streaming only data that is requested,

rather than pushing all of the data into the message store of each recipient system. The third

situation is when a message is addressed to multiple recipients within the sender's mail system. If

recipient-stored delivery is used, a separate copy of the message data will be placed in the allocated

storage (mailboxes) of each of the recipients. Since the message is not subject to modi�cation by

the recipients|it is read only|there will be needless duplication of message data. Furthermore,

the recipients will retrieve the message data from the mail system of the sender, and thus there is

no QoS improvement with recipient-stored delivery.

We propose and advocate the following mail delivery strategy for an individual message with a

single recipient. If the recipient is local, i.e., if he shares the same mail system as the sender, then

use sender-stored delivery. Otherwise, query the recipient's mail system to see if it is CM-aware,

that is, if it will stream the CM data to the recipient from its message store. (This will be explained

in the next paragraph.) If the response is a�rmative, then deliver the message to that system in

bulk. If the response is negative, then use sender-stored delivery to insure adaptive streaming

delivery.

A mail system can be queried to see if it is CM-aware by using Extended SMTP [10]. Alice's

MTA could have queried Bob's MTA with the ESMTP protocol exchange shown in Fig. 6. Bob's

MTA responds that it supports the extended functionality identi�ed by the keyword CMAWARE.

MTA A: (initiates TCP connection to MTA B through port 25)

MTA B: 220 bbb.com mail server ready

MTA A: EHLO mail.aaa.com

MTA B: 250-bbb.com

MTA B: 250-SIZE

MTA B: 250 CMAWARE

Figure 6: ESMTP Server Announces that it is CM-Aware

For a message with multiple recipients, we propose a slightly more complicated delivery strategy.

When a group of recipients share a common domain name in their email addresses, it means that

they use the same MTA and that a message addressed to all of them can be delivered within

a single SMTP message transfer. Thus the bandwidth cost of sending a large message to many

recipients that share the same mail system equals the cost of sending the message to one of them.

For this reason, we group the recipients of the message by the domain name appearing in their email

addresses. For the recipients who are local, use sender-stored delivery. If the number of non-local

13

recipient mail systems exceed some threshold, then use sender-stored delivery. Otherwise, query

each mail system to see if it is CM-aware. If the response is a�rmative, then deliver the message to

that system in bulk. If the response is negative, then use sender-stored delivery to insure adaptive

streaming delivery.

So that recipient-stored delivery doesn't support the faulty cost model described in section 2,

users should be able to specify those sources of email from which they are willing to accept large

messages, and set a message size limit for all other senders. In this way, they can �lter out potential

video and audio spam, yet allow large CM messages from known senders to pass into their allocated

storage within the message store.

5 Message Deletion

In sender-stored email, the sender (or the sender's system) makes the decision regarding when to

delete message content from storage. The recipient would prefer that the CM data referenced by

his received base message be available until the time he deletes the base message. However, Internet

email does not currently support a form of storage negotiation between sender and recipient systems

that could be used to avoid premature deletion of sender-stored message content. Thus, sender-

stored email systems must rely on non-deterministic methods for deletion of sender-stored CM

data.

Even if the sender were to know how many outstanding references existed to a CM object in her

storage, she may still opt to delete it, because she may be unwilling to service all requests for the

object in the case that many external references to it have been created by repeated forwarding of

the base message.

When recipient-stored delivery of CM email is used|and the entire content of the message is

delivered into the recipient's storage|then these problems don't exist, because the recipient decides

how long to keep messages in storage and when to delete them to make space available for new

messages. This works �ne for IMAP-based and Web-based UAs, because the remote store can delete

CM when its referencing base message is deleted. But it does not work for POP-based systems,

because base messages are kept in local storage rather than in remote storage with the CM. When

a message in local storage is deleted by the user, the UA does not inform the remote store of the

deletion. Therefore, non-deterministic methods of CM deletion are also relevant for recipient-stored

14

messages that are accessed through POP.

When CM messages are sent to recipients within the same mail system as the sender, then the

system has knowledge of whether or not the recipient's referencing base messages have been deleted.

In this case, CM can be protected from deletion until all known referencing base messages have been

deleted. However, if one of the recipients has forwarded the base message outside the mail system,

the system will loose the ability to track the number of outstanding base messages referencing the

CM. Thus, whenever a copy of a base message leaves the mail system, a non-deterministic policy

of CM deletion must be used.

In the following subsections, we identify a number of di�erent possible message store manage-

ment strategies for sender-stored email systems, and examine how they would behave under various

scenarios.

5.1 Manual Deletion

The simplest scheme of storage management is similar to the ordinary manual management of one's

mailbox (the user's allocated portion of the message store). Inside the UA, the sender views her

messages arranged into a tree of folders. These messages include messages that she has received

from other users, messages she has sent and retained a copy of, and in particular, base messages she

has sent that refer to CM she has created and makes available to recipients through her system's

CM server. When she deletes a base message from her mailbox, her mail system also deletes the

CM to which it refers, and so she controls at what point the recipient will no longer be able to

stream the message data from her CM server.

For manual deletion, the UA should provide the user with information about the capacity of

her mailbox storage and the amount of storage being used by the CM stored in it, which could be

presented as a pie chart showing the percentage of consumed versus available storage. To make room

for new outgoing CM (and incoming messages) the user deletes from her mailbox those messages

she considers expendable. The UA should respond by deleting both the base message and the CM

to which the message refers. Message sizes should be indicated in the display, so that the user

knows the impact of each message on her storage allocation.

One drawback to this approach is that the user must su�er the inconvenience of managing the

available space. Prior to adoption of a sender-stored system, the user only had to make decisions

regarding preservation or deletion of her received messages; now she must additionally manage

15

messages that could still be rendered by other users. But users are already faced with the responsi-

bility of managing their �nite storage resources, and so the added responsibility of deciding which

outgoing messages should be saved and which should be deleted may not be perceived as excessively

inconvenient.

In addition to the senders, the recipients of sender-stored messages must also be aware of the

issue of CM lifetime. If a recipient of sender-stored CM wishes to be able to access the CM of a

message at an arbitrary point in the future, and does not believe the sender will provide it to him

at that time, he must copy the CM into storage that is under his control. If the recipient desires to

move the CM into his own storage, then the sender ought to provide a lossless mechanism of CM

transport, so that the recipient can obtain a high quality copy of the message.

5.2 FIFO Deletion

One approach to message deletion is a simple �rst-in/�rst-out (FIFO) queue of CM data. Under

this approach, the sender has a �xed amount of storage reserved for her outgoing CM content.

Messages are retained for as long as possible, but when room is needed for new content, they are

deleted in the order of oldest �rst until there is enough space for the new content.

The advantage of this approach is that it is automatic; the user is relieved of the burden of

deciding which messages to delete. The problem is that the FIFO approach to message deletion

makes it possible for non-rendered messages to be deleted before rendered messages. Suppose Alice

sends Bob a video message on Monday, then sends a di�erent video message to Claire on Tuesday.

Bob has been home with the u, and so has not been to the o�ce to check his mail. Claire, on the

other hand, viewed Alice's video message the day it arrived, and quickly deleted the base message

from her mailbox. On Thursday, pressed for new space to hold new outgoing messages, Alice's

mail system deletes Bob's non-rendered video data, while uselessly retaining Claire's video data.

Bob arrives at work on Friday, selects Alice's message, issues the command to play it, and receives

nothing. Therefore, FIFO is insensitive to whether a message has been read or not.

5.3 Expiration Date Deletion

Another problem with FIFO is that some messages are intended to be more short-lived than others.

For example, suppose Alice sends Bob a reminder to bring a certain report with him to the meeting

they will have at 2:30 later in the day. Clearly, such a message has a very short lifetime. As

16

a contrasting example, suppose Alice sends Bob a description of a product she thinks would be

interesting to his company. Alice may want the CM content to remain available for a relatively

long period of time to ensure the delivery of her sales message in the event it is requested at a later

time.

To accommodate messages with di�erent lifetime expectancies, expiration dates can be used to

override the FIFO order of automatic message deletion. This can be implemented as two queues, as

shown in Fig. 7. Messages initially enter an expiration queue. When their expiration date is reached,

they are moved to an expendable (FIFO) queue. The system keeps messages in the expendable

queue for as long as possible; but when space is needed for new content, CM is retired from the

expendable queue in the order of oldest �rst.

Figure 7: Message Lifetime Queues

Expiration information can be supplied in both human and machine-readable form. The human-

readable expiration date allows recipients to manually copy CM message content into their own

storage when they desire to retain it beyond its expiration date. The machine-readable form of the

expiration date allows recipient mail systems to automatically pre-fetch CM that has not yet been

rendered|or CM that is referenced by undeleted messages|just prior to its approaching expiration

date, or to implement other messaging policies that utilize expiration date information.

Expiration information regarding referenced CM can be added as headers in the base message.

For example, if Alice's video data is due to expire on 18-Feb-2000, the following header can be

added to the base message in Fig. 3:

Link-expiration="http://mailhost.aaa.com/12345.smil 18 Jan 99 1430 GMT"

The expiration header includes two components. The �rst component identi�es the link that

points to the secondary object, which is needed to distinguish ordinary links that may be a part of

the message from links to sender-stored CM. The second component of the header is the time the

CM expires.

17

5.4 CM Access Statistics

Both manual and automatic deletion mechanisms can be enhanced with the use of CM access

statistics. When a recipient accesses the CM of a referencing message, the sender's mail system can

make a record of this access. Because CM can be retrieved in parts, the record keeping of access

statistics could become complex. The most detailed form of record keeping would entail a record of

each streaming event, including the time that a particular byte range within the CM data �le was

streamed. A less detailed mechanism might simply mark whether or not any part of the CM data

was streamed.

In the manual deletion approach, the UA can display the access statistics for CM attached to

messages in one's list of sent messages. One would use these access records in deciding whether

to delete or maintain a particular CM message. For example, after Alice's CM server streams her

video to Bob, it makes a record of the event, which includes the byte range delivered and the time

of delivery. When Alice runs her UA, she opens the folder containing this message and selects the

message she sent to Bob. The access statistics for the message show that it was streamed in its

entirety last week. Because of the nature of the message, she decides that it has already served its

purpose and can be deleted. If she is using an IMAP or Web-based UA, the command to delete the

message is processed by the remote mail system, which can thus delete both the base message and

its referenced CM. But if she is using a POP-based system, her UA would only be able to delete

the base message from its local storage; to delete the CM from the remote storage of the CM server,

a new protocol between UA and mail system would be required.

In the automatic deletion system, the access statistics can be used to order the CM in the

expendable queue, so that the oldest CM is not necessarily the �rst to be deleted. CM that has

not yet been retrieved could be given higher priority for retention over newer CM that has already

passed through a phase of being accessed. Automatic deletion is especially appropriate for POP-

based systems, because no additional protocol exchange mechanism needs to be developed to delete

the remotely stored CM.

One problem with implementing a storage policy that tracts recipient access statistics is iden-

tifying which recipient is retrieving the message data when a message has been sent to multiple

recipients or has been forwarded. The IP address of the recipient's mail server will most likely not

be the same IP address of the system at which the recipient renders the message, so when a recipient

retrieves message data, the sender's message delivery system can not determine which recipient on

18

its list of message recipients is actually accessing the message.

One solution is to use di�erent URLs inside the base messages that are delivered to the di�erent

recipients. These base messages reference di�erent secondary objects, which contain di�erent URL

references to the CM. The CM server then maps each of these di�erent URLs to the same CM �le

that represents the contents of the message. For example, suppose Alice sends a video message to

Bob and Claire. Her system constructs base messages and secondary objects so that Bob's player

requests the �le 12345b.mpg and Claire's player requests 12345c.mpg. Alice's CM server will map

requests for these �les to the same object, 12345.mpg. When Bob reads his message, Alice's CM

server would receive a request for 12345b.mpg. It would stream the �le 12345.mpg, but record the

event as Bob's access. When Alice checks the access statistics for this message, she will see that

only Bob has accessed the message content, and that Claire has not.

The solution of unique URLs fails in the case that a message is forwarded, because now two

di�erent recipients will have base messages with identical URLs. The CM server can not distinguish

whether an incoming request is from the intended recipient or a forwarded party. However, this

problem will not occur if the forwarder makes a copy of the CM in his own storage and reconstructs

the base message to point to this copy. We call this approach reliable forwarding, which we discuss

in the next section.

A large percentage of email in a corporate environment is directed toward recipients within the

corporation, and thus are not transferred beyond the corporate mail server. In this case, message

deletion can be made completely reliable, because the central mail system can track the number of

undeleted references to a particular CM �le, and retain the CM data until the last reference to it

is deleted. This strategy can be implemented if IMAP or HTTP is used as the method of mailbox

access, because message data remains in the domain of the central mail system rather than being

transferred to the user's local storage as is done under POP. Such a system would reduce network

tra�c and conserve disk space by reducing the amount of redundant static data in the system.

6 Forwarding and Replying

6.1 Forwarding

A sender-side storage architecture represents a fundamental paradigm shift in email distribution.

Consequently, the operations of forwarding and replying must be completely rethought. For ex-

19

ample, suppose that Bob has a base message from Alice, and that he has just viewed its video by

streaming it from Alice's CM server. If he wants to forward the message to Claire, Bob (or his

system) must decide between two di�erent types of forwarding, which we refer to as unreliable and

reliable.

In unreliable forwarding the user's system simply sends a copy of the base message to the forward

recipient. The approach is unreliable in the sense that the forwarder has no control over the existence

of the referenced CM data; it is possible that the original author of the message deletes the CM

before the forward recipient has a chance to render it. Fig. 8 illustrates unreliable forwarding. In

this example, Alice �rst sends Bob a sender-stored CM message. When Bob instructs his UA to

forward the base message to Claire (C), Bob's MTA transfers the base message to Claire's MTA.

Claire retrieves the forwarded base message from her MTA through her UA, and uses the base

message to stream the video message from Alice's mail system.

Figure 8: Unreliable Forwarding of a CM Message

Alternatively, with reliable forwarding the forwarder's MTA �rst retrieves a copy of the CM,

then sends it to the forward recipient using the delivery strategy described in Section 4. The

approach is reliable in the sense that the forwarder has control over the lifetime of the CM data.

Fig. 9 illustrates the scenario were Bob's system (MTA B) copies the video data into the message

store of his system, and delivers a referencing base message to Claire. Claire will retrieve the base

message from her mailbox and stream the video from Bob's CM server. Alternately, Bob's MTA

could have delivered the forwarded message in bulk to Claire's MTA, so that Claire would then

stream the message data from her own mail system.

It is possible for the user to decide the method of forwarding on a per message basis. Under

this manual approach, Bob estimates the likelihood that the audio data becomes inaccessible before

Claire tries to render it. His estimate is inuenced by the nature of the message, by the expiration

20

Figure 9: Reliable Forwarding of a CM Message

date Alice may have speci�ed in the base message, and whether Bob wants to attempt bulk delivery

of the message to Claire in order to improve the quality of playback.

If an automatic approach is used, Bob's mail service decides the type of forwarding by comparing

the expiration date placed in the base message by Alice with the expiration date speci�ed by Bob.

If Bob's expiration date is earlier than Alice's date, then Bob's mail service simply forwards the

original base message to Claire's mail system, with its reference to the CM stored in Alice's mail

system. On the other hand, if Bob's expiration date comes after Alice's date, then Bob's mail

system will copy the video data into its storage and deliver it from there to Claire.

Whether the result of user action or automatic mechanism, if Bob's mail service copies the video

data into its message store, it should do so over a reliable TCP-based protocol, such as FTP or

HTTP, in order to avoid the problem of compounding streaming loss. Additionally, it is desirable

for the sender to provide a reliable transport mechanism for their outgoing CM to allow recipients

to make lossless copies of it into their own storage. For example, suppose that after streaming the

video content from Alice's CM server, Bob wants to retain a lossless copy of the message for an

inde�nite period. He believes that Alice will eventually delete the video data, so he instructs his

UA to copy the CM referenced within the base message into his system's message store. When

Bob's UA issues this instruction, his mail service retrieves the message content from Alice's storage

using a reliable protocol such as FTP. Bob's mail service then modi�es the base message so that it

now resolves to the local copy of the video. Note that the message is still delivered to Bob's UA as

a base message, only it now resolves to CM data as it is stored in his mail system.

Adding new functionality that involves communication between UA and mail systems, as just

described, is much easier to accomplish with a Web-based UA system, because the user's mail service

provides the UA interface through HTML documents or mobile code. Thus, changes in the behavior

21

of the remote mail service and the UA interface can be accomplished together. Implementing this

new functionality in a standalone UA system is more di�cult, because it requires concurrent changes

in two separate applications: the remote MTA and the local UA.

6.2 Replying

Frequently, recipients include the original message, or pieces of the original message, in their replies.

It's possible to do the same with CM email. Let's look at an example. Suppose that Bob plays

Alice's video message by streaming it from her CM server. He wishes to comment on something

speci�c that Alice has said. He constructs a video reply in which he begins by speaking, then inserts

into his message that section of Alice's video message he wishes to quote, and then ends the message

with some additional speaking of his own. To do this, he uses the repositioning controls available to

him, such as slider bar, rewind and fast forward buttons. Once he locates the point within Alice's

video that he desires to quote, he clicks on a start copy button to begin capturing the video into

the system clipboard. When the video reaches the end of what he wishes to quote, he clicks on stop

copy, and now the clipboard contains the interval of Alice's video that he wishes to playback within

his reply message. (In the case that his UA has cached Alice's video message from the �rst time

he streamed it, replaying parts of her message as just described does not generate any additional

network tra�c.)

Now, Bob clicks the record button in his message reply window, and begins speaking. When he

gets to the point where he wishes to insert Alice's comment, he clicks on the insert command to

insert the contents of the clipboard into his video, and then speaks the rest of his message. He now

has a video message with a video quote embedded within it. Because there is no need to deliver

data that is already in Alice's storage, a reference to the video data in her mail system is used,

rather than storing a second copy of Alice's data in Bob's mail system.

When Bob issues the command to send his annotated message, his mail system constructs a

base message and secondary object with the SMIL �le depicted in Fig. 10. Notice that the link

pointing to the embedded video data is a reference into the storage of Alice's mail system.

22

<smil><body>

<video src="rtsp://mailhost.bbb.com/67890.mpg" clip-end="10s"/>

<video src="rtsp://mailhost.aaa.com/12345.mpg"

clip-begin="25s" clip-end="42s"/>

<video src="rtsp://mailhost.bbb.com/67890.mpg" clip-begin="10s"/>

<body><smil>

Figure 10: The SMIL Document of a Sender-Stored Annotated Reply

7 Conclusion

We have identi�ed the major weakness of Internet email that obstruct the development of CM

messaging. These include recipient storage limitations that make message delivery impossible,

excessive delays that result from inappropriate data retrieval mechanisms, a faulty cost model in

which the recipient bears much of the cost of email delivery, the duplication of message data within

mail systems when email is sent to multiple recipients, and the wasteful delivery of non-rendered

message data.

We solve these problems with a sender-stored message delivery architecture, which can be im-

plemented and incrementally deployed with current Web technology. As this represents a major

paradigm shift in existing email practice, it naturally engenders new problems, which include re-

duced QoS, deletion of stale message data, and the intricacies of forwarding and replying.

In order to improve QoS in sender-stored delivery, we propose the combined use of both sender

and recipient-stored delivery. In recipient-stored delivery, the CM is still delivered in streaming

mode to the recipient in order to minimize start up latency, but it is done so from the recipient's

mail system, which will provide better QoS when closer to the recipient. To solve the problem of

message deletion, we proposed and examined several solutions, including both manual and auto-

matic message deletion, and the use of recipient access statistics and expiration dates. We identi�ed

two methods of forwarding: reliable and unreliable, and discussed situations in which one is more

appropriate than the other. We identi�ed the main intricacy with replying as enabling annotation,

and we described a SMIL-based method to support annotated replies.

References

[1] L. Huges. Internet E-mail: Protocols, Standards, and Implementation. Artech House, Norwood, MA, 1998.

23

[2] D. Turner and K. Ross. Continuous Media E-mail on the Internet: Infrastructure Inadequacies and a Sender-

Side Solution. Submitted to IEEE Network Magazine.

[3] J. Reynolds, J. Postel, A. Katz, G. Finn, and A. DeSchon. The DARPA Experimental MultimediaMail System.

IEEE Computer, Oct, 1985.

[4] D. Turner and K. Ross. Asynchronous Audio Conferencing on the Web. International Symposiumon Intelligent

Media and Distance Education, Baden-Baden, Germany, Aug, 1999.

[5] C. Hess, D. Lin, and K. Nahrstedt. VistaMail: An Integrated Multimedia Mailing System. IEEE Multimedia,

Oct-Dec, 1998.

[6] G. Sch�urmann. Multimedia Mail. Multimedia Systems, ACM Press, Oct, 1996.

[7] V. Gay and B. Dervella. MHEGAM: A Multimedia Messaging System. IEEE Multimedia, Oct-Dec, 1997.

[8] S. Carrier and N. Georganas. Practical Multimedia Electronic Mail on X.400. IEEE Multimedia, winter, 1995.

[9] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies. Internet Engineering Task Force, Network Working Group, RFC 2045, Nov, 1996.

[10] J. Klensin, N. Freed and K. Moore. SMTP Service Extensions for Message Size Declaration. InternetEngineering

Task Force, RFC 1870, Nov, 1995.

[11] P. Hoschka, ed. Synchronized Multimedia Integration Language (SMIL) 1.0 Speci�cation. Synchronized Multi-

media Working Group, W3C Recommendation, Jun, 1998.

[12] Wimba.com. Internet startup specializing in voice-enabled newsgroups and messaging.

(http://www.wimba.com)

[13] Onebox.com. Internet startup providing voice-mail, e-mail and fax. (http://www.onebox.com)

24

